
Assignment #3

————————————————————
CAS 705

Computability and Complexity

Jason Jaskolka

0546444

Dr. Michael Soltys

November 10, 2009

CAS 705 Assignment #3 0546444 - Jason Jaskolka

Question 1

This exercise is related to the Immerman-Szelepcsényi theorem.

Suppose that the membership in some language L can be determined by a nondeterministic
TM M with time complexity tM (n) and space complexity sM (n).

Furthermore, suppose that the number of strings in L of a given length is given by f : N → N,
that requires time tf (n) and space sf (n).

Under these assumptions give a nondeterministic TM for L̄, and determine upper bounds for
the time and space complexity for such a TM.

We want to build a nondeterministic TM, N that will accept L̄. Suppose we can encode configurations
of M (the TM that decides L) over a finite alphabet, denoted Σ, such that each input string of length n can
be represented as a string in ΣsM (n). Let |Σ| = k.

Assume that when M wishes to accept, its work-tape is erased and enters a unique state qaccept. Due
to this assumption, we can say that there is a unique accepting configuration caccept ∈ ΣsM (n) for inputs of
length n. We will denote cinit ∈ ΣsM (n) as the initial configuration on an input z, where |z| = n.

We know that M has at most ksM (n) configurations for z which means that if z is accepted by M then
there is an accepting path in the computation graph of length at most ksM (n). Let us define Ci as the set of
configurations in ΣsM (n) that are reachable from cinit in at most i steps. Thus, we have that f(n) = |Cn|.
So, we have that C0 = {cinit} and we know that M accepts if and only if caccept ∈ CksM (n) .

How does the machine N decide L̄? Well, it begins by using the inductive counting technique to compute
f . We know that f(0) = |C0| = 1. Suppose we have computed f(i) and we have written the result on the
work-tape of N . We then compute f(i+1) by writing each x ∈ ΣsM (n) one-by-one. For each x ∈ ΣsM (n), we
check if x ∈ Ci+1 by guessing the computation path of length i. If we succeed, then we increase a counter

by 1. If any path contains caccept we reject. If the counter reached f(i) but we have not yet reached caccept,
then we accept at it is not reachable. It at the end we have counter < f(i), then we reject.

Once we have computed f(i + 1), we need to check if caccept /∈ CksM (n) .We can do this by nondetermin-
istically guessing the f(sM (n)) elements of CsM (n), while verifying that each guess is in CsM (n) by guess ing
the path of computation. Finally, we check that each guessed element is not equal to caccept.

Thus, we have provided a a nondeterministic TM for L̄. We can see that this machine can be programmed
to work in space O(sM (n)) since we know that NSPACE(f(n)) = co-NSPACE(f(n)) by the Immerman-
Szelepcsényi theorem for f(n) ≥ log n. We can also see that this machine can be programmed to work in
time O(tM (n)× tf (n)).

Page 1 of 5

CAS 705 Assignment #3 0546444 - Jason Jaskolka

Question 2

Suppose that the language L in the previous question is context-sensitive. Let Tn,i := {x : |x| ≤
n, S

i=⇒ x}, so that for some m we will have Tn,m = Tn,m+1. Let g(n) := |Tn,m| for this m.

Show that g can be computed in nondeterministic linear space.

Conclude that if L is context-sensitive, so is L̄.

We assume that the language L is context-sensitive meaning that L is generated by a grammar G, with
variables denoted by V and terminal alphabet denoted by Σ, where all the rules are of the form α → β, with
|α| ≤ |β|. Recall that a sentential form is the start symbol S of a grammar or any string in (V ∪ Σ)∗ that
can be derived from S [2].

We know that we have an m such that Tn,m = Tn,m+1. This means that Tn,m will be the set of all the
strings with length at most n that can be derived from S. Thus, we have k = g(n) such that k is the number
of strings of length at most n that can be derived from S. Knowing this, we can decide if a given string z is
not in the language by the following algorithm which follows from the proof of the Immerman-Szelepcsényi
theorem:

For each z ∈ (V ∪ Σ)≤n, we guess a derivation (which can be done with linear space in the length of
the string if it is done step-by-step). In the event of a success, we decrease k by 1. If we end up guessing a
derivation for z, then we reject. If at the end we have k > 0 then we reject since this means that we missed
some string which had a derivation, which may have been z. It at the end we have k = 0, then we accept.

Now we need to show how to compute g(n). We have that Tn,0 = {S} so, g(0) = 1. We can now use the
inductive counting method to compute g(i + 1) from g(i) using the following algorithm:

For each z ∈ (V ∪Σ)≤n, we check if z ∈ Tn,i+1 by going through all of the strings derived from S of length
at most i, denoted by y ∈ (V ∪ Σ)≤n. We check if y ∈ Tn,i. If we find that y ∈ Tn,i then by implication we
have that z ∈ Tn,i+1 and since we know g(i) then we will be able to determine if we have missed any y. We
can stop when we find an i such that Tn,i = Tn,i+1.

The above algorithm runs in nondeterministic linear space. This is because we only consider derivations
of strings that are not longer than the number of sentential forms of length n or less. Since the number of
sentential forms of length n or less can be encoded in O(n) many-bits, we have that we compute g(n) in
nondeterministic linear space.

We have shown that there exists an algorithm for deciding the language L̄. The existence of such an algo-
rithm follows from the Immerman-Szelepcsényi theorem, since CSL = LBA = NSPACE(n) = co-NSPACE(n).
Therefore, if L is context-sensitive, so is L̄.

Page 2 of 5

CAS 705 Assignment #3 0546444 - Jason Jaskolka

Question 3

Exercise 3.14. Show that value(pα) > 0 iff α is true.

We will show that value(pα) > 0 iff α is true by structural induction on α.

Case: α = x then pα = x, therefore

α is true

⇐⇒ x = T

⇐⇒ pα = 1

⇐⇒ pα > 0

Case: α = ¬x then pα = (1− x), therefore

α is true

⇐⇒ x = F

⇐⇒ pα = (1− 0)

⇐⇒ pα > 0

Case: α = α1 ∧ α2 then pα = pα1 · pα2 and it follows by induction that

α is true

⇐⇒ α1 is true and α2 is true

⇐⇒ pα1 > 0 and pα2 > 0

⇐⇒ pα > 0

Case: α = α1 ∨ α2 then pα = pα1 + pα2 and it follows by induction that

α is true

⇐⇒ α1 is true or α2 is true

⇐⇒ pα1 > 0 or pα2 > 0

⇐⇒ pα > 0

Case: α = ∀xα1(x) then pα =
∏

x∈{0,1}

pα1 and it follows by induction that

α is true

⇐⇒ α1(x/T) is true and α1(x/F) is true

⇐⇒ pα1(1) > 0 and pα1(0) > 0

⇐⇒ pα > 0

Page 3 of 5

CAS 705 Assignment #3 0546444 - Jason Jaskolka

Case: α = ∃xα1(x) then pα =
∑

x∈{0,1}

pα1 and it follows by induction that

α is true

⇐⇒ α1(x/T) is true or α1(x/F) is true

⇐⇒ pα1(1) > 0 or pα1(0) > 0

⇐⇒ pα > 0

Therefore, value(pα) > 0 iff α is true.

Exercise 3.15. Show that value(pα) < 22|pα|
.

We will show that value(pα) < 22|pα|
by structural induction on α.

Case: α = x then |pα| = 1, so it holds that

value(pα) ≤ 1 < 221

Case: α = ¬x then |pα| = 1, so it holds that

value(pα) ≤ 1 < 221

Case: α = α1 ∧ α2 then it follows by induction that |pα1 | < 22m

and |pα2 | < 22n

where
m + n ≤ |pα|, so value(pα) can be at most

value(pα) ≤ 1 < 22m

· 22n

= 22m+n

≤ 22|pα|

Case: α = α1 ∨ α2 then it follows by induction that |pα1 | < 22m

and |pα2 | < 22n

where
m + n ≤ |pα|, so value(pα) can be at most

value(pα) ≤ 1 < 22m

+ 22n

≤ 22m+n

≤ 22|pα|

Case: α = ∀xα1(x) then it follows by induction that |pα1 | < 22m

where m < |pα|, so
value(pα) can be at most

value(pα) ≤ pα =
∏

x∈{0,1}

pα1 ≤ 22m

· 22m

≤ 22·2m

≤ 22m+1
≤ 22|pα|

Case: α = ∀xα1(x) then it follows by induction that |pα1 | < 22m

where m < |pα|, so
value(pα) can be at most

value(pα) ≤ pα =
∑

x∈{0,1}

pα1 ≤ 22m

+ 22m

≤ 22m+1
≤ 22|pα|

Therefore, value(pα) < 22|pα|
.

Page 4 of 5

CAS 705 Assignment #3 0546444 - Jason Jaskolka

Exercise 3.16. Show that for all a, such that 0 < a < 22n

there exists a prime
number k ∈ [2n, 23n] such that a 6≡k 0.

To show that for all a, such that 0 < a < 22n

there exists a prime number k ∈ [2n, 23n]
such that a 6≡k 0, we will use the following theorems:

Theorem (Prime Number Theorem [4]). For every m, there is at least
√

m prime numbers
≤ m.

Theorem (Chinese Remainder Theorem [4]). Given two sets of numbers of equal size,
r1, r2, ..., rn and m1,m2, ...,mn such that

0 ≤ ri < mi 0 ≤ i ≤ n

and gcd(mi,mj) = 1 for i 6= j, then there exists an r such that r ≡mi
ri for 0 ≤ i ≤ n.

Let n = |pα| and let a = value(pα). Using the Prime Number Theorem we have that
the number of prime numbers between 2n and 23n is at least 2n which are k ∈ [2n, 23n].
By exercise 3.15, we have that a < 22n

and since the product of these primes is greater
than 22n

, by the Chinese Remainder Theorem, we have that at least one of these primes
which we will call does not divide n. Therefore, for all a, such that 0 < a < 22n

there
exists a prime number k ∈ [2n, 23n] such that a 6≡k 0.

References

1. Kozen, Dexter. Theory of Computation. Springer, 2006.

2. Matuszek, David. CSC 4170-50: Theory of Computation: Context-Free Grammars. University of
Pennsylvania. Available: http://www.seas.upenn.edu/~cit596/notes/dave/cfg7.html. Last Mod-
ified: Feb. 26, 1996.

3. Procter, Rob. Computational Complexity Supplementary Note 1: The Immerman-Szelepcsényi Theo-
rem. University of Edinburgh.
Available: http://www.dcs.ed.ac.uk/teaching/cs4/www/cc/immerman-szelepcsenyi.ps. 1988-
1989.

4. Soltys, Michael. An Introduction to Computational Complexity. Jagiellonian University Press. 2009.

Page 5 of 5

