
Problem Set 2 Solutions Due: Feb 26 cs2me3 Winter 2007

Part A

This problem is very similar in flavor to the segmented least squares problem. We observe
that the last line ends with word ωn and has to start with some word ωj ; breaking off words
ωj , · · · , ωn we are left with a recursive sub-problem on ω1, · · · , ωj−1.

Thus, we define OPT [i] to be the value of the optimal solution on the set of words Wi =
{ω1, · · · , ωi}, for any i ≤ j, let Si,j denote the slack of a line containing the words ωi, · · · , ωj ;
as a notational device, we define Si,j = ∞ if these words exceed total length L. For each fixed
i, we can compute all Si,j in O(n) time by considering values of j in increasing order; thus
we can compute all Si,j in O(n2) time.

As noted above, the optimal solution must begin the last line somewhere (at word ωj), and
solve the sub-problem on the earlier lines optimally. We thus have the recurrence

OPT [n] = min
1≤j≤n

S2
j,n + OPT [j − 1]

and the line of words ωj , · · · , ωn is used in an optimum solution if and only if the minimum
is obtained using index j.

Finally, we just need a loop to build up all these values:

Compute all values Si,j as described above
Set OPT[0]=0
For k=1,· · · ,n

OPT[k]= min
1≤j≤k

S2
j,k+OPT[j-1]

Endfor
Return OPT[n]

As noted above, it takes O(n2) time to compute all values Si,j . Each iteration of the loop
takes time O(n), and there are O(n) iterations. Thus the total running time is O(n2).

By tracing back through the array OPT, we can recover the optimal sequence of line breaks
that achieve the value OPT [n] in O(n) additional time.

Part B 1a

Suppose by way of contradiction that T and T ′ are two distinct MCST of G. Since T and T ′

have the same number of edges, but are not equal, there is some edge e′ in T ′ but not in T .
If we add e′ to T , we get a cycle C. Let e be the most expensive edge on this cycle. Then
by the Cycle property, e does not belong to any MCST, contradicting the fact that it is in at
least one of T or T ′.

Cycle property: Assume that all edge costs in G are distinct. Let C be any cycle in G, let e

be the most expensive edge in C. Then e does not belong to any MCST of G.

1



The cycle property follows directly from the exchange lemma.

Part B 1b

Label the edges arbitrarily as e1, · · · , em with the property that em−n+1, · · · , em belong to
T . Let δ be the minimum difference between any two non-equal edge weights; subtract δi/n3

from the weight of edge i. Note that all edge weights are now distinct, and the sorted order of
the new weights is the same as some valid ordering of the original weights. Over all spanning
trees of G, T is the one whose total weight has been reduced by the most; thus, it is now
the unique minimum spanning tree of G and will be returned by Kruskal’s algorithm on this
valid ordering.

Part B 2

There are many correct ways to solve this. We will list here the main versions.

Version 1. Sort by “stream rate”. Rate of stream i is ri = bi/ti. Send the streams in
increasing order of rates. Assume for simplicity of notation that the streams are given in this
order.

Check if the total rate
∑n

i=1 bi ≤ r
∑n

i=1 ti holds. We claim the following

(1) If this test fails than no ordering produce a feasible schedule. If the test succeeds, then we
claim the above order gives a feasible schedule.

Proof. If the test fails then no order can produce a feasible schedule, as the total time is∑n
i=1 ti, and we need to send

∑n
i=1 bi, no matter what way we order it.

We claim that if the above sorted order sends too much for any initial time period [0, t] than
the above test will also fail. To see this consider a time t, and let i be the stream sent during
the last time period. If rate of stream i is at most r (i.e., ri ≤ r) then all streams sent so far
have a rate at most r, so the total send is at most rt, contradicting the assumption that we
sent too much in t time. So we must have ri > r. However, streams are ordered in increasing
rate, so in any time step after t we will also send at least r bits, and hence, the total rate at
the end of all streams will also violate the “average rate at most r” rule.

The running time is O(n). The problem only asked to decide if an ordering exists, and that
is done by testing that if the one inequality

∑n
i=1 bi ≤ r

∑n
i=1 ti holds. If we also want to

output the ordering we need to spend O(n log n) time sorting rates. It is also okay to test if
the above ordering is feasible after each job (taking O(n) time).

Version 2. Prove that sorting by rates is an optimal schedule by a “greedy stays ahead”
argument. The key here is to state in what way the schedule is optimal, and in what way the
greedy algorithm stays ahead.

(2) In the above greedy schedule, after any time t the amount of data transmitted in the fist t
time steps is as low as possible.

Proof. Each of the ti seconds of the schedule transmitting the stream i will have transmission

2



rate of ri. For any t, the first t seconds are the t lowest transmission rates, so the first t seconds
send the lowest total number of bits. If this schedule violates the bit-rate requirements after
t seconds, then all other schedules will also violate the requirement as they send at least as
many bits.

An alternate way of phrasing this argument is to talk about the slack: allowed rate of rt

minus the number of bits sent till time t. Using this notion, the Greedy schedule is ahead
as for any t, the first t seconds have the highest total slack possible for any schedule. This is
true for the same reason as used above: the schedule sends the t lowest transmission rates in
the first t seconds. The schedule violates the bit-rate requirements after t seconds, if it has
negative stack after t seconds, and then all other schedules will also violate the requirement
as they have at most as much slack as this schedule.

Version 3. Prove that sorting by rates is an optimal schedule by an “exchange argument”.

Assume that there is a feasible schedule O, and let the algorithm’s schedule be A. We say that
two jobs are inverted if they occur in different order in O and in A. As in earlier exchange
arguments in the text, we know that if the two orders are different, then there are two adjacent
jobs i and j in O (say i immediately follows j) that are inverted. We need to argue that if
O is feasible schedule, and i and j are inverted, then the schedule O obtained by swapping i

and j is also feasible. Let T be the time j starts in O, and assume that the schedule O sends
B bits in the first T seconds. The only times when the total amount sent so far is affected by
the swap are the times in the range [T, T + tj + ti]. Let T + t be such a time. Assume that
in the schedule O we send bo bits during these t seconds. The schedule O is feasible, and so
B + bo ≤ r(T + t). By the ordering used of our algorithm(and the fact that the jobs i and j

were inverted), the number of bits sent by the same t seconds in the swapped schedule O′ is
b′ ≤ bo. Therefore, the new schedule satisfies B + b′ ≤ B + bo ≤ r(T + t). Swapping a pair
of adjacent inverted jobs decreases the number of inversions and keeps the schedule feasible.
So we can repeatedly swap adjacent inverted jobs until the schedule O gets converted to the
schedule of the greedy algorithm. This proves that the greedy algorithm produces a feasible
schedule.

Version 4. In fact, we do not need to sort at all to produce a feasible schedule. For stream
i compute its slack si = rti − bi. We claim that if a feasible schedule exists, then any order
that starts with all streams that have positive slack is feasible. To see why, observe that an
ordering is feasible if the sum of slacks is non-negative for any initial segment of the order.
Starting with all streams of positive slack creates the highest possible total slack before we
start adding the jobs with negative slacks. This observation allows us to create the feasible
ordering in O(n) time without sorting, by simply computing the sign of a slack for each
stream.

Note that this argument also shows that sorting streams in decreasing in order of slacks works
too, as this also orders streams with positive slack before those with negative slack.

Finally, note that one ordering that does not always work is to order streams in increasing
order of bits bi.

3


