
5th International Conference on Educational Innovation in Technical Careers INDOTEC 2017	

iSprinkle: when education, innovation and application meet	

Carlos Adrian Gomez, Michael Soltys (1), Adam Sędziwy (2)	

(1) Department of Computer Science, California State University Channel Islands,
One University Drive, Camarillo, CA 93012, USA	

(2) AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

Abstract 	
This paper presents a senior undergraduate project which consists in the implementation of a Raspberry Pi based sprinkler system. The
outcome is ingenious and innovative for several reasons: it is a low cost product, but of high quality and versatility (arguably better
and cheaper than most household products on the market); it is well suited for usage in draught stricken regions (such as Southern
California); it interfaces automatically with weather stations on the Internet, and adapts its sprinkling according to forecasts. For the
student this was an opportunity to apply a wide range of technologies, APIs, and to work with watering regulations. The project was
both pedagogically rich and intellectually challenging.

Keywords: iSprinkle, water management, draught, open source, Raspberry Pi	

I. Introduction	
The aim of this paper is to report on the design and implementation of a weather forecast data driven sprinkler
timer for home usage, as well as to expound on the pedagogical value of the exercise. The work provides
enough details and references so that the reader can replicate the final product, and thus obtain a working
sprinkler timer, as well as reports on the insights for instructors who may wish to repeat this project and draw
learning value for the student.

The end result is a functioning prototype, but, more importantly, the project has tremendous pedagogical value
as it combines advanced programming, introduction to embedded systems and controllers, application, as well
as aspects of sustainability and California State law. Moreover, it opens prospects for future development for
commercial purposes. This last aspect strongly motivates a student toward creating a high quality solution.

iSprinkle is a Raspberry Pi-powered irrigation controller which allows the user to set an initial, default
irrigation schedule for a sprinkler system using a web interface. The crucial feature of the project is that
iSprinkle can connect a weather forecast provider to obtain predicted local weather conditions and to adjust
the base watering schedule as-needed. By doing so, iSprinkle is able to irrigate more efficiently compared to a
system with a fixed schedule (most household systems) in terms of water usage; by programmatically
modifying the user's watering schedule, iSprinkle increases/decreases the irrigation time that the schedule
dictates depending on data that it receives from a weather API. iSprinkle hopes to make it easier for
homeowners to conserve water by automating adjustments to their irrigation schedule.	

II. Motivation	
The student was easily motivated by the real-life application of the project. The Southern California draught is
a complex problem that affects everyone. This project allows the student to make a contribution to the
solution; this in itself has the effect of placing the project beyond “academia.” From the point of view of the
instructor, the project is an excellent opportunity for the student to put into action concepts and techniques
learned throughout the student’s undergraduate years: software design, programming, embedded systems,
human-computer interaction, and how these technologies connect with social issues and the law. The students’
work is both conceptual, and highly technical.

II.1 Problem analysis	
The current draught in California has become so severe that the state and local governments have begun
regulating water consumption, imposing sanctions and even passing legislation in order to curb water usage.
On average, the statewide ratio for water usage is about 50% environmental, 10% urban, and 40% agricultural
(Mount et al, 2014).

5th International Conference on Educational Innovation in Technical Careers INDOTEC 2017	

Irrigation is one of the widest uses of water nationwide, accounting for more than 60% of water withdrawals
in our state (Maupin et al, 2010). Fortunately, the amount of water used in both urban and agricultural
irrigation has been reduced through a variety of measures, including a strong trend in the use of precision
irrigation techniques (e.g., drip irrigation) (Hanson, 2007). However, research suggests our current
unprecedented drought is only expected to get worse; for this reason, it is imperative to be proactive and
reduce our water consumption further (Cook et al, 2015).

In a random survey of single-family water customers sponsored by the California Department of Water
Resources, results showed that 87% of homes appeared to be irrigating with only 54% doing so in excess
(DeOreo, 2015). However, the surveyors also mentioned that most water customers were irrigating at or below
average levels. The survey found that 62% of excess usage occurred on 18% of all irrigating lots, leading the
surveyors to conclude that “the majority of savings from outdoor use will be found from around 15% of the
customers.” For this reason, they suggested that a solution to reduce outdoor water usage should be focused on
those households which over-irrigate, so that households who are irrigating at appropriate levels are not
affected. Of the survey respondents, only 4% were said to be using weather-based irrigation controllers (or
WBIC), despite some municipalities offering rebates towards commercially available products. The low levels
of adoption surrounding WBIC's is especially concerning given the potential savings; it is estimated that a
WaterSense-labeled irrigation controller, or one that meets the EPA's requirements for watering without doing
so in excess, can save the average home almost 9,000 gallons (approx. 34,000 liters) of water per year (US
EPA, 2017). The EPA estimates that if every US home replaced their sprinkler timer with a WaterSense
labeled controller, the potential savings “could save $435 million in water costs and 120 billion gallons
(approx. 454 billion liters) of water across the country” (US EPA, 2017).

Over the past 15 years, there have been numerous studies intended to evaluate the reduction of water usage of
WBIC's, compared to traditional timers, when retrofitted at an over-irrigating household. Most studies suggest
that “savings of 40-50 gallons (approx. 150-190 liters) per household per day, or roughly 10% of total use can
be expected from a residential WBIC retrofit program assuming such programs target high water users”
(Western Policy Research, 2014)

The aforementioned studies differed in the criterion for targeting over irrigators, citing difficulty in devising a
methodology that was effective. However, as WBIC's become more commonplace and more households in
general begin to adopt the technology, we can be sure that at least a percentage of these will be over irrigating
households and will reap the benefits of “smart” irrigation.

II.2 Pedagogical value

Smart water irrigation is a well-defined topic, and the motivation is clear to the student. The possibility of
wielding current low-cost technologies to solve an important problem is very attractive. Also:
1. The student carries out the system development process beginning from the requirement analysis stage

through integration of particular logical and physical project's components, up to the final stage of tests
and completing the end-user documentation. It should be remarked that the system is a composition of
software and hardware parts, so this gives the student the opportunity to work with both abstract concepts
(algorithms and methods) and technical issues (assembling physical components and deploying software
on them).

2. Preparing a solution fulfilling the requirements such as low cost, usability, etc., is truly a real-life
exercise. The student must document the process in order so that the solution can be replicated (and
indeed it has been, at all stages, by the instructor and others).

3. The solution has significant market potential if the student decides to develop it. In fact, it would have
been an interesting extension of the project if the student provided a “take-to-market” plan.

III. iSprinkle	
This section contains an overview of the system. As it is beyond the scope of this article we do not describe in
depth the solution details (we will make the full technical solution available online). Instead we present the
main components of iSprinkle. Its logical diagram is shown in Figure 1. It consists of three layers
representing a user, iSprinkle and the irrigation devices.	

5th International Conference on Educational Innovation in Technical Careers INDOTEC 2017	

Figure 1. Diagram of the project.	

III.1 Hardware components

One of the most important assumptions about iSprinkle was that its cost should be minimized as much as
possible. The hardware configuration applied in the project, including Raspberry Pi 2 unit (RPi) as its core
element, required about $150 which is an acceptable price for such a solution. Figure 2 shows the pictures of
hardware components and Table 1 contains an itemized list of their prices. Note that we do not include the
sprinkler system itself, that is the valves, the pipes, the sprinklers, etc., as iSprinkle is only intended to be a
replacement for the sprinkler scheduling system.

Figure 2. Pictures of hardware components

Component Price
Raspberry Pi 2 (RPi) $39.99

OpenSprinkler Pi (OSPi) $77.99

Samsung 16Gb MicroSD card (SD) $7

Edimax USB WiFi adapter (Edimax) $8.50

24V Transformer (T) $12.97
Total: $146.45

Table 1. Itemized hardware components

5th International Conference on Educational Innovation in Technical Careers INDOTEC 2017	

The next step after collecting all hardware items is establishing a software environment consisting of an
operating system for the RPi and the necessary software updates, customizations and components. Next, the
Raspbian environment had to be configured appropriately.

III.2 Software components

Once all the hardware components are out of the box, we must start by downloading and installing an
operating system for the RPi. We use Raspbian, a Debian Linux-based OS. In order to keep Raspbian
updated with the latest software patches, we need to update the system's package list and then upgrade
relevant items. Before setting up iSprinkle, one of the most critical parts of configuration is the RPi's timezone
settings; they must be configured to local time so that the watering schedule start times are accurate.

Other configuration options include the ability to remotely access the Raspbian's desktop environment via
Virtual Network Computing (VNC), disabling the desktop environment altogether, and modifying the amount
of memory allotted to the Graphical Processing Unit (GPU).

The server-side software of iSprinkle is written solely in Python, a versatile scripting language which has been
adopted by many learning institutions for teaching programming to beginners. Python is an excellent choice
for new and experienced programmers due to its ecosystem. Because Python is open-source, there is a wide
variety of freely-available learning materials as well as online communities providing support.

Although Python's standard library is already quite extensive, offering features such as built-in support for
networking and interfacing with the underlying OS (Python Software Foundation, 2017a), there are also
thousands of third-party libraries available via PyPI, the Python Package Index (Python Software Foundation,
2017b). Due to Python's open nature, users will find it easy to modify and extend iSprinkle's existing
codebase.

III.3 Performance

iSprinkle users are able to create, read, update, and delete watering times for stations on the schedule page
exposed by a web browser-based GUI. The entire weekly schedule can be seen at a glance, with one station
per row and every weekday as a column. Each station can have multiple start times in a day.

When iSprinkle executes, a job scheduler provided by the Advanced Python Scheduler module is instantiated
(Grönholm, 2017). As the watering schedule is loaded into memory from disk, new jobs are added to the job
scheduler for each station. Each job can be thought of as a tuple which contains the watering function, start
time, and watering function arguments, where the latter consists of the station number and watering duration.
The job scheduler runs in a separate thread from the main application and executes the watering function
when a start time for a job is reached.

When the start time for a job is reached (i.e. a station is due to start watering), iSprinkle retrieves weather data
from the past month. The average temperature, along with the current temperature and desired watering
duration, are used to produce an optimized watering duration which is then used in place of the user's original
value.

IV. Learning Experience

Although this project involves both hardware and software, the learning potential leans greatly on the latter.
We will expand on the learning value of the project from the initial setup to the functioning prototype.

The Linux environment offered by Raspbian offers a wealth of learning opportunities. While Raspbian is easy
to use due to the graphical user interface (GUI), users are free to explore the underlying system using the Bash
shell.

Assuming the user interacts with the RPi via a remote shell using the SSH, they will become intimately
familiar with Linux commands, if they are not already. New users are encouraged to review the Console

5th International Conference on Educational Innovation in Technical Careers INDOTEC 2017	

Basics section in the Debian Reference manual. In addition, Linux provides convenient documentation for
Unix utilities via the man pages.

IV.1 Web Development

The user-interface for iSprinkle combines HTML, CSS, as well as JavaScript. Bootstrap, a popular framework
for developing web sites, is used to easily create stylish pages, many of which can contain components such as
buttons, forms, and icons, and are responsive (i.e. adaptable to the viewer's screen size and platform) (Otto,
Thornton, 2017c). Bootstrap provides a gentle introduction to web development in that it makes it easy to
create pages which follow a convention rather than spending time on configuration; however, because the
documentation is so extensive, users will easily be able to learn about HTML and CSS for both structuring
and styling websites, as well as JavaScript, for adding interactivity. However, because Bootstrap only
provides structure, style, and a limited set of dynamic features for the user interface, another component is
required.

Angular, a client-side JavaScript framework maintained by Google, is used to "extend the vocabulary" of
HTML by adding templating, bi-directional data binding, and scope to the traditional static HTML page
(Google, 2017d). Users will learn to use "scopes", in the traditional computer science sense, as they declare
variables and use logic to add even more dynamic features to web pages. In addition, Angular makes it easy to
start learning about asynchronous programming, such as when making requests to a server, be it local (such as
iSprinkle's backend) or remote (such as an external API), without affecting the user's experience by waiting
for the reply. Finally, JavaScript itself has seen enormous changes within the last decade; countless web
frameworks have been built upon it, making it an enormously versatile language to learn.

IV.2 Software Engineering

The design of a system such as iSprinkle requires a holistic approach that is very different from most class
assignments. The former usually span a few files that are to be turned in within a week or two, making it
difficult to implement a system with many “moving parts.” However, iSprinkle's functionality is divided
between the front-end and backend, both of which need to communicate so that the user's requests are
fulfilled. Designing such a system requires taking into consideration many aspects; from major decisions such
as selecting a backend language to use, to minutiae such as the date and time formats to use across the
backend and front end to maintain consistency.

The server-side software of iSprinkle is written solely in Python, a versatile scripting language which has been
adopted by many learning institutions for teaching programming to beginners. Python is an excellent choice
for new and experienced programmers due to its ecosystem. Because Python is open-source, there is a wide
variety of freely-available learning materials as well as online communities providing support.

Although Python's standard library is already quite extensive, offering features such as built-in support for
networking and interfacing with the underlying OS \cite{python-3-docs}, there are also thousands of third-
party libraries available via PyPI, the Python Package. Due to Python's open nature, users will find it easy to
modify and extend iSprinkle's existing codebase.

Throughout the design and implementation of iSprinkle, a major consideration was to emphasize modularity,
allowing for separation of concerns between components while maintaining a standard way to communicate
between them. For this reason, iSprinkle's functionality is split between the front end, allowing the user to
interact with the software in a user-friendly way, and the back end, which does most of the work.

Finally, the project allowed the student an opportunity to present their work to a larger audience. The first
version of the project was presented at SCCUR 2016 (Southern California Conference of Undergraduate
Research). As part of their senior project, Capstone students present their work to industry representatives.
This is done in a conference booth style, and it provides an opportunity for students to interact with an
interested audience.

5th International Conference on Educational Innovation in Technical Careers INDOTEC 2017	

V. Conclusion

This article presented a senior capstone project aimed at preparing a low cost, open source-based sprinkler
timer capable of performance adjustment on the basis of weather forecast data being gathered in the
background. The project covered assembling both hardware and software components. The latter ones were
based on open source solutions and technologies: the Raspbian operating system, Python-based components,
Angular, Bootstrap and others. The project required the student to develop skills in several areas: assembling
together all hardware items; installing and setting up the OS and the software environment; programming
using advanced web technologies. As mentioned in Section III, the basic assumption was reducing the cost of
the solution. Meeting this requirement and relying on the open software, make iSprinkle to be easily
replicable. This fact together with the environmental context, i.e. the common water shortages in California,
open good prospects for commercial application of iSprinkle.

References 	

United States Environmental Protection Agency. (2017). WaterSense Labeled Irrigation Controllers.
WaterSense. US EPA. http://bit.ly/2i7pSeH. (Accessed on 06/01/2017).

COOK B. I., AULT T. R., SMERDON J. E. (2015). Unprecedented 21st century drought risk in the American
Southwest and Central Plains. Climatology, February 2015.

DEOREO W. B., MAYER P. W., MARTIEN L., HAYDEN M., FUNK A., KRAMER-DUFFIELD M.,
DAVIS R. (2015). California Single Family Water Use Efficiency Study. Aquacraft. http://bit.ly/2qDJ0Wo
(Accessed on 06/01/2017).

Python Software Foundation. (2017a) . The Python Standard Library – Python 3.5.2 documentation.
http://bit.ly/2rnuNdm, September 2016. (Accessed on 06/01/2017).

Python Software Foundation. (2017b). PyPI - the Python Package Index. https://pypi.python.org/pypi, 2016.
(Accessed on 06/01/2017).

OTTO M., THORNTON J. (2017c). Bootstrap – The World’s Most Popular Mobile-First And Responsive
Front-End Framework. http://getbootstrap.com/. (Accessed on 06/01/2017).

Google. (2017d). AngularJS. A Superheroic JavaScript MVW Framework. https://angularjs.org/. (Accessed
on 06/01/2017).

HANSON B. (2007). Irrigation Of Agricultural Crops In California. Technical Report, University of
California Davis.

MAUPIN M. A., KENNY J. F., HUTSON S. S., LOVELACE J. K., BARBER N. L., LINSEY K. S. (2010).
Estimated Use Of Water In The United States In 2010. Circular 1405, United States Geological Survey.

MOUNT J., FREEMAN E., LUND J. (2014). Water Use In California. Technical Report. Public Policy
Institute of California.

Western Policy Research. (2014). Weather Based Irrigation Controllers. http://bit.ly/2qDSSeY. (Accessed on
06/01/2017).

Grönholm A. (2017). Advanced Python Scheduler – APScheduler 3.3.1 Documentation.
http://bit.ly/2rg8bwW. (Accessed on 06/01/2017).

