
SE3BB4 Midterm 1 Winter 2013

Name Student No.

No aids allowed. Answer all questions on test paper. Use backs of sheets if necessary.

Total Marks: 40

1. The article Peer-to-Peer Systems by Rodrigues & Druschel defines a P2P system as[10]

a distributed system with three properties; what are these properties? Explain them

briefly.

Solution: High degree of decentralization: The peers implement both client and

server functionality and most of the system’s state and tasks are dynamically allocated

among the peers. There are few if any dedicated nodes with centralized state. As a re-

sult, the bulk of the computation, bandwidth, and storage needed to operate the system

are contributed by participating nodes. Self-Organization: Once a node is introduced

into the system (typically by providing it with the IP address of a participating node

and any necessary key material), little or no manual configuration is needed to main-

tain the system. Multiple administrative domains: The participating nodes are

not owned and controlled by a single organization. In general, each node is owned and

operated by an independent individual who voluntarily joins the system.

1



2. In the BitTorrent system, Alice decides which requests to respond to as follows: every[10]

10 seconds, Alice recalculates the top 4 neighbors that supply her data at the highest

rate.

But also, every 30 seconds Alice picks a neighbor at random, and sends it chunks.

Describe the benefit of picking this random neighbor; what effect has it on the system

as a whole?

Solution: Since Alice sends chunks to a new random neighbor — call him Bob — Alice

may become Bob’s “top 4 uploader.” Thus, Bob will in turn start sending chunks to

Alice, and become Alice’s “top 4 uploader.” The effect of this on the system is that

peers able to upload at compatible rates will tend to find each other out.

2



3. Consider the following solution for the two-process synchronization, where below is the[10]

code for Pi (recall that, as usual, Pj is the other process where i = 1− j).

do {

flag[i] = true

turn = j

while (flag[j] and turn=j)

CRITICAL SECTION

flag[i] = false

REMAINDER SECTION

} while 1

Show that the following three hold:

(a) Mutual exclusion is preserved

(b) Progress requirement is satisfied

(c) Bounded waiting requirement is met

(Use next blank page if needed.)

Solution: Mutex: suppose P0, P1 are both in the critical section. That would mean

that flag[0]=flag[1]=true and so they both entered their respective critical sections

by breaking out of the while-loop with turn=0 (for P0) and turn=1 (for P1). But turn

is a shared variable, and hence this is not possible.

Progress: suppose that P0 is ready for another round of CS, and that P1 is in its RS.

That means that P1 just set flag[1]=false which breaks P0 out of the while loop. The

dual argument shows the same for P1 ready for CS and P0 in its RS.

Bounded waiting: If P0 is ready to enter its CS, then P1 will be able to enter its CS at

most once; as soon as P1 exits its CS, it turns flag[1]=false allowing P0 entry. Again,

the dual argument shows the same for P1 and P0.

3



Blank page.

4



4. Consider the Bakery multi-process synchronization solution:[10]

The shared variables are: choosing[i]∈ {0, 1}, for all i, initially all 0, writable by i and

readable by all j 6= i. Also, number[i]∈ N, initially all 0, writeable by i and readable

by all j 6= i.

Process Pi:

0. do {

1. choosing[i]=1

2. number[i]=1+max{j != i: number[j]}

3. choosing[i]=0

4. for j != i:

5. waitfor choosing[j]=0

6. waitfor number[j]=0 or (number[i],i)<(number[j],j)

7. CRITICAL SECTION

8. number[i]=0

9. REMAINDER SECTION

10. } while 1

Recall that (a, b) < (c, d) iff a < c or (a = c and b < d).

(a) We call the three lines of code from line 1. until line 3. the doorway. Can more

than one process be in the doorway at the same time?

(b) Suppose i 6= j and Pi is in CS (line 7.) while Pj is somewhere in the range 4–7 (4

and 7 included). Then, show that necessarily (number[i],i)<(number[j],j).

(c) Use part (b) to show Mutual Exclusion.

Solution: (a) Yes, they can; and thus it is possible for two processes to get the same

ticket value (i.e., number). Those ties are broken in line 6.

(b) Let t1 be some point in the execution where Pi is in CS (line 7.) while Pj is

somewhere in the range 4–7 (4 and 7 included). Let t2 be the point at which Pi reads

choosing[j]=0 in line 5. and thus moves on from line 5. We know that t2 < t1 (i.e., t2
happens earlier than t1).

Since Pj is in 4–7, it means that Pj was at time t3 in the “choosing region” of the

doorway, i.e., on line 2., where t3 < t1. We now compare t2 and t3.

If t2 < t3 then that means that Pi executed line 5. before Pj was in the doorway. Hence,

when Pj was choosing, number[i] was already set, and so by line 2. number[j]>number[i]

which implies (number[i],i)<(number[j],j).

If t2 > t3 then Pj leaves the doorway before Pi executes line 5.; thus, when Pi is in line

6., Pj already chose its number. But since Pi entered its CS anyway, it must be the

case that (number[i],i)<(number[j],j).

5



Blank page.

6


