
SE2AA4 Test 5 Winter 2011

Name Student No.

No aids allowed. Answer all questions on test paper. Use backs of sheets if necessary.

Total Marks: 60

1. In the context of verification of software, explain the difference between inspection,[20]

testing and formal verification. What are the two main benefits of formal verification?

Solution: See the handout on formal verification. Main ideas are that inspection and

testing are “existential” (they discover error) but formal verification is “universal”—it

produces a demonstration of correctness. Formal verification, besides a direct proof of

correctness, also makes explicit all the implicit assumptions that the programmer makes;

the “theorems” that appear in the proof are assumptions about the environment where

the program will run, and these “theorems” (or “assertions”) may aid with portability.

1



2. Explain the semantics of the “While” rule for program verification:[20]

{α ∧ β}P{α}
{α} while β do P {α ∧ ¬β}

Solution: This rule is saying the following: suppose it is the case that {α ∧ β}P{α}.
This means that P is (partially) correct with respect to precondition α ∧ β and post-

condition α. Then the program “while β do P” is (partially) correct with respect to

precondition α and postcondition α ∧ ¬β because if α holds before it executes, then

either β holds in which case the while-loop executes once again, with α∧β holding, and

so α still holds after P executes, or β is false, in which case ¬β is true and the loop

terminates with α ∧ ¬β.

2



3. Suppose that the design decision in a software project was to implement the dynamic[20]

programming solution to the “simple knapsack problem” where the array of partial

solutions is given as follows:

R(i, j) = T ⇐⇒ [R(i− 1, j) = T ∨ (j ≥ wi ∧R(i− 1, j − wi) = T )].

(a) What is an implementation danger? (Hint: mention “lazy evaluation.”)

(b) What would be the two natural stages of “prototyping”?

(c) Explain the “space-saving” technique in implementing the array.

Solution: An implementation danger is that for some i, j, R(i − 1, j) = F , so the

program moves on to check if j ≥ wi and R(i− 1, j −wi) = T ; if j < wi, then by “lazy

evaluate” the checking should end right here, rather than go on to R(i−1, j−wi) where

an “out of bounds error” will arise.

The two natural stages of prototyping: first have a natural implementation where we

keep a 2-dimensional array (with proper initializations for R(0, ∗) and R(∗, 0)), and then

to improve the implementation to a 1-dimensional array as in the following program;

this is the space saving technique:

1: S(0)←− T
2: for j : 1..C do
3: S(j)←− F
4: end for
5: for i : 1..d do
6: for decreasing j : C..1 do
7: if (j ≥ wi and S(j − wi) = T ) then
8: S(j)←− T
9: end if

10: end for
11: end for

Note that the loop has to be executed in a “decreasing” order, to make sure that we

get the proper values (from the “i− 1-level”). Note that once an entry is T it will stay

T until the end; hence there is no need to check R(i− 1, j) = T .

3


