Assignment #3

$\mathbf{CAS}\ 705$

Computability and Complexity

Jason Jaskolka 0546444 Dr. Michael Soltys November 10, 2009

Question 1

This exercise is related to the Immerman-Szelepcsényi theorem.

Suppose that the membership in some language L can be determined by a nondeterministic TM M with time complexity $t_M(n)$ and space complexity $s_M(n)$.

Furthermore, suppose that the number of strings in L of a given length is given by $f: \mathbb{N} \to \mathbb{N}$, that requires time $t_f(n)$ and space $s_f(n)$.

Under these assumptions give a nondeterministic TM for \bar{L} , and determine upper bounds for the time and space complexity for such a TM.

We want to build a nondeterministic TM, N that will accept \bar{L} . Suppose we can encode configurations of M (the TM that decides L) over a finite alphabet, denoted Σ , such that each input string of length n can be represented as a string in $\Sigma^{s_M(n)}$. Let $|\Sigma| = k$.

Assume that when M wishes to accept, its work-tape is erased and enters a unique state q_{accept} . Due to this assumption, we can say that there is a unique accepting configuration $c_{accept} \in \Sigma^{s_M(n)}$ for inputs of length n. We will denote $c_{init} \in \Sigma^{s_M(n)}$ as the initial configuration on an input z, where |z| = n.

We know that M has at most $k^{s_M(n)}$ configurations for z which means that if z is accepted by M then there is an accepting path in the computation graph of length at most $k^{s_M(n)}$. Let us define C_i as the set of configurations in $\Sigma^{s_M(n)}$ that are reachable from c_{init} in at most i steps. Thus, we have that $f(n) = |C_n|$. So, we have that $C_0 = \{c_{init}\}$ and we know that M accepts if and only if $c_{accept} \in C_{k^{s_M(n)}}$.

How does the machine N decide \bar{L} ? Well, it begins by using the inductive counting technique to compute f. We know that $f(0) = |C_0| = 1$. Suppose we have computed f(i) and we have written the result on the work-tape of N. We then compute f(i+1) by writing each $x \in \Sigma^{s_M(n)}$ one-by-one. For each $x \in \Sigma^{s_M(n)}$, we check if $x \in C_{i+1}$ by guessing the computation path of length i. If we succeed, then we increase a counter by 1. If any path contains c_{accept} we reject. If the counter reached f(i) but we have not yet reached c_{accept} , then we accept at it is not reachable. It at the end we have counter < f(i), then we reject.

Once we have computed f(i+1), we need to check if $c_{accept} \notin C_{k^{s_M(n)}}$. We can do this by nondeterministically guessing the $f(s_M(n))$ elements of $C_{s_M(n)}$, while verifying that each guess is in $C_{s_M(n)}$ by guess ing the path of computation. Finally, we check that each guessed element is not equal to c_{accept} .

Thus, we have provided a a nondeterministic TM for \bar{L} . We can see that this machine can be programmed to work in space $O(s_M(n))$ since we know that $\mathsf{NSPACE}(f(n)) = \mathsf{co-NSPACE}(f(n))$ by the Immerman-Szelepcsényi theorem for $f(n) \geq \log n$. We can also see that this machine can be programmed to work in time $O(t_M(n) \times t_f(n))$.

Question 2

Suppose that the language L in the previous question is context-sensitive. Let $T_{n,i} := \{x : |x| \le n, S \stackrel{i}{\Rightarrow} x\}$, so that for some m we will have $T_{n,m} = T_{n,m+1}$. Let $g(n) := |T_{n,m}|$ for this m.

Show that g can be computed in nondeterministic linear space.

Conclude that if L is context-sensitive, so is \bar{L} .

We assume that the language L is context-sensitive meaning that L is generated by a grammar G, with variables denoted by V and terminal alphabet denoted by Σ , where all the rules are of the form $\alpha \to \beta$, with $|\alpha| \leq |\beta|$. Recall that a *sentential form* is the start symbol S of a grammar or any string in $(V \cup \Sigma)^*$ that can be derived from S [2].

We know that we have an m such that $T_{n,m} = T_{n,m+1}$. This means that $T_{n,m}$ will be the set of all the strings with length at most n that can be derived from S. Thus, we have k = g(n) such that k is the number of strings of length at most n that can be derived from S. Knowing this, we can decide if a given string z is not in the language by the following algorithm which follows from the proof of the Immerman-Szelepcsényi theorem:

For each $z \in (V \cup \Sigma)^{\leq n}$, we guess a derivation (which can be done with linear space in the length of the string if it is done step-by-step). In the event of a success, we decrease k by 1. If we end up guessing a derivation for z, then we reject. If at the end we have k > 0 then we reject since this means that we missed some string which had a derivation, which may have been z. It at the end we have k = 0, then we accept.

Now we need to show how to compute g(n). We have that $T_{n,0} = \{S\}$ so, g(0) = 1. We can now use the inductive counting method to compute g(i+1) from g(i) using the following algorithm:

For each $z \in (V \cup \Sigma)^{\leq n}$, we check if $z \in T_{n,i+1}$ by going through all of the strings derived from S of length at most i, denoted by $y \in (V \cup \Sigma)^{\leq n}$. We check if $y \in T_{n,i}$. If we find that $y \in T_{n,i}$ then by implication we have that $z \in T_{n,i+1}$ and since we know g(i) then we will be able to determine if we have missed any y. We can stop when we find an i such that $T_{n,i} = T_{n,i+1}$.

The above algorithm runs in nondeterministic linear space. This is because we only consider derivations of strings that are not longer than the number of sentential forms of length n or less. Since the number of sentential forms of length n or less can be encoded in O(n) many-bits, we have that we compute g(n) in nondeterministic linear space.

We have shown that there exists an algorithm for deciding the language \bar{L} . The existence of such an algorithm follows from the Immerman-Szelepcsényi theorem, since $\mathsf{CSL} = \mathsf{LBA} = \mathsf{NSPACE}(n) = \mathsf{co-NSPACE}(n)$. Therefore, if L is context-sensitive, so is \bar{L} .

Question 3

Exercise 3.14. Show that value(p_{α}) > 0 iff α is true.

We will show that value(p_{α}) > 0 iff α is true by structural induction on α .

Case: $\alpha = x$ then $p_{\alpha} = x$, therefore

$$\begin{array}{ccc} & \alpha \text{ is true} \\ \Longleftrightarrow & x = \mathtt{T} \\ \Longleftrightarrow & p_{\alpha} = 1 \\ \Longleftrightarrow & p_{\alpha} > 0 \end{array}$$

Case: $\alpha = \neg x$ then $p_{\alpha} = (1 - x)$, therefore

$$\alpha$$
 is true $\iff x = \mathbb{F}$ $\iff p_{\alpha} = (1 - 0)$ $\iff p_{\alpha} > 0$

Case: $\alpha = \alpha_1 \wedge \alpha_2$ then $p_{\alpha} = p_{\alpha_1} \cdot p_{\alpha_2}$ and it follows by induction that

$$\alpha$$
 is true
$$\iff \alpha_1 \text{ is true and } \alpha_2 \text{ is true}$$

$$\iff p_{\alpha_1} > 0 \text{ and } p_{\alpha_2} > 0$$

$$\iff p_{\alpha} > 0$$

Case: $\alpha = \alpha_1 \vee \alpha_2$ then $p_{\alpha} = p_{\alpha_1} + p_{\alpha_2}$ and it follows by induction that

$$\alpha$$
 is true $\Leftrightarrow \alpha_1$ is true or α_2 is true $\Leftrightarrow p_{\alpha_1} > 0$ or $p_{\alpha_2} > 0$ $\Leftrightarrow p_{\alpha} > 0$

Case: $\alpha = \forall x \alpha_1(x)$ then $p_{\alpha} = \prod_{x \in \{0,1\}} p_{\alpha_1}$ and it follows by induction that

$$\begin{array}{ll} \alpha \text{ is true} \\ \Longleftrightarrow & \alpha_1(x/\mathtt{T}) \text{ is true and } \alpha_1(x/\mathtt{F}) \text{ is true} \\ \Longleftrightarrow & p_{\alpha_1}(1) > 0 \text{ and } p_{\alpha_1}(0) > 0 \\ \Longleftrightarrow & p_{\alpha} > 0 \end{array}$$

Case: $\alpha = \exists x \alpha_1(x)$ then $p_{\alpha} = \sum_{x \in \{0,1\}} p_{\alpha_1}$ and it follows by induction that

 α is true

 \iff $\alpha_1(x/T)$ is true or $\alpha_1(x/F)$ is true

 $\iff p_{\alpha_1}(1) > 0 \text{ or } p_{\alpha_1}(0) > 0$

 $\iff p_{\alpha} > 0$

Therefore, value(p_{α}) > 0 iff α is true.

Exercise 3.15. Show that value $(p_{\alpha}) < 2^{2^{|p_{\alpha}|}}$.

We will show that value $(p_{\alpha}) < 2^{2^{|p_{\alpha}|}}$ by structural induction on α .

Case: $\alpha = x$ then $|p_{\alpha}| = 1$, so it holds that

$$value(p_{\alpha}) \le 1 < 2^{2^1}$$

Case: $\alpha = \neg x$ then $|p_{\alpha}| = 1$, so it holds that

value
$$(p_{\alpha}) \le 1 < 2^{2^1}$$

Case: $\alpha = \alpha_1 \wedge \alpha_2$ then it follows by induction that $|p_{\alpha_1}| < 2^{2^m}$ and $|p_{\alpha_2}| < 2^{2^n}$ where $m + n \leq |p_{\alpha}|$, so value (p_{α}) can be at most

$$value(p_{\alpha}) \le 1 < 2^{2^m} \cdot 2^{2^n} = 2^{2^{m+n}} \le 2^{2^{|p_{\alpha}|}}$$

Case: $\alpha = \alpha_1 \vee \alpha_2$ then it follows by induction that $|p_{\alpha_1}| < 2^{2^m}$ and $|p_{\alpha_2}| < 2^{2^n}$ where $m + n \leq |p_{\alpha}|$, so value (p_{α}) can be at most

value
$$(p_{\alpha}) \le 1 < 2^{2^m} + 2^{2^n} \le 2^{2^{m+n}} \le 2^{2^{|p_{\alpha}|}}$$

Case: $\alpha = \forall x \alpha_1(x)$ then it follows by induction that $|p_{\alpha_1}| < 2^{2^m}$ where $m < |p_{\alpha}|$, so value (p_{α}) can be at most

value
$$(p_{\alpha}) \le p_{\alpha} = \prod_{x \in \{0,1\}} p_{\alpha_1} \le 2^{2^m} \cdot 2^{2^m} \le 2^{2 \cdot 2^m} \le 2^{2^{m+1}} \le 2^{2^{\lfloor p_{\alpha} \rfloor}}$$

Case: $\alpha = \forall x \alpha_1(x)$ then it follows by induction that $|p_{\alpha_1}| < 2^{2^m}$ where $m < |p_{\alpha}|$, so value (p_{α}) can be at most

value
$$(p_{\alpha}) \le p_{\alpha} = \sum_{x \in \{0,1\}} p_{\alpha_1} \le 2^{2^m} + 2^{2^m} \le 2^{2^{m+1}} \le 2^{2^{|p_{\alpha}|}}$$

Therefore, value $(p_{\alpha}) < 2^{2^{|p_{\alpha}|}}$.

Exercise 3.16. Show that for all a, such that $0 < a < 2^{2^n}$ there exists a prime number $k \in [2^n, 2^{3n}]$ such that $a \not\equiv_k 0$.

To show that for all a, such that $0 < a < 2^{2^n}$ there exists a prime number $k \in [2^n, 2^{3n}]$ such that $a \not\equiv_k 0$, we will use the following theorems:

Theorem (Prime Number Theorem [4]). For every m, there is at least \sqrt{m} prime numbers $\leq m$.

Theorem (Chinese Remainder Theorem [4]). Given two sets of numbers of equal size, $r_1, r_2, ..., r_n$ and $m_1, m_2, ..., m_n$ such that

$$0 \le r_i < m_i \qquad 0 \le i \le n$$

and $gcd(m_i, m_j) = 1$ for $i \neq j$, then there exists an r such that $r \equiv_{m_i} r_i$ for $0 \leq i \leq n$.

Let $n = |p_{\alpha}|$ and let $a = \text{value}(p_{\alpha})$. Using the Prime Number Theorem we have that the number of prime numbers between 2^n and 2^{3n} is at least 2^n which are $k \in [2^n, 2^{3n}]$. By exercise 3.15, we have that $a < 2^{2^n}$ and since the product of these primes is greater than 2^{2^n} , by the Chinese Remainder Theorem, we have that at least one of these primes which we will call does not divide n. Therefore, for all a, such that $0 < a < 2^{2^n}$ there exists a prime number $k \in [2^n, 2^{3n}]$ such that $a \not\equiv_k 0$.

References

- 1. Kozen, Dexter. Theory of Computation. Springer, 2006.
- Matuszek, David. CSC 4170-50: Theory of Computation: Context-Free Grammars. University of Pennsylvania. Available: http://www.seas.upenn.edu/~cit596/notes/dave/cfg7.html. Last Modified: Feb. 26, 1996.
- Procter, Rob. Computational Complexity Supplementary Note 1: The Immerman-Szelepcsényi Theorem. University of Edinburgh.
 Available: http://www.dcs.ed.ac.uk/teaching/cs4/www/cc/immerman-szelepcsenyi.ps. 1988-1980
- 4. Soltys, Michael. An Introduction to Computational Complexity. Jagiellonian University Press. 2009.