1. Suppose that for any given constant $c \in \mathbb{N}$ we have a random number generator r_c , given as $r_c : \mathbb{N} \longrightarrow \{0,1\}^*$, where r(n) is a random string of length n^c . Suppose also that each string in $\{0,1\}^{n^c}$ has a probability $\frac{1}{2^{n^c}}$ of appearing.

Due: Nov 10

Show how to use r to construct a random permutation generator; that is, a random function $\pi: \mathbb{N} \longrightarrow S$ where $\pi(n) \in S_n$. Here S_n denotes the set of n! permutations $\sigma: [n] \longrightarrow [n]$.

In your construction try to make c as small as possible; i.e., use as few random bits as possible. Also, make sure that the permutations are uniformly distributed.

- 2. Show how to combine DH key-agreement with the authentication technique used in the "3-way protocol" to obtain a key-exchange protocol, with authentication, and with forward secrecy.
- 3. Suppose E sees your RSA signature on m_1 and on m_2 , that is, E sees $m_1^l \pmod{n}$ and $m_2^l \pmod{n}$. How can E now compute the signature of any $m_1^i m_2^j \pmod{n}$, for any $i, j \in \mathbb{Z}$? How can we prevent this?
- 4. A divulges a public key $\langle n, v \rangle$ where n is the product of two large primes (just like in RSA), and v is a number for which only A knows the square root (mod n): A simply chooses a random r and squares it (mod n) to obtain v.

To prove its identity to B, A does the following: choose random numbers r_1, r_2, \ldots, r_k and sends $r_i^2 \pmod{n}$ to B. Then B chooses a subset S_1 of the "squared-and-modded" r_i 's, and lets S_2 be the complement of S_1 . Now A sends:

$$\begin{cases} sr_i \pmod{n} & \text{for each } r_i^2 \pmod{n} \text{ in } S_1 \\ r_i \pmod{n} & \text{for each } r_i^2 \pmod{n} \text{ in } S_2 \end{cases}$$

and B squares the replies of A (mod n). For the replies corresponding to S_1 B checks that the square of the reply is $vr_i^2 \pmod{n}$ and for those in S_2 that it is $r_i^2 \pmod{n}$.

You may assume that squaring \pmod{n} is as difficult as factoring; show that this authentication scheme works. In particular, if some C overhears the exchange, why is it that C cannot impersonate A?

5. A and B use elliptic Diffie-Hellman key exchange with the following parameters:

$$p = 2671$$
 $E: y^2 = x^3 + 171x + 853$ $p = (1980, 431) \in \mathbb{Z}_p$

A sends the point $p_A = (2110, 543)$ to B; B on the other hand, decides to use the secret key b = 1943.

- (a) What point p_B does B send to A?
- (b) What is the secret share value of A and B?
- (c) Write a simple script, in any language of your choice, to find a.

6. The instructor has a GPG public key with ID 9B070A58. This key can be retrieved from the PKI (Public Key Infrastructure), on the https://pgp.webtru.st/ server. Please type your assignment in LATEX and encrypt the resulting PDF with this key, and email it to the instructor.