
A formal framework for Stringology

[Updated: 06/26/2015 12:24 - v2.4]

Neerja Mhaskar1 and Michael Soltys2

1 McMaster University
Dept. of Computing & Software

1280 Main Street West
Hamilton, Ontario L8S 4K1, CANADA

pophlin@mcmaster.ca
2 California State University Channel Islands

Dept. of Computer Science
One University Drive

Camarillo, CA 93012, USA
michael.soltys@csuci.edu

Abstract. A new formal framework for Stringology is proposed, which consists of a
three-sorted logical theory S designed to capture the combinatorial reasoning about
finite words. A witnessing theorem is proven which demonstrates how to extract algo-
rithms for constructing strings from their proofs of existence. Various other applications
of the theory are shown. The long term goal of this line of research is to introduce the
tools of Proof Complexity to the analysis of strings.

Keywords: Proof complexity, string algorithms

1 Introduction

Finite strings are an object of intense scientific interest. This is due partly to their
intricate combinatorial properties, and partly to their eminent applicability to such
diverse fields as genetics, language processing, and pattern matching. Many techniques
have been developed over the years to prove properties of finite strings, such as suffix
arrays, border arrays, and decomposition algorithms such as Lyndon factorization.
However, there is no unifying theory or framework, and often the results consist
in clever but ad hoc combinatorial arguments. In this paper we propose a unifying
theory of strings based on a three sorted logical theory, which we call S. By engaging
in this line of research, we hope to bring the richness of the advanced field of Proof
Complexity to Stringology, and eventually create a unifying theory of strings.

The great advantage of this approach is that proof theory integrates proofs and
computations; this can be beneficial to Stringology as it allows us to extract efficient
algorithms from proofs of assertions. More concretely, if we can prove in S a property
of strings of the form: “for all strings V , there exists a string U with property α,”
i.e., ∃U ≤ tα(U, V), then we can mechanically extract an actual algorithm which
computes U for any given V . For example, suppose that we show that S proves that
every string has a certain decomposition; then, we can actually extract a procedure
from the proof for computing such decompositions.

For a background on Proof Complexity see [CN10] which contains a complete
treatment of the subject; we follow its methodology and techniques for defining our
theory S. We also use some rudimentary λ-calculus from [SC04] to define string con-
structors in our language.

2 Formalizing the theory of finite strings

We propose a three sorted theory that formalizes the reasoning about finite strings.
We call our theory S. The three sorts are indices, symbols, and strings. We start by
defining a convenient and natural language for making assertions about strings.

2.1 The language of strings LS

Definition 1. LS, the language of strings, is defined as follows:

LS = [0index, 1index,+index,−index, ·index, divindex, remindex,

0symbol, σsymbol, condsymbol, ||string, estring;<index,=index<symbol,=symbol,=string]

The table below explains the intended meaning of each symbol.

Formal Informal Intended Meaning
Index

0index 0 the integer zero
1index 1 the integer one
+index + integer addition
−index − bounded integer subtraction
·index · integer multiplication (we also just use juxtaposition)
divindex div integer division
remindex rem remainder of integer division
<index < less-than for integers
=index = equality for integers

Alphabet symbol
0symbol 0 default symbol in every alphabet
σsymbol σ unary function for generating more symbols
<symbol < ordering of alphabet symbols
condsymbol cond a conditional function
=symbol = equality for alphabet symbols

String
||string || unary function for string length
estring e binary fn. for extracting the i-th symbol from a string
=string = string equality

Note that in practice we use the informal language symbols as otherwise it would
be tedious to write terms, but the meaning will be clear from the context. When we
write i ≤ j we abbreviate the formula i < j ∨ i = j.

2.2 Syntax of LS

We use metavariables i, j, k, l, . . . to denote indices, metavariables u, v, w, . . . to denote
alphabet symbols, and metavariables U, V,W, . . . to denote strings. When a variable
can be of any type, i.e., a meta-meta variable, we write it as x, y, z We are going
to use t to denote an index term, for example i + j, and we are going to use s to
denote a symbol term, for example σσσ0. We let T denote string terms. We are going
to use Greek letters α, β, γ, . . ., to denote formulas.

2

Definition 2. LS-Terms are defined by structural induction as follows:

1. Every index variable is a term of type index (index term).
2. Every symbol variable is a term of type symbol (symbol term).
3. Every string variable is a term of type string (string term).
4. If t1, t2 are index terms, then so are (t1 ◦ t2) where ◦ ∈ {+,−, ·}, and div(t1, t2),

rem(t1, t2).
5. If s is a symbol term then so is σs.
6. If T is a string term, then |T | is an index term.
7. If t is an index term, and T is a string term, then e(T, t) is a symbol term.
8. All constant functions (0index, 1index,0symbol) are terms.

We are going to employ the lambda operator λ for building terms of type string;
we want our theory to be constructive, and we want to have a method for constructing
bigger strings from smaller ones.

Definition 3. Given a term t of type index, and given a term s of type symbol, then
the following is a term T of type string:

λi〈t, s〉. (1)

The idea is that T is a string of length t and the i0-th symbol of the string is
obtained by evaluating s at i0, i.e., by evaluating s(i0/i). Note that s(i0/i) is the
term obtained by replacing every free occurrence of i in s with i0. Note that (1) is a
λ-term, meaning that i is considered to be a bound variable. For examples of string
constructors see Section 2.4.

Definition 4. LS-Formulas are defined by structural induction as follows:

1. If t1, t2 are two index terms, then t1 < t2 and t1 = t2 are atomic formulas.
2. If s1, s2 are symbol terms, then s1 < s2 and s1 = s2 are atomic formulas.
3. If T1, T2 are two string terms, then T1 = T2 is an atomic formula.
4. If α, β are formulas (atomic or not), the following are also formulas:

¬α, (α ∧ β), (α ∨ β),∀xα, ∃xα.

We are interested in a restricted mode of quantification. We say that an index
quantifier is bounded if it is of the form ∃i ≤ t or ∀i ≤ t, where t is a term of
type index and i does not occur free in t. Similarly, we say that a string quantifier is
bounded if it is of the form ∃U ≤ t or ∀U ≤ t, where this means that |U | ≤ t and U
does not occur in t.

Definition 5. Let ΣB
0 be the set of LS-formulas without string or symbol quantifiers,

where all index quantifiers (if any) are bounded. For i > 0, let ΣB
i (ΠB

i) be the
set of LS formulas of the form: once the formula is put in prenex form, there are
i alternations of bounded string quantifiers, starting with an existential (universal)
one, and followed by a ΣB

0 formula.

Given a formula α, and two terms s1, s2 of type symbol, then cond(α, s1, s2) is a
term of type symbol. We want our theory to be strong enough to prove interesting
theorems, but not too strong so that proofs yield feasible algorithms. For this reason

3

we will restrict the α in the cond(α, s1, s2) to be ΣB
0 . Thus, given such an α and

assignments of values to its free variables, we can evaluate the truth value of α, and
output the appropriate si, in polytime – see Lemma 8.

The alphabet symbols are as follows, 0, σ0, σσ0, σσσ0, . . ., that is, the unary
function σ allows us to generate as many alphabet symbols as necessary. We are going
to abbreviate these symbols as σ0, σ1, σ2, σ3, In a given application in Stringology,
an alphabet of size three would be given by Σ = {σ0, σ1, σ2}, where σ0 < σ1 < σ2,
inducing a standard lexicographic ordering. We make a point of having an alphabet
of any size in the language, rather than a fixed constant size alphabet, as this allows
us to formalize arguments of the type: given a particular structure describing strings,
show that such strings require alphabets of a given size (see [BS13]).

2.3 Semantics of LS

We denote a structure for LS with M. A structure is a way of assigning values to the
terms, and truth values to the formulas. We base our presentation on [CN10, §II.2.2].
We start with a non-empty set M called the universe. The variables in any LS are
intended to range overM . Since our theory is three sorted, the universeM = (I,Σ, S),
where I denotes the set of indices, Σ the set of alphabet symbols, and S the set of
strings.

We start by defining the semantics for the three 0-ary (constant) function symbols:

0M
index ∈ I, 1M

index ∈ I, 0M
symbol ∈ Σ,

for the two unary function symbol:

σM
symbol : Σ −→ Σ, ||Mstring : S −→ I,

for the six binary function symbols:

+M
index : I2 −→ I, −M

index : I2 −→ I, ·Mindex : I2 −→ I

divM
index : I2 −→ I, remM

index : I2 −→ I, eMstring : S × I −→ Σ.

With the function symbols defined according to M, we now associate relations with
the predicate symbols, starting with the five binary predicates:

<M
index⊆ I2, =M

index⊆ I2, <M
symbol⊆ Σ2, =M

symbol⊆ Σ2, =M
string⊆ S2,

and finally we define the conditional function as follows: condM
symbol(α, s1, s2) evaluates

to sM1 if αM is true, and to sM2 otherwise.

Note that =M must always evaluate to true equality for all types; that is, equality
is hardwired to always be equality. However, all other function symbols and predicates
can be evaluated in an arbitrary way (that respects the given arities).

Definition 6. An object assignment τ for a structure M is a mapping from variables
to the universe M = (I,Σ, S), that is, M consists of three sets that we call indices,
alphabet symbols, and strings.

4

The three sorts are related to each other in that S can be seen as a function from
I to Σ, i.e., a given U ∈ S is just a function U : I −→ Σ. In Stringology we are
interested in the case where a given U may be arbitrarily long but it maps I to a
relatively small set of Σ: for example, binary strings map into {0, 1} ⊂ Σ. Since the
range of U is relatively small this leads to interesting structural questions about the
mapping: repetitions and patterns.

We start by defining τ on terms: τM[σ]. Note that if m ∈ M and x is a variable,
then τ(m/x) denotes the object assignment τ but where we specify that the variable
x must evaluate to m.

We define the evaluation of a term t under M and τ , tM[τ], by structural induction
on the definition of terms given in Section 2.1. First, xM[τ] is just τ(x), for each
variable x. We must now define object assignments for all the functions. Recall that
t, t1, t2 are index terms, s is a symbol term and T is a string term.

(t1 ◦index t2)M[τ] = (tM1 [τ] ◦Mindex tM2 [τ]),

where ◦ ∈ {+,−, ·} and

(div(t1, t2))
M[τ] = divM(tM1 [τ], tM2 [τ]),

(rem(t1, t2))
M[τ] = remM(tM1 [τ], tM2 [τ]).

and for symbol terms we have:

(σs)M[τ] = σM(sM[τ]).

Finally, for string terms:
|T|M[τ] = |(TM[τ])|.

(e(T, t))M[τ] = eM(TM[τ], tM[τ]).

Given a formula α, the notation M � α[τ], which we read as “M satisfies α under
τ” is also defined by structural induction. We start with the basis case:

M � (s1 <symbol s2)[τ] ⇐⇒ (sM1 [τ], sM2 [τ]) ∈<M
symbol .

We deal with the other atomic predicates in a similar way:

M � (t1 <index t2)[τ] ⇐⇒ (tM1 [τ], tM2 [τ]) ∈<M
index,

M � (t1 =index t2)[τ] ⇐⇒ tM1 [τ] = tM2 [τ],

M � (s1 =symbol s2)[τ] ⇐⇒ sM1 [τ] = sM2 [τ],

M � (T1 =string T2)[τ] ⇐⇒ TM
1 [τ] = TM

2 [τ].

Now we deal with Boolean connectives:

M ` (α ∧ β)[τ] ⇐⇒ M � α[τ] and M � β[τ],

M ` ¬α[τ] ⇐⇒ M 2 α[τ],

M ` (α ∨ β)[τ] ⇐⇒ M � α[τ] or M � β[τ].

5

Finally, we show how to deal with quantifiers, where the object assignment τ plays a
crucial role:

M � (∃xα)[τ] ⇐⇒ M � α[τ(m/x)] for some m ∈M,

M � (∀xα)[τ] ⇐⇒ M � α[τ(m/x)] for all m ∈M.

Definition 7. Let S = (N, Σ, S) denote the standard model for strings, where N are
the standard natural numbers, including zero, Σ = {σ0, σ1, σ2, . . .} where the alphabet
symbols are the ordered sequence σ0 < σ1 < σ2, . . ., and where S is the set of functions
U : I −→ Σ, and where all the function and predicate symbols get their standard
interpretations.

Lemma 8. Given any formula α ∈ ΣB
0 , and a particular object assignment τ , we

can verify S � α[τ] in polytime in the lengths of the strings and values of the indices
in α.

Proof. We first show that evaluating a term t, i.e., computing tS[τ], can be done in
polytime. We do this by structural induction on t. If t is just a variable then there
are three cases: i, u, U . iS[τ] = τ(i) ∈ N, uS[τ] = τ(u) ∈ Σ, and US[τ] = τ(U) ∈ S.
Note that the assumption is that computing τ(x) is for free, as τ is given as a table
which states which free variable gets replaced by what concrete value. Recall that all
index values are assumed to be given in unary, and all the function operations we
have are clearly polytime in the values of the arguments (index addition, subtraction,
multiplication, etc.).

Now suppose that we have an atomic formula such as (t1 < t2)
S[τ]. We already

established that tS1[τ] and tS2[τ] can be computed in polytime, and comparing integers
can also be done in polytime. Same for other atomic formulas, and the same holds for
Boolean combinations of formulas. What remains is to consider quantification; but
we are only allowed bounded index quantification: (∃i ≤ tα)S[τ], and (∃i ≤ tα)S[τ].
This is equivalent to computing:

tS[τ]∨
j=0

αS[τ(j/i)], and

tS[τ]∧
j=0

αS[τ(j/i)].

Clearly this can be done in polytime. ut

2.4 Examples of string constructors

The string 000 can be represented by:

λi〈1 + 1 + 1,0〉.

Given an integer n, let n̂ abbreviate the term 1 + 1 + · · ·+ 1 consisting of n many 1s.
Using this convenient notation, a string of length 8 of alternating 1s and 0s can be
represented by:

λi〈8̂, cond(∃j ≤ i(j + j = i),0, σ0)〉. (2)

Note that this example illustrates that indices are going to be effectively encoded
in unary; this is fine as we are proposing a theory for strings, and so unary indices

6

are an encoding that is linear in the length of the string. The same point is made
in [CN10], where the indices are assumed to be encoded in unary, because the main
object under investigation are binary strings, and the complexity is measured in the
lengths of the strings, and unary encoded indices are proportional to those lengths.

Also note that there are various ways to represent the same string; for example,
the string given by (2) can also be written thus:

λi〈2̂ · 4̂, cond(∃j ≤ i(j + j = i+ 1), σ0,0)〉. (3)

For convenience, we define the empty string ε as follows:

ε := λi〈0,0〉.

Let U be a binary string, and suppose that we want to define Ū , which is U with
every 0 (denoted 0) flipped to 1 (denote σ0), and every 1 flipped to 0. We can define
Ū as follows:

Ū := λi〈|U |, cond(e(U, i) = 0, σ0,0〉.
We can also define a string according to properties of positions of indices; suppose
we wish to define a binary string of length n which has one in all positions which are
multiples of 3:

U3 := λi〈n̂, cond(∃j ≤ n(i = j + j + j), σ0,0)〉.

Note that both Ū and U3 are defined with the conditional function where the formula
α conforms to the restriction: variables are either free (like U in Ū), or, if quantified,
all such variables are bounded and of type index (like j in U3).

Note that given a string W , |W | is its length. However, we number the positions
of a string starting at zero, and hence the last position is |W | − 1. For j ≥ |W | we
are going to define a string to be just 0s.

Suppose we want to define the reverse of a string, namely if U = u0u1 . . . un−1,
then its reverse is UR = un−1un−2 . . . u0. Then,

UR := λi〈|U |, e(U, (|U | − 1)− i)〉,

and the concatenation of two strings, which we denote as “·”, can be represented as
follows:

U · V := λi〈|U |+ |V |, cond(i < |U |, e(U, i), e(V, i− |U |))〉. (4)

2.5 Axioms of the theory S

We assume that we have the standard equality axioms which assert that equality is
true equality — see [Bus98, §2.2.1]. So we won’t give those axioms explicitly.

Since we are going to use the rules of Gentzen’s calculus, LK, we present the
axioms as Gentzen’s sequents, that is, they are of the form Γ → ∆, where Γ,∆ are
coma-separated lists of formulas. That is, a sequent is of the form:

α1, α2, . . . , αn → β1, β2, . . . , βm,

where n or m (or both) may be zero, that is, Γ or ∆ (or both) may be empty. The
semantics of sequents is as follows: a sequent is valid if for any structure M that

7

satisfies all the formulas in Γ , satisfies at least one formula in ∆. Using the standard
Boolean connectives this can be state as follows: ¬

∧
i αi ∨

∨
j βj, where 1 ≤ i ≤ n

and 1 ≤ j ≤ m.
The index axioms are the same as 2-BASIC in [CN10, pg. 96], plus we add four

more axioms (B7 and B15, B8 and B16) to define bounded subtraction, as well as
division and remainder functions. Keep in mind that a formula α is equivalent to a
sequent → α, and so, for readability we sometimes mix the two.

Index Axioms
B1. i+ 1 6= 0 B9. i ≤ j, j ≤ i→ i = j
B2. i+ 1 = j + 1→ i = j B10. i ≤ i+ j
B3. i+ 0 = i B11. 0 ≤ i
B4. i+ (j + 1) = (i+ j) + 1 B12. i ≤ j ∨ j ≤ i
B5. i · 0 = 0 B13. i ≤ j ↔ i < j + 1
B6. i · (j + 1) = (i · j) + i B14. i 6= 0→ ∃j ≤ i(j + 1 = i)
B7. i ≤ j, i+ k = j → j − i = k B15. i 6≤ j → j − i = 0
B8. j 6= 0→ rem(i, j) < j B16. j 6= 0→ i = j · div(i, j) + rem(i, j)

The alphabet axioms express that the alphabet is totally ordered according to
“<” and define the function cond.

Alphabet Axioms
B17. u � σu
B18. u < v, v < w → u < w
B19. α→ cond(α, u, v) = u
B20. ¬α→ cond(α, u, v) = v

Note that α in cond is a formula with the following restrictions: it only allows
bounded index quantifiers and hence evaluates to true or false once all free variables
have been assigned values. Hence cond always yields the symbol term s1 or the symbol
term s2, according to the truth value of α.

Note that the alphabet symbol type is defined by four axioms, B17–B20, two of
which define the cond function. These four axioms define symbols to be ordered “place
holders” and nothing more. This is consistent with alphabet symbols in classical
Stringology, where there are no operations defined on them (for example, we do not
add or multiply alphabet symbols).

Finally, these are the axioms governing strings:

String Axioms
B21. |λi〈t, s〉| = t
B22. j < t→ e(λi〈t, s〉, j) = s(j/i)
B23. |U | ≤ j → e(U, j) = 0
B24. |U | = |V |,∀i < |U |e(U, i) = e(V, i)→ U = V

Note that axioms B22–24 define the structure of a string. In our theory, a string
can be given as a variable, or it can be constructed. Axiom B21 defines the length
of the constructed strings, and axiom B22 shows that if j is less than the length of
the string, then the symbol in position j is given by substituting j for all the free
occurrences of i in s; this is the meaning of s(j/i). On the other hand, B23 says
that if j is greater or equal to the length of a string, then e(U, j) defaults to 0. The

8

last axioms, B24, says that if two strings U and V have the same length, and the
corresponding symbols are equal, then the two strings are in fact equal.

In axiom B24 there are three types of equalities, from left to right: index, symbol,
and string, and so B24 is the axiom that ties all three sorts together. Note that
formally strings are infinite ordered sequences of alphabet symbols. But we conclude
that they are equal based on comparing finitely many entries (∀i < |U |e(U, i) =
e(V, i)). This works because by B23 we know that for i ≥ |U |, e(U, i) = e(V, i) = 0
(since |U | = |V | by the assumption in the antecedent). A standard string of length n
is an object of the form:

σi0 , σi1 , . . . , σin−1 ,0,0,0, . . . ,

i.e., an infinite string indexed by the natural numbers, where there is a position so
that all the elements greater than that position are 0.

A rich source of insight is to consider non-standard models of a given theory. We
have described S, the standard theory of strings, which is intended to capture the
mental constructs that Stringologists have in mind when working on problems in this
field. It would be very interesting to consider non-standard strings that satisfy all the
axioms, and yet are not the “usual” object.

2.6 The rules of S

We use the Gentzen’s predicate calculus, LK, as presented in [Bus98].

Weak structural rules

exchange-left:
Γ1, α, β, Γ2 → ∆

Γ1, β, α, Γ2 → ∆
exchange-right:

Γ → ∆1, α, β,∆2

Γ → ∆1, β, α,∆2

contraction-left:
α, α, Γ → ∆

α, Γ → ∆
contraction-right:

Γ → ∆,α, α

Γ → ∆,α

weakening-left:
Γ → ∆

α, Γ → ∆
weakening-right:

Γ → ∆

Γ → ∆,α

Cut rule
Γ → ∆,α α, Γ → ∆

Γ → ∆

Rules for introducing connectives

¬-left:
Γ → ∆,α

¬α, Γ → ∆
¬-right:

α, Γ → ∆

Γ → ∆,¬α

∧-left:
α, β, Γ → ∆

α ∧ β, Γ → ∆
∧-right:

Γ → ∆,α Γ → ∆, β

Γ → ∆,α ∧ β

∨-left:
α, Γ → ∆ β, Γ → ∆

α ∨ β, Γ → ∆
∨-right:

Γ → ∆,α, β

Γ → ∆,α ∨ β

9

Rules for introducing quantifiers

∀-left:
α(t), Γ → ∆

∀xα(x), Γ → ∆
∀-right:

Γ → ∆,α(b)

Γ → ∆,∀xα(x)

∃-left:
α(b), Γ → ∆

∃xα(x), Γ → ∆
∃-right:

Γ → ∆,α(t)

Γ → ∆,∃xα(x)

Note that b must be free in Γ,∆.

Induction rule

Ind:
Γ, α(i)→ α(i+ 1), ∆

Γ, α(0)→ α(t), ∆

where i does not occur free in Γ,∆, and t is any term of type index. By restricting the
quantifier structure of α, we control the strength of this induction. We call ΣB

i -Ind
to be the induction rule where α is restricted to be in ΣB

i . We are mainly interested
in ΣB

i -Ind where i = 0 or i = 1.

Definition 9. Let Si to be the set of formulas (sequents) derivable from the axioms
B1-24 using the rules of LK, where the α formula in cond is restricted to be in ΣB

0

and where we use ΣB
i -Ind.

Theorem 10 (Cut-Elimination). If Φ is a Si proof of a formula α, then Φ can
always be converted into a Φ′ Si proof where the cut rule is applied only to formulas
in ΣB

i .

We do not prove Theorem 10, but the reader is pointed to [Sol99] to see the type
of reasoning that is required. The point of the Cut-Elimination Theorem is that in
any Si proof we can always limit all the intermediate formulas to be in ΣB

i , i.e., we
do not need to construct intermediate formulas whose quantifier complexity is more
than that of the conclusion.

As an example of the use of Si we outline an S0 proof of the equality of (2) and (3).
First note that by axiom B21 we have that:

|λi〈8̂, cond(∃j ≤ i(j + j = i),0, σ0)〉| = 8̂

|λi〈2̂ · 4̂, cond(∃j ≤ i(j + j = i+ 1), σ0,0)〉| = 2̂ · 4̂,

and by axioms B1-16 we can prove that 8̂ = 2̂ · 4̂ (the reader is encouraged to fill
in the details), and so we can conclude by transitivity of equality (equality is always
true equality) that:

|λi〈8̂, cond(∃j ≤ i(j + j = i),0, σ0)〉| = |λi〈2̂ · 4̂, cond(∃j ≤ i(j + j = i+ 1), σ0,0)〉|.

Now we have to show that:

∀i < 8̂(cond(∃j ≤ i(j + j = i),0, σ0) = cond(∃j ≤ i(j + j = i+ 1), σ0,0)) (5)

and then, using axiom B24 and some cuts on ΣB
0 formulas we can prove that in fact

the two terms given by (2) and (3) are equal.

10

In order to prove (5) we show that:

i < 8̂ ∧ (cond(∃j ≤ i(j + j = i),0, σ0) = cond(∃j ≤ i(j + j = i+ 1), σ0,0)) (6)

and then we can introduce the quantifier with ∀-intro right. We prove (6) by proving:

i < 8̂→ cond(∃j ≤ i(j + j = i),0, σ0) = cond(∃j ≤ i(j + j = i+ 1), σ0,0) (7)

Now to prove (7) we have to show that:

S0 ` ∃j ≤ i(j + j = i)↔ ¬∃j ≤ i(j + j = i+ 1),

which again is left to the reader. Then, using B19 and B20 we can show (7).

3 Witnessing theorem for S

Recall that S1 is our string theory restricted to ΣB
1 -Ind. For convenience, we some-

times use the notation bold-face V , V , to denote several string variables, i.e., V =
V1, V2, . . . , V`.

We now prove the main theorem of the paper, showing that if we manage to prove
in S1 the existence of a string U with some given properties, then in fact we can
construct such a string with a polytime algorithm.

Theorem 11 (Witnessing). If S1 ` ∃U ≤ tα(U,V), then it is possible to compute
U in polynomial time in the total length of all the string variables in V and the value
of all the free index variables in α.

Proof. We give a bare outline of the proof of the Witnessing theorem.
By Lemma 8 we know that we can evaluate any LS-term in S in polytime in the

length of the free string variables and the values of the index variables. In order to
simplify the proof we show it for S1 ` ∃U ≤ tα(U,V), i.e., U is a single string variable
rather than a set, i.e., rather than a block of bounded existential string quantifiers.
The general proof is very similar.

We argue by induction on the number of lines in the proof of ∃U ≤ tα(U,V)
that U can be witnessed by a polytime algorithm. Each line in the proof is either an
axiom (see Section 2.5), or follows from previous lines by the application of a rule
(see Section 2.6). By Theorem 10 we know that all the formulas in the S1 proof of
∃U ≤ tα(U,V) can be restricted to be ΣB

1 . It is this fundamental application of
Cut-Elimination that allows us to prove our Witnessing theorem.

The Basis Case is simple as the axioms have no string quantifiers. In the induction
step the two interesting cases are ∃-right and the induction rule. In the former case
we have:

∃-right:
|T | ≤ t, Γ → ∆,α(T,V , i)

Γ → ∆,∃U ≤ tα(U,V , i)

which is the ∃-right rule adapted to the case of bounded string quantification. We use
V to denote all the free string variables, and i to denote explicitly all the free index
variables. Then U is naturally witnessed by the function f :

f(A, b) := T S[τ(A/V)(b/i)].

11

Note that f is polytime as evaluating T under S and any object assignment can by
done in polytime by Lemma 8.

The induction case is a little bit more involved. We restate the rule as follows in
order to make all the free variables more explicit:

U ≤ t, α(U,V , i, j)→ ∃U ≤ tα(U,V , i+ 1, j)

U ≤ t, α(U,V , 0, j)→ ∃U ≤ tα(U,V , t′, j)

where we ignore Γ,∆ for clarity, and we ignore existential quantifiers on the left side,
as it is quantifiers on the right side that we are interested in witnessing. The algorithm
is clear: suppose we have a U such that α(U,V , 0,V) is satisfied. Use top of rule to
compute U ’s for i = 1, 2, . . . , tS[τ]. ut

4 Application of S to Stringology

In this section we state various basic Stringology constructions as LS formulas.

4.1 Subwords

The prefix, suffix, and subword are basic constructs of a given string V . They can
be given easily as LS-terms as follows: λk〈i, e(V, k)〉, λk〈i, e(V, |V | − i+ 1 + k)〉, and
since any subword is the prefix of some suffix, it can also be given easily.

We can state that U is a prefix of V with the ΣB
0 predicate:

pre(U, V) := ∃i ≤ |V |(U = λk〈i, e(V, k)〉),

The predicates for suffix suf(U, V) and subword sub(U, V) predicates can be defined
with ΣB

0 formulas in a similar way.

4.2 Counting symbols

Suppose that we want to count the number of occurrences of a particular symbol
σi in a given string U ; this can be defined with the notation (U)σi , but we need to
define this function with a new axiom (it seems that the language given thus far is
not suitable for defining (U)σi with a term). First, define the projection of a string U
according to σi as follows:

U |σi := λk〈|U |, cond(e(U, k) = σi, σ1, σ0)〉.

That is, U |σi is effectively a binary string with 1s where U had σi, and 0s everywhere
else, and of the same length as U . Thus, counting σi’s in U is the same as counting
1’s in U |σi . Given a binary string V , we define (V)σ1 as follows:

C1. |V | = 0→ (V)σ1 = 0

C2. |V | ≥ 1, e(V, 0) = σ0 → (V)σ1 = (λi〈|V | − 1, e(V, i+ 1)〉)σ1
C3. |V | ≥ 1, e(V, 0) = σ1 → (V)σ1 = 1 + (λi〈|V | − 1, e(V, i+ 1)〉)σ1

Having defined (U)σ1 with axioms C1-3, and U |σi as a term in LS, we can now define
(U)σi as follows: (U |σi)σ1 . Note that C1-3 are ΣB

0 sequents.

12

4.3 Borders and border arrays

Suppose that we want to define a border array. First define the border predicate which
asserts that the string V has a border of size i; note that by definition a border is a
(proper) prefix equal to a (proper) suffix. So let:

Brd(V, i) := λk〈i, e(V, k)〉 = λk〈i, e(V, |V | − i+ 1 + k)〉 ∧ i < |V |,

We now want to state that i is the largest possible border size:

MaxBrd(V, i) := Brd(V, i) ∧ (¬Brd(V, i+ 1) ∨ |U | = |V | − 1).

Thus, if we want to define the function BA(V, i), which is the border array for V
indexed by i, we can define it by adding the following as an axiom:

MaxBrd(λk〈i, e(V, k)〉,BA(V, i)).

4.4 Periodicity

See [Smy13, pg. 10] for the definition of a period of a string, but for our purpose let
us define p = |U | to be a period of V if V = U rU ′ where U ′ is some prefix, possibly
empty, of U . The Periodicity Lemma state the following: Suppose that p and q are
two periods of V , |V | = n, and d = gcd(p, q). Then, if p+ q ≤ n+ d, then d is also a
period of V .

Let Prd(V, p) be true if p is a period of the string V . Note that U is a border of a
string V if and only if p = |V | − |U | is a period of V . Using this observation we can
define the predicate for a period as a ΣB

0 formula:

Prd(V, p) := ∃i < |V |(p = |V | − i ∧ Brd(V, i))

We can state with a ΣB
0 formula that d = gcd(i, j): rem(d, i) = rem(d, j) = 0, and

rem(d′, i) = rem(d′, j) = 0 ⊃ d′ ≤ d. We can now state the Periodicity Lemma as the
sequent PL(V, p, q) where all formulas are ΣB

0 :

Prd(V, p),Prd(V, q),∃d ≤ p(d = gcd(p, q) ∧ p+ q ≤ |V |+ d)→ Prd(V, d).

Lemma 12. S0 ` PL(V, p, q).

Proof. The proof relies on a formalization of the observation stated above linking
periods and borders. ut

4.5 Regular and context-free strings

We are now going to show that regular languages can be defined with a ΣB
1 formula.

This means that given any regular language, described by a regular expression R,
there exists a ΣB

1 formula ΨR such that ΨR(U) ⇐⇒ U ∈ L(R).

Lemma 13. Regular languages can be defined with a ΣB
1 formula.

13

Proof. We have already defined concatenation of two strings in (4), but we still need
to define the operation of union and Kleene’s star. All together this can be stated as:

Ψ·(U, V,W) := W = U · V
Ψ∪(U, V,W) := (W = U ∨W = V)

Ψ∗(U,W) := ∃i ≤ |W |(W = λi〈i · |u|, e(U, rem(i, |U |))〉)

Now we show that R can be represented with a ΣB
1 formula by structural induction

on the definition of R. The basis case is simple as the possibilities for R are as follows:
a, ε, σ, and they can be represented with W = a, |W | = 0, 0 = 1, respectively.

For the induction step, consider R defined from R1 ·R2, R1 ∪R2 and (R1)
∗:

R = R1 ·R2 ∃U1 ≤ |W |∃U2 ≤ |W |(ΨR1(U1) ∧ ΨR2(U2) ∧ Ψ·(U1, U2,W))

R = R1 ∪R2 ∃U1 ≤ |W |∃U2 ≤ |W |(ΨR1(U1) ∧ ΨR2(U2) ∧ Ψ∪(U1, U2,W))

R = (R1)
∗ ∃U1 ≤ |W |Ψ∗(U1,W)

Thus, we obtain a ΣB
1 formula ΨR(W) which is true iff W ∈ L(R). ut

Note that in the proof of Lemma 13, when we put ΨR(W) in prenex form all
the string quantifiers are bounded by |W |, and they can be viewed as “witnessing”
intermediate strings in the construction of W .

Lemma 14. Context-free languages can be defined with a ΣB
1 formula.

Proof. Use Chomsky’s normal form and the CYK algorithm. ut

5 Conclusion and future work

We have just touched the surface of the beautiful interplay between Stringology and
Proof Complexity. Lemma 8 can likely be strengthened to say that evaluating LS-
terms can be done in AC0 rather than polytime. As was mentioned in the paper,
the richness of the field of Stringology arises from the fact that a string U is a map
I −→ Σ, where I can be arbitrarily large, while Σ is small. This produces repetitions
and patterns that are the object of study for Stringology. On the other hand, Proof
Complexity has studied in depth the varied versions of the Pigeonhole Principle that
is responsible for these repetitions. Thus the two may enrich each other. Finally,
Regular languages can be decided in NC1; how can this be reflected in the proof of
Lemma 13? Also, prove Lemma 14.

Due to the lack of space, and the fact that it usually requires a rather lengthy
construction, we did not illustrate an application of the Witnessing theorem. A very
nice application can be found in the Lyndon decomposition of a string (see [Smy13,
pg. 29]). Recall that our alphabet is ordered — this was precisely so these types of
arguments could be carried out naturally in our theory. Since σ0 < σ1 < σ2 . . ., we can
easily define a lexicographic ordering of strings; define a predicate U <lex V . We can
define a Lyndon word with a ΣB

0 formula as follows: ∀i < |V |(V <lex λk〈i, e(V, |V | −
i+ 1 + k)〉).

Let V be a string; then V = V1 · V2 · . . . · Vk is a Lyndon decomposition if each
Vi is a Lyndon word, and Vk <lex Vk−1 <lex · · · <lex V1. The existence of a Lyndon

14

decomposition can be proven as in [Smy13, Theorem 1.4.9], and we assert that the
proof itself can be formalized in S1. We can therefore conclude that the actual de-
composition can be computed in polytime. As one can see, this approach provides a
deep insight into the nature of strings.

References

[BS13] Samuel R. Buss and Michael Soltys. Unshuffling a square is NP-hard. Journal of Computer
and System Sciences, 80(4):766–776, 2013.

[Bus98] Samuel R. Buss. An introduction to proof theory. In Samuel R. Buss, editor, Handbook of
Proof Theory, pages 1–78. North Holland, 1998.

[CN10] Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge
Univeristy Press, 2010.

[SC04] Michael Soltys and Stephen Cook. The proof complexity of linear algebra. Annals of Pure
and Applied Logic, 130(1–3):207–275, December 2004.

[Smy13] Bill Smyth. Computing Patterns in Strings. Pearson Education, 20013.

[Sol99] Michael Soltys. A model-theoretic proof of the completeness of LK proofs. Technical Report
CAS-06-05-MS, McMaster University, 1999.

15

