Name	Student No.
Name	Student No.

No aids allowed. Answer all questions on test paper. Use backs of sheets for scratch work.

Total Marks: 100

- [25] 1. A linear bounded automaton (LBA) is a restricted version of a Turing machine where the head can only move on the portion of the tape containing the input.
 - (a) How many configurations are possible on an LBA on an input w, such that |w| = n? (Let Γ be the tape alphabet, and Q the set of states.)
 - (b) Show that $A_{LBA} = \{\langle M, w \rangle | M \text{ is an LBA that accepts } w \}$ is decidable.

Solution: For (a) $|\Gamma|^n \cdot |Q| \cdot n$, and for (b), notice that since the number of possible configurations is bounded, we can detect when we have entered a loop when simulating an LBA on some input, and then simply reject.

[25] 2. Show that $E_{LBA} = \{ \langle M \rangle | M \text{ is an LBA such that } L(M) = \emptyset \}$ is undecidable. You may use the undecidability of A_{TM} .

Solution: Let $N_{\langle M,w\rangle}$ be an LBA which on input w', checks whether w' encodes an accepting history of M on w, and if so, accept. Clearly, if $N_{\langle M,w\rangle}$ accepts some string, M must accept w. Since A_{TM} is undecidable, the result follows.

- [25] 3. Let $EQ_{CFG} = \{\langle G_1, G_2 \rangle | G_1, G_2 \text{ are CFGs such that } L(G_1) = L(G_2) \}.$
 - (a) Show that EQ_{CFG} is undecidable. You may use that ALL_{CFG} = $\{\langle G \rangle | L(G) = \Sigma^* \}$ is undecidable.
 - (b) Show that EQ_{CFG} is co-Turing-recognizable.

Solution: For (a), let G_2 be the grammar with the single rule $S \longrightarrow 0S|1S|\varepsilon$. Then $L(G_2) = \Sigma^*$. Now, to check if $L(G_1) = \Sigma^*$, it is enough to check whether $\langle G_1, G_2 \rangle$ is in EQ_{CFG}. For (b), let s_1, s_2, s_3, \ldots , be a list of all strings in Σ^* . We simply search for an s_i which is in one grammar, but not in the other.

[25] 4. A useless state in a Turing machine is a state that is never entered on any input string (and it is not one of $\{q_{\text{accept}}, q_{\text{reject}}\}$). Consider the problem of determining whether a Turing machine has any useless states. Formulate this problem as a language and show that it is undecidable.

Solution: Consider $M'_{\langle M,w\rangle}$ defined as follows: on input x, it simulates M on w, and if M accepts, $M'_{\langle M,w\rangle}$ writes a special symbol, say \clubsuit , and cycles through all states in $Q - \{q_{\text{accept}}, q_{\text{reject}}\}$ and finally accepts. We make sure that $M'_{\langle M,w\rangle}$ has a special state, say q_{useless} , that is never used during the simulation of M on w. Thus, $M'_{\langle M,w\rangle}$ has a useless state $(q_{\text{useless}}) \iff \langle M,w\rangle \in A_{\text{TM}}$.