
CS2ME3 Assignment 1 due on February 8 Winter 2010

Instructions

1. You are encouraged to work in groups of two. If you cannot find a partner, you can

work alone.

2. Please submit one copy of the assignment; if you are working with a partner, both

names should appear on the assignment.

3. For Part A of the assignment, you must submit an electronic copy of your Perl appli-

cation using subversion. Note that you will get a grade of zero if your program does

not compile.

Part A

Write a Perl application which implements the ElGamal digital signature scheme. Your

command-line program ought to be invoked as follows: sign 11 6 3 7 and then accept a

single line of ASCII text until the new-line character appears (i.e., until you press enter).

That is, once you type sign 11 6 3 7 at the command line, and press return, you type a

message: ‘A message.’ and after you have pressed return again, the digital signature, which

is going to be a pair of positive integers, will appear below.

We now explain how to obtain this digital signature: first convert the characters in the string

‘A message.’ into the corresponding ASCII codes, and then obtain a hash of those codes by

multiplying them all modulo 11; the result should be the single number 5. To see this observe

the table:

A 65 10

32 1

m 109 10

e 101 9

s 115 1

s 115 5

a 97 1

g 103 4

e 101 8

. 46 5

The first column contains the characters, the second the corresponding ASCII codes, and the

i-th entry in the third column contains the product of the first i codes modulo 11. The last

entry in the third column is the hash value 5.

1



We sign the hash value, i.e., if the message is m = A message., then we sign hash(m) = 5.

Note that we invoke sign with four arguments, i.e., we invoke it with p, g, x, k (in our running

example, 11,6,3,7 respectively).

Here p must be a prime, 1 < g, x, k < p− 1, and gcd(k, p− 1) = 1. This is a condition of the

input; you don’t have to test in your program whether the condition is met—we may assume

that it is.

Now the algorithm signs h(m) as follows: it computes

r = gk (mod p)

s = k−1(h(m) − xr) (mod (p− 1))

If s is zero, start over again, by selecting a different k (meeting the required conditions).

The signature of m is precisely the pair of numbers (r, s).

In our running example we have the following values:

m = A message.; h(m) = 5; p = 11; g = 6; x = 3; k = 7

and so the signature of ‘A message.’ with the given parameters will be:

r = 67 (mod 11) = 8

s = 7−1(5 − 3 · 8) (mod (11 − 1)) = 3 · (−19) (mod 10) = 3 · 1 (mod 10) = 3

i.e., the signature of ‘A message.’ would be (r, s) = (8, 3) .

Part B

1. Can you identify the (possible) weaknesses of this digital signature scheme? Can you

compose a different message m′ such that h(m) = h(m′)?

2. If you receive a message m, and a signature pair (r, s), and you only know p, g and y = gx

(mod p), i.e., p, g, y are the public information, how can you “verify” the signature—and

what does it mean to verify the signature?

3. Research on the web a better suggestion for a hash function h.

4. [Bonus Question] Show that when used without a (good) hash function, ElGamal’s

signature scheme is existentially forgeable; i.e., an adversary Eve can construct a message

m and a valid signature (r, s) for m.

5. [Bonus Question] In practice k is a random number; show that it is absolutely neces-

sary to choose a new random number for each message.

6. [Bonus Question] Show that in the verification of the signature it is essential to check

whether 1 ≤ r ≤ p − 1, because otherwise Eve would be able to sign message of her

choice, provided she knows one valid signature (r, s) for some message m, where m is

such that 1 ≤ m ≤ p− 1 and gcd(m, p− 1) = 1.

2


