Q1.
Most students get good marks from this question. Few marks are deducted for missing details as long as I can understand what you built.

Main reasons for losing marks:
Several students define a TM to determine the odd/even of the binary
number instead of counting number of " 1 "s.
Someone define Turing machines that does something else such as checking if there are two or more " 1 "s in the string, etc.

Q2.
The question is not answered well.
Many students were trying to reduce L_{H} to L_{U}, which in the wrong
direction. They build a Turing machine with another Turing machine recognizing L_{u} in it, not the other way around, and then claimed that since this building is not valid, L_{H} is not recursive.

By L_{H} not recursive we mean it's impossible to build a TM M such that $\mathrm{L}(\mathrm{M})=\mathrm{L}_{\mathrm{H}}$. Not that you just try to build a TM machine and failed. Q3.

The question is answered fine.
Common problems are:

1. In defining the Turing machine, some students suggested the nondeterministic Truing machine to guess an arbitrary string and didn’t state how to mimic infinite number of possible Turing machines.
2. A few students try to reduce $L_{n} e$ to L_{n} which does not make sense to me.
3. For the correct proving without stating "universal Turing machine" will be deducted 1 pt
4. Some students defined multi_tape deterministic Turing machines but didn't clearly stated how to simulate infinite number of TM's.
