290 Chapter 6 @ Dynamic Programming

This is a useful expression, since it’s something that we solved in our earlier
discussion of recurrences at the outset of Chapter 5. Specifically, this recur-
rence implies T'(n) = O(n?).

So when m = n and we get an even split, the running time grows like the
square of n. Motivated by this, we move back to the fully general recurrence
for the problem at hand and guess that T (i, n) grows like the product of m and
n. Specifically, we’ll guess that T(m, n) < kmn for some constant k, and see if
we can prove this by induction. To start with the base cases m <2 and n < 2,
we see that these hold as long as k > ¢/2. Now, assuming T(m’,n’) < km'n’
holds for pairs (m’, n’) with a smaller product, we have

T(m,n)<cmn+7T(q,n/2)+T(m—q,n/2)
<cmn + kqn/2 + k(m — q)n/2
=cmn+ kqn/2 + kmn/2 — kqn/2
= (c + k/2)mn.

Thus the inductive step will work if we choose k = 2c, and this completes the
proof. m

6.8 Shortest Paths in a Graph

For the final three sections, we focus on the problem of finding shortest paths
in a graph, together with some closely related issues.

% The Problem

Let G=(V,E) be a directed graph. Assume that each edge (i,j) € E has an
associated weight c;;. The weights can be used to model a number of different
things; we will picture here the interpretation in which the weight c;; represents
a cost for going directly from node i to node j in the graph.

Earlier we discussed Dijkstra’s algorithm for finding shortest paths in
graphs with positive edge costs. Here we consider the more complex problem
in which we seek shortest paths when costs may be negative. Among the
motivations for studying this problem, here are two that particularly stand
out. First, negative costs turn out to be crucial for modeling a number of
phenomena with shortest paths. For example, the nodes may represent agents
in a financial setting, and c¢; represents the cost of a transaction in which
we buy from agent i and then immediately sell to agent j. In this case, a
path would represent a succession of transactions, and edges with negative
costs would represent transactions that result in profits. Second, the algorithm
that we develop for dealing with edges of negative cost turns out, in certain
crucial ways, to be more flexible and decentralized than Dijkstra’s algorithm.
As a consequence, it has important applications for the design of distributed

|_ Kleinberg & Tardos first pages 2005/2/1 11:06 p. 290 (chap06) Windfall Software, PCA ZzTgX 11.6 J

6.8 Shortest Paths in a Graph & 291

routing algorithms that determine the most efficient path in a communication
network.

In this section and the next two, we will consider the following two related
problems.

e Given a graph G with weights, as described above, decide if G has a
negative cycle—that is, a directed cycle C such that

ZC[]' < 0.

ijeC
e If the graph has no negative cycles, find a path P from an origin node s
to a destination node t with minimum total cost:
2.6
ijeP
should be as small as possible for any s-t path. This is generally called
both the minimum-cost path problem and the shortest-path problem.

In terms of our financial motivation above, a negative cycle corresponds to a
profitable sequence of transactions that takes us back to our starting point: we
buy from i;, sell to i,, buy from i,, sell to i3, and so forth, finally arriving back
at i; with a net profit. Thus negative cycles in such a network can be viewed
as good arbitrage opportunities.

It makes sense to consider the minimum-cost s-t path problem under the
assumption that there are no negative cycles. As illustrated by Figure 6.20, if
there is a negative cycle C, a path P from s to the cycle, and another path P;
from the cycle to t, then we can build an s-t path of arbitrarily negative cost:
we first use P to get to the negative cycle C, then we go around C as many
times as we want, and then we use P; to get from C to the destination ¢.

‘& Designing and Analyzing the Algorithm

A Few False Starts. Let’s begin by recalling Dijkstra’s algorithm for the short-
est, path problem when there are no negative costs. That method computes

Figure 6.20 In this graph, one can find s-t paths of arbitrarily negative cost (by going
around the cycle C many times).

|_ Kleinberg & Tardos first pages 2005/2/1 11:06 p. 291 (chap06) Windfall Software, PCA ZzTgX 11.6 J

292 Chapter 6 @ Dynamic Programming

a shortest path from the origin s to every other node v in the graph, essen-
tially using a greedy algorithm. The basic idea is to maintain a set S with the
property that the shortest path from s to each node in S is known. We start
with S = {s}—since we know the shortest path from s to s has cost 0 when
there are no negative edges—and we add elements greedily to this set S. As
our first greedy step, we consider the minimum-cost edge leaving node s, that
is, IlIél‘gl ¢si- Let v be a node on which this minimum is obtained. A key obser-

vation underlying Dijkstra’s algorithm is that the shortest path from s to v is
the single-edge path {s, v}. Thus we can immediately add the node v to the
set S. The path {s, v} is clearly the shortest to v if there are no negative edge
costs: any other path from s to v would have to start on an edge out of s that
is at least as expensive as edge (s, V).

The above observation is no longer true if we can have negative edge
costs. As suggested by the example in Figure 6.21(a), a path that starts on an
expensive edge, but then compensates with subsequent edges of negative cost,
Figure 6.21 (a) With neg- can be cheaper than a path that starts on a cheap edge. This suggests that the

ative edge costs, Dijkstra’s -) .
algorithm can give the wrong Dijkstra-style greedy approach will not work here.

answer for the shortest-path Another natural idea is to first modify the costs ¢; by adding some large

Egztmoefméa(:h) :(;igénv%iﬁ 1;;:: constant M to each; that is, we let cl’.]. =c¢+M for each edge (i,j) € E. If the

all edges nonnegative, but it~ constant M is large enough, then all modified costs are nonnegative, and we

will change the identity of the can use Dijkstra’s algorithm to find the minimum-cost path subject to costs

shortest s-t path. c’. However, this approach fails to find the correct minimum-cost paths with
respect to the original costs c. The problem here is that changing the costs from
¢ to ¢’ changes the minimum-cost path. For example (as in Figure 6.21(b)), if
a path P consisting of three edges is only slightly cheaper than another path
P’ that has two edges, then after the change in costs, P’ will be cheaper, since
we only add 2M to the cost of P’ while adding 3M to the cost of P.

A Dynamic Programming Approach We will try to use dynamic program-
ming to solve the problem of finding a shortest path from s to t when there
are negative edge costs but no negative cycles. We could try an idea that has
worked for us so far: subproblem i could be to find a shortest path using only
the first i nodes. This idea does not immediately work, but it can be made
to work with some effort. Here, however, we will discuss a simpler and more
efficient solution, the Bellman-Ford algorithm. The development of dynamic
programming as a general algorithmic technique is often credited to the work
of Bellman in the 1950’s; and the Bellman-Ford shortest-path algorithm was
one of the first applications.

The dynamic programming solution we develop will be based on the
following crucial observation.

|_ Kleinberg & Tardos first pages 2005/2/1 11:06 p. 292 (chap06) Windfall Software, PCA ZzTgX 11.6 J

6.8 Shortest Paths in a Graph & 293

P

Figure 6.22 The minimum-cost path P from v to t using at most i edges.

(6.22) If G has no negative cycles, then there is a shortest path from s to t
that is simple (i.e. does not repeat nodes), and hence has at most n — 1 edges.

Proof. Since every cycle has nonnegative cost, the shortest path P from s to
t with the fewest number of edges does not repeat any vertex v. For if P did
repeat a vertex v, we could remove the portion of P between consecutive visits
to v, resulting in a path of no greater cost and fewer edges. =

Let’s use OPT(i, v) to denote the minimum cost of a v-t path using at most
i edges. By (6.22), our original problem is to compute oPT(nn — 1, 5). (We could
instead design an algorithm whose subproblems correspond to the minimum
cost of an s-v path using at most i edges. This would form a more natural
parallel with Dijkstra’s algorithm, but it would not be as natural in the context
of the routing protocols we discuss later.)

We now need a simple way to express OPT(Z, v) using smaller subproblems.
We will see that the most natural approach involves the consideration of
many different options; this is another example of the principle of “multi-
way choices” that we saw in the algorithm for the Segmented Least Squares
Problem.

Let’s fix an optimal path P representing oprT(i, v) as depicted in Figure 6.22.

e If the path P uses at most i — 1 edges, then we have oPT(i, v) = OPT(i —
1,v).

e If the path P uses i edges, and the first edge is (v, w), then orT(i, v) =
Cow + OPT(I — 1, w).

This leads to the following recursive formula.
(6.23) Ifi> 0then

OPT(i, v) = min(OPT({ — 1, V), rni‘rll(OPT(i — 1, w) 4 cyp))-
we

Using this recurrence, we get the following dynamic programming algorithm
to compute the value orT(n — 1, t).

|_ Kleinberg & Tardos first pages 2005/2/1 11:06 p. 293 (chap06) Windfall Software, PCA ZzTgX 11.6 J

294 Chapter 6 @ Dynamic Programming

Shortest—Path(G, s, t)

n = number of nodes in G

Array M[0 ... n—1,V]
Define M[0,t] = 0 and M[0,v] = oo for all other v € V
For i=1,...,n—-1

For v € V in any order
Compute M[i, v] using the recurrence (6.23)
Endfor
Endfor
Return M[n — 1, s]

The correctness of the method follows directly by induction from (6.23).

0123 > We can bound the running time as follows. The table M has n? entries; and
! 0100 each entry can take O(n) time to compute, as there are at most n nodes w € V
@ ||73]73]74)76]-6 we have to consider.
bloes|eo|0|-2]-2|-2
cle|3]3]3]3]3 (6.24) The Shortest-Path method correctly computes the minimum cost of
dle|4|3]3]2]0 an s-t path in any graph that has no negative cycles, and runs in O(n®) time.
e[=]2]0]0]0]0 Given the table M containing the optimal values of the subproblems, the
shortest path using at most i edges can be obtained in O(in) time, by tracing
(b) back through smaller subproblems.
Figure 6.23 For the directed As an example, consider the graph in Figure 6.23, where the goal is to find

graph in (a), shortest-path a shortest path from each node to t. The table on the right shows the array M,

algorithm constructs the dy- o4y aptries corresponding to the values M[i, v] from the algorithm. Thus a

namic programming table) ; .

in (b). single row in the table corresponds to the shortest path from a particular node
to t, as we allow the path to use an increasing number of edges. For example,
the shortest path from node d to t is updated four times, as it changes from

d-t, to d-a-t, to d-a-b-e-t, and finally to d-a-b-e-c-t.

Extensions: Some Basic Improvements to the Algorithm

We can actually provide a better running-time analysis for the case in which
the graph G does not have too many edges. A directed graph with n nodes
can have close to n* edges, since there could potentially be an edge between
each pair of nodes, but many graphs are much sparser than this. When we
work with a graph for which the number of edges m is significantly less than
n%, we’'ve already seen in a number of cases earlier in the book that it can be
useful to write the running-time in terms of both m and n; this way, we can
quantify our speed-up on graphs with relatively fewer edges.

If we are a little more careful in the analysis of the method above, we can
improve the running time bound to O(mmn) without significantly changing the
algorithm itself.

|_ Kleinberg & Tardos first pages 2005/2/1 11:06 p. 294 (chap06) Windfall Software, PCA ZzTgX 11.6 J

6.8 Shortest Paths in a Graph & 295

(6.25) The Shortest-Path method can be implemented in O(mn) time.

Proof.

Consider the computation of the array entry M([i, v] according to the
recurrence (6.23); we have

M[i,v]=min(M[i — 1, v], mig(M[i — Lwl+ c,y))-
we

We assumed it could take up to O(n) time to compute this minimum, since
there are n possible nodes w. But, of course, we need only compute this
minimum over all nodes w for which v has an edge to w; let us use n, to denote
this number. Then it takes time O(n,) to compute the array entry M[i, v]. We
have to compute an entry for every node v and every index 0 <i<n —1, so

this gives a running-time bound of O (n Z nu>.
veV
In Chapter 3, we performed exactly this kind of analysis for other graph

algorithms, and used (3.9) from that chapter to bound the expression) .y n,
for undirected graphs. Here we are dealing with directed graphs, and n,, denotes
the number of edges leaving v. In a sense, it is even easier to work out the
value of)", n, for the directed case: each edge leaves exactly one of the
nodes in V, and so each edge is counted exactly once by this expression. Thus
we have) ., n,=m.

Plugging this into our expression O (n Z nv> for the running-time, we

veV
get a running time bound of O(mn). =

We can also significantly improve the memory requirements with only a
small change to the implementation. A common problem with many dynamic
programming algorithms is the large space usage, arising from the M array
that needs to be stored. In the Bellman-Ford algorithm as written, this array
has size n?; however, we now show how to reduce this to O(n). Rather than
recording M[i, v] for each value i, we will use and update a single value M[v]
for each node v, the length of the shortest path from v to ¢ that we have found
so far. We still run the algorithm for iterations i=1, 2, ...,n — 1, but the role
of i will now simply be as a counter; in each iteration, and for each node v,
we perform the update

M{[v]= min(M[v], mig(cvw + M[w]))).

We now observe the following fact.

|_ Kleinberg & Tardos first pages 2005/2/1 11:06 p. 295 (chap06) Windfall Software, PCA ZzTgX 11.6 J

296 Chapter 6 @ Dynamic Programming

(6.26) Throughout the algorithm M[v] is the length of some path from v to
t, and after i rounds of updates the value M[v] is no larger than the length of
the shortest path from v to t using at most i edges.

Given (6.26), we can then use (6.22) as before to show that we are done after
n — 1 iterations. Since we are only storing an M array that indexes over the
nodes, this requires only O(n) working memory. In fact, with a little more
work, the shortest paths themselves can be recovered with O(n) memory as
well.

Note that in the more space-efficient version of Bellman-Ford, the path
whose length is M[v] after i iterations can have substantially more edges than
i. For example, if the graph is a single path from s to t, and we perform updates
in the order the edges appear on the path, then we get the final shortest-path
values in just one iteration. This does not always happen, so we cannot claim
a worst-case running-time improvement, but it would be nice to be able to
use this fact opportunistically to speed up the algorithm on instances where it
does happen. In order to do this, we need a stopping signal in the algorithm—
something that tells us it’s safe to terminate before iteration n — 1 is reached.

Such a stopping signal is a simple consequence of the following observa-
tion: If we ever execute a complete iteration i in which no M[v] value changes,
then no M[v] value will ever change again, since future iterations will begin
with exactly the same set of array entries. Thus it is safe to stop the algorithm.
Note that it is not enough for a particular M[v] value to remain the same; in
order to safely terminate, we need for all these values to remain the same for
a single iteration.

6.9 Shortest Paths and Distance Vector Protocols

One important application of the shortest-path problem is for routers in a
communication network to determine the most efficient path to a destination.
We represent the network using a graph in which the nodes correspond to
routers, and there is an edge between v and w if the two routers are connected
by a direct communication link. We define a cost c,,, representing the delay on
the link (v, w); the shortest-path problem with these costs is to determine the
path with minimum delay from a source node s to a destination t. Delays are
naturally nonnegative, so one could use Dijkstra’s algorithm to compute the
shortest path. However, Dijkstra’s shortest-path computation requires global
knowledge of the network: it needs to maintain a set S of nodes for which
shortest paths have been determined, and make a global decision about which
node to add next to S. While routers can be made to run a protocol in the
background that gathers enough global information to implement such an _

|_ Kleinberg & Tardos first pages 2005/2/1 11:06 p. 296 (chap06) Windfall Software, PCA ZzTgX 11.6 J

6.9 Shortest Paths and Distance Vector Protocols 297

algorithm, it is often cleaner and more flexible to use algorithms that require
only local knowledge of neighboring nodes.

If we think about it, the Bellman-Ford algorithm discussed in the previous
section has just such a “local” property. Suppose we let each node v maintain
its value M[v]; then to update this value, v needs only obtain the value M[w]
from each neighbor w, and compute

min(cy, + M[w))
weV

based on the information obtained.

We now discuss an improvement to the Bellman-Ford algorithm that makes
it better suited for routers and, at the same time, a faster algorithm in practice.
Our current implementation of the Bellman-Ford algorithm can be thought
of as a pull-based algorithm. In each iteration i, each node v has to contact
each neighbor w, and “pull” the new value M[w] from it. If a node w has not
changed its value, then there is no need for v to get the value again; however,
v has no way of knowing this fact, and so it must execute the pull anyway.

This wastefulness suggests a symmetric push-based implementation,
where values are only transmitted when they change. Specifically, each node
w whose distance value M[w] changes in an iteration informs all its neighbors
of the new value in the next iteration; this allows them to update their values
accordingly. If M[w] has not changed, then the neighbors of w already have
the current value, and there is no need to “push” it to them again. This leads
to savings in the running time, as not all values need to be pushed in each iter-
ation. We also may terminate the algorithm early, if no value changes during
an iteration. Here is a concrete description of the push-based implementation.

Push-Based-Shortest-Path(G, s, t) :
n= number of nodes in G
Array M[V]
Initialize M[t] = 0 and M[v] = oo for all other v € V
For i=1,...,n—1
For w € V in any order
If M[w] has been updated in the previous iteration then
For all edges (v,w) in any order
M[v]=min(M|[v], ¢, + M[w])
Endfor
Endfor
If no value changed in this iteration, then end the algorithm
Endfor
Return M(s]

|_ Kleinberg & Tardos first pages 2005/2/1 11:06 p. 297 (chap06) Windfall Software, PCA ZzTgX 11.6 J

298 Chapter 6 @ Dynamic Programming

In this algorithm, nodes are sent updates of their neighbors’ distance
values in rounds, and each node sends out an update in each iteration in which
it has changed. However, if the nodes correspond to routers in a network, then
we do not expect everything to run in lock-step like this; some routers may
report updates much more quickly than others, and a router with an update to
report may sometimes experience a delay before contacting its neighbors. Thus
the routers will end up executing an asynchronous version of the algorithm:
each time a node w experiences an update to its M[w] value, it becomes
“active” and eventually notifies its neighbors of the new value. If we were
to watch the behavior of all routers interleaved, it would look as follows.

Asynchronous-Shortest-Path(G, s, t) :
n= number of nodes in G
Array M[V]
Initialize M[t] = 0 and M[v] = oo for all other v € V
Declare t to be active and all other nodes inactive
While there exists an active node
Choose an active node w
For all edges (v,w) in any order
M[v]=min(M[v], ¢,,,, + M[w])
If this changes the value of M[v], then
v becomes active
Endfor
w becomes inactive
EndWhile

One can show that even this version of the algorithm, with essentially no
coordination in the ordering of updates, will converge to the correct values of
the shortest-path distances to ¢, assuming only that each time a node becomes
active, it eventually contacts its neighbors.

The algorithm we have developed here uses a single destination ¢, and
all nodes v € V compute their shortest path to t. More generally, we are
presumably interested in finding distances and shortest paths between all pairs
of nodes in a graph. To obtain such distances, we effectively use n separate
computations, one for each destination. Such an algorithm is referred to as
a distance vector protocol, since each node maintains a vector of distances to
every other node in the network.

Problems with the Distance Vector Protocol

One of the major problems with the distributed implementation of Bellman-
Ford on routers, (the protocol we have been discussing above) is that it’s
derived from an initial dynamic programming algorithm that assumes edge

|_ Kleinberg & Tardos first pages 2005/2/1 11:06 p. 298 (chap06) Windfall Software, PCA ZzTgX 11.6 J

6.9 Shortest Paths and Distance Vector Protocols 299

costs will remain constant during the execution of the algorithm. Thus far
we’ve been designing algorithms with the tacit understanding that a program
executing the algorithm will be running on a single computer (or a centrally
managed set of computers), processing some specified input. In this context,
it’s a rather benign assumption to require that the input not change while the
program is actually running. Once we start thinking about routers in a network,
however, this assumption becomes troublesome. Edge costs may change for
all sorts of reasons: links can become congested and experience slow-downs;
or a link (v, w) may even fail, in which case the cost ¢, effectively increases
to oo.

Here’s an indication of what can go wrong with our shortest-path algo-
rithm when this happens. If an edge (v, w) is deleted (say the link goes down),
it is natural for node v to react as follows: it should check whether its shortest
path to some node t used the edge (v, w), and, if so, it should increase the
distance using other neighbors. Notice that this increase in distance from v can
now trigger increases at v’s neighbors, if they were relying on a path through v,
and these changes can cascade through the network. Consider the extremely
simple example in Figure 6.24, in which the original graph has three edges
(s,v), (v,s) and (v, t), each of cost 1.

Now suppose the edge (v, t) in Figure 6.24 is deleted. How does node v
react? Unfortunately, it does not have a global map of the network; it only
knows the shortest-path distances of each of its neighbors to t. Thus it does
not know that the deletion of (v, t) has eliminated all paths from s to t. Instead,
it sees that M[s]=2, and so it updates M[v] = c,; + M[s] = 3—assuming that
it will use its cost-1 edge to s, followed by the supposed cost-2 path from s
to t. Seeing this change, node s will update M([s]=c, + M[v] =4, based on
its cost-1 edge to v, followed by the supposed cost-3 path from v to t. Nodes
s and v will continue updating their distance to t until one of them finds an
alternate route; in the case, as here, that the network is truly disconnected,
these updates will continue indefinitely—a behavior known as the problem of
counting to infinity.

The deleted edge causes an unbounded
sequence of updates by s and v.

1 1
1 Deleted

Figure 6.24 When the edge (v,t) is deleted, the distributed Bellman-Ford algorithm
will begin “counting to infinity.”

|_ Kleinberg & Tardos first pages 2005/2/1 11:06 p. 299 (chap06) Windfall Software, PCA ZzTgX 11.6 J

300 Chapter 6 @ Dynamic Programming

To avoid this problem and related difficulties arising from the limited
amount of information available to nodes in the Bellman-Ford algorithm, the
designers of network routing schemes have tended to move from distance
vector protocols to more expressive path vector protocols, in which each node
stores not just the distance and first hop of their path to a destination, but
some representation of the entire path. Given knowledge of the paths, nodes
can avoid updating their paths to use edges they know to be deleted; at the
same time, they require significantly more storage to keep track of the full
paths. In the history of the Internet, there has been a shift from distance vector
protocols to path vector protocols; currently, the path vector approach is used
in the Border Gateway Protocol (BGP) in the Internet core.

6.10 Negative Cycles in a Graph

So far in our consideration of the Bellman-Ford algorithm, we have as-
sumed that the underlying graph has negative edge costs but no negative
cycles. We now consider the more general case of a graph that may contain
negative cycles.

i The Problem

There are two natural questions we will consider.

e How do we decide if a graph contains a negative cycle?

e How do we actually construct a negative cycle in a graph that contains
one?

The algorithm developed for finding negative cycles will also lead to an
improved practical implementation of the Bellman-Ford algorithm from the
previous sections.

It turns out that the ideas we’ve seen so far will allow us to find negative
cycles that have a path reaching a sink t. Before we develop the details of this,
let’s compare the problem of finding a negative cycle that can reach a given ¢
with the seemingly more natural problem of finding a negative cycle anywhere
in the graph, regardless of its position related to a sink. It turns out that if we
develop a solution to the first problem, we’ll be able to obtain a solution to
the second problem as well, in the following way. Suppose we start with a
graph G, add a new node t to it, and connect each other node v in the graph
to node ¢ via an edge of cost 0, as shown on Figure 6.25. Let us call the new
“augmented graph” G'.

(6.27) The augmented graph G' has a negative cycle C such that there is a
path from C to the sink t if and only if the original graph has a negative cycle.

|_ Kleinberg & Tardos first pages 2005/2/1 11:06 p. 300 (chap06) Windfall Software, PCA ZzTgX 11.6 J

