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Abstract

We show that the Gaussian Elimination algorithm can be proven cor-
rect with uniform Extended Frege proofs of polynomial size, and hence
feasibly. More precisely, we give short uniform Extended Frege proofs of
the tautologies that express the following: given a matrix A, the Gaussian
Elimination algorithm reduces A to row-echelon form. We also show that
the consequence of this is that a large class of matrix identities can be
proven with short uniform Extended Frege proofs, and hence feasibly.

1 Introduction

Gaussian Elimination is a well studied algorithm. It consists in reducing a given
matrix to row-echelon form by performing on it a sequence of elementary row
operations (such as adding a multiple of one row to another, exchanging two
rows, or multiplying a row by a constant).

Since Gaussian Elimination is a polytime algorithm, it was known that it
can be proven total in standard logical theories for polynomial time (polytime)
reasoning (such as Cook’s PV or Buss’ S1

2). In this paper, we give a direct proof
of the correctness of Gaussian Elimination (and hence also of its totality) with
Extended Frege (eFrege) proofs of size polynomial in the size of the given matrix.
By correctness we mean the following statement: the Gaussian Elimination
algorithm reduces a matrix to row-echelon form.

This result is important for several reasons: First of all, it was assumed that
Gaussian Elimination is “well behaved”—from a proof complexity point of view;
that is, it was assumed that the standard properties of Gaussian Elimination
can be proven feasibly. But there are examples of algorithms for which we
do not know if they can be proven correct within their complexity class (e.g.,
Berkowitz’s algorithm; see [8]). Thus, while the above mentioned assumption
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was reasonable, a direct feasible proof of the correctness of Gaussian Elimination
was nevertheless desirable.

Second of all, the Gaussian Elimination algorithm is a cornerstone algorithm
in linear algebra—the main “engine for computation” in standard textbooks of
linear algebra. A substantial portion of matrix algebra can be proven easily (and
feasibly) from the correctness of Gaussian Elimination. We show that a class
of matrix identities, which we call “hard matrix identities” (because it appears
that they do not have polynomial size Frege proofs) follow directly from the
proof of correctness of Gaussian Elimination (an example of such an identity is
AB = I ⊃ BA = I). Thus, a substantial portion of universal matrix algebra
can be proven with short eFrege proofs.

The hard matrix identities bring us to the last point. The separation of Frege
and eFrege is a fundamental open problem in theoretical computer science. Cook
proposed AB = I ⊃ BA = I as a candidate for showing this separation, since it
appears that this identity does not have polynomial size Frege proofs. On the
other hand, it does have polynomial size eFrege proofs (a consequence of our
polysize eFrege proofs of correctness of Gaussian Elimination). We hope that
an exploration of the proof complexity of matrix algebra might shed some light
on the alleged separation of these two proof systems.

We define Frege and eFrege in section 2.1. In section 2.2 we show how to
express universal matrix identities with propositional formulas. In section 3
we prove the main result of this paper: we show that the correctness of Gaus-
sian Elimination can be proven with uniform polysize eFrege proofs, and that
therefore hard matrix identities also have uniform polysize eFrege proofs.

2 Preliminaries

2.1 Proof systems, Frege, and eFrege

Proof Complexity is an area of mathematics and theoretical computer science
that studies the length of proofs in propositional logic. It is an area of study that
is fundamentally connected both to major open questions of computational com-
plexity theory and to practical properties of automated theorem provers ([2]).
Let TAUT be the set of all tautologies. A propositional proof system is just a
polytime predicate P ⊆ Σ∗ × TAUT such that φ ∈ TAUT ⇐⇒ ∃xP (x, φ). P
is poly-bounded if there exists a polynomial p such that:

φ ∈ TAUT ⇐⇒ ∃x(|x| ≤ p(|φ|) ∧ P (x, φ))

The existence of a poly-bounded proof system is related to the fundamental
question about complexity classes: P = NP ? Cook and Reckhow proved that
NP = co-NP iff there is a poly-bounded proof system for TAUT ([3]). On the
other hand, if P = NP then NP = co-NP. Thus, if there is no poly-bounded
proof system, then NP 6= co-NP, and that implies that P 6= NP.

Unfortunately, a proof system is such a general object (just a polytime pred-
icate, as defined above), that it is hopeless at the moment to show directly that
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there is no polybounded proof system (if that is indeed the case, because it is
possible—but not widely believed—that NP = co-NP, but P 6= NP). Instead,
the program proposed by Cook is to show lower bounds for the common propo-
sitional proofs systems (such as resolution, Frege systems, etc.), of increasing
strength. This is a good approach, because lower bounds for propositional proof
systems are of interest independently of the P = NP ? question. In particular,
they are of interest to automated reasoning in artificial intelligence, and to lower
bounds for algorithms for satisfiability (see [2] for more details).

In Figure 1 we show a table of the principal propositional proof systems. Ex-
ponential lower bounds exist for the proof systems below the line. The strongest
propositional proof system (Quantified Frege) is shown in the top, and the weak-
est (Truth Tables) is shown in the bottom. Each system can simulate the one
below. The systems Frege and PK are equivalent in the sense that they p-

Quantified Frege
Extended Frege, Substitution Frege, Renaming Frege

Permutation Frege
Frege, PK

Bounded Depth (BD) Frege
Resolution

Truth Tables

Table 1: Propositional proof systems

simulate each other. We say that a proof system P p-simulates a proof system
P ′ if there exists a polytime function f such that P ′(x, φ) holds iff P (f(x), φ)
holds. In other words, all the proofs of P ′ can be “reproduced” in P with a
small increase in size.

As was mentioned above, the program is to show lower bounds for standard
proof systems of increasing complexity. So far, lower bounds exist for Resolution
(Haken [4] who showed exponential lower bounds for the pigeonhole principle),
and Bounded Depth Frege (Ajtai [1] who also showed exponential lower bounds
for the pigeonhole principle, but in Bounded Depth Frege—this result formed
the basis of much of the research in proof complexity in the following decade,
see [2]), but no lower bounds exist for stronger systems. In particular, there is
no separation between the Frege and Extended Frege proof systems.

The (alleged) separation between Frege and Extended Frege is a fundamental
open problem in theoretical computer science. A Frege system is a propositional
proof system with finitely many rules (see [9] for details). It was shown in [3],
that Frege systems with different rules and over a different basis p-simulate each
other. Thus, it is a very robust class of proof systems. Extended Frege (eFrege),
is Frege with the extension rule. This rule allows the possibility of abbreviating
formulas by definitions. Thus, Frege corresponds to reasoning with Boolean
formulas, while eFrege corresponds to reasoning with Boolean circuits.

Frege and eFrege are well known systems, and they are studied in depth in [9]
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and [5]. We assume that Boolean formulas are defined in a standard way with
the connectives {∨,∧,¬,⊕,⊃,↔}, and that 0, 1 are false and true, respectively.
A Frege proof is a sequence of Boolean formulas {φ1, φ2, . . . , φn}, where φn is
the conclusion (i.e., the tautology which we prove), and each φi is either an
axiom of the form φ ∨ ¬φ, or it follows from some φj , j < i by a rule. A rule is
a (k + 1)-tuple of formulas written as:

θ1, . . . , θk
θ0

Which rules we choose is immaterial (as long as they are complete and sound)
by the already mentioned result of Cook and Reckhow ([3]).

An eFrege proof is a sequence of Boolean formulas {φ1, φ2, . . . , φn}, as before,
but now there is a third possibility: a formula φi might be a definition p ↔ θ,
where p is a new atom that does not appear in θ nor in φj , for j < i.

A term that might require some clarification is “uniform.” We mentioned
in the introduction that we show the correctness of Gaussian Elimination with
uniform polysize eFrege proofs. The correctness of Gaussian Elimination will
be stated as a family of tautologies, parametrized by the size of the given matri-
ces (intuitively, the tautologies τ1, τ2, τ3, . . ., express the correctness of Gaussian
Elimination for matrices with 1, 2, 3, . . ., rows, respectively). Each tautology τn
has an eFrege proof of size bounded by a fixed polynomial in n, and each proof
can be generated uniformly (in polytime); that is, the proofs are not wildly differ-
ent, but have a similar structure. The uniformity condition is important, since
uniform polysize eFrege proofs provide feasible proofs, while polysize eFrege
proofs alone do not necessarily provide feasible proofs. We sometimes abuse
notation, and abbreviate “uniform polysize” by “short.” Finally, the uniformity
of the derivations will be obvious, so, as a rule, we will not point it out.

2.2 Expressing matrix identities

In [6], the author designed a quantifier-free, three sorted (where the sorts are
indices, field elements, and matrices) logical theory for linear algebra, called LA.
In LA it is possible to express universal matrix identities, such as for example
AB = I ⊃ BA = I, and also prove all the ring properties of matrices (associa-
tivity of matrix addition and multiplication, commutativity of addition, etc.).
Then, it was also shown how to translate a formula in the language of LA, to a
family of propositional formulas, where the parameters of the translation were
the sizes of matrices in the formula. Hence, since the general problem of ex-
pressing matrix identities as tautologies has been solved in [6], here we just give
an outline that is enough for our purposes. (As an aside, note that LA cannot
formalize Gaussian Elimination, so we cannot just take it and use it here; we
really need extension definitions in order to formalize Gaussian Elimination.)

Matrices have entries from some field. We assume that the underling field is
Z2 = {0, 1}, the field of two elements. An n×m matrix A over the field Z2 can be
easily represented with nm Boolean variables A11, A12, . . . , Anm. For a bigger
field, we need to encode each entry of A by several Boolean variables, and the
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Boolean simulation of field operations is technically more involved. However,
all the results in this paper hold for bigger fields as well, so without loss of
generality, we can restrict ourselves to the field Z2.

If a, b are field variables over Z2, then a ·b can be represented by the Boolean
formula a ∧ b, and a + b can be represented by a ⊕ b. For a bigger field, and
a thorough study of the relation between algebraic expressions and Boolean
formulas, see [10].

As was mentioned above, we associate an n×m matrix A over Z2 with nm
Boolean variables Aij . To express the usual matrix terms (A + B, A(B + D),
etc.), we use extension definitions. For example, to express A+B we introduce
a new set of Boolean variables, Cij , and define them as follows:

Cij ↔ (Aij ⊕Bij) (1)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m if A and B are n × m matrices. In general, C
will be used to denote new variables. Let ‖C = A + B‖n,m denote the set of
extension definitions given by (1), for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. That is,
‖C = A+B‖n,m denotes {Cij ↔ (Aij ⊕Bij)}1≤i≤n,1≤j≤m.

To express C = AB, we define each Cij as:

Cij ↔ ((Ai1 ∧B1j)⊕ (A21 ∧B2j)⊕ . . .⊕ (Ain ∧Bnj)) (2)

Note that our Boolean connectives have fan-in 2, so the right-hand side of
the above formula should be parenthesized appropriately; assume that it is
parenthesized left to right. In general, assume that whenever we write a formula
of the form φ1 ◦ φ2 ◦ · · · ◦ φn, where “◦” denotes some Boolean connective, we
mean its left to right parenthesization, that is, we mean: φ1 ◦ (φ2 ◦ (· · · ◦φn) · · · )

Let ‖C = AB‖n denote the set of extension definitions given by (2), i.e., it
denotes {Cij ↔ ((Ai1∧B1j)⊕(A21∧B2j)⊕. . .⊕(Ain∧Bnj))}1≤i,j≤n. Note that
the product of two matrices of sizes n×p and p×m can be defined by padding the
matrices with zeros to make them square of size max{n, p,m} ×max{n, p,m}.

We can also define iterated matrix products. Suppose that we want to define
the iterated product A1A2 · · ·Am, where all Ai are n × n matrices. We define
C1, C2, . . . , Cm−1 sequentially as follows: C1 = A1A2, C2 = C1A3, etc., until
we obtain Cm−1 = Cm−2Am. Thus, the set of extension definitions that define
Cm−1, the product A1A2 · · ·Am, is the following:

‖C1 = A1A2‖n, ‖C2 = C1A3‖n, . . . , ‖Cm−1 = Cm−2Am‖n (3)

This definition illustrates the interplay between matrix variables, and Boolean
variables: each Ci denotes a matrix, in the context of matrix algebra, and a set
of Boolean variables, in the context of Boolean formulas. While the expression
Ci+1 = CiAi+1 is a matrix identity, ‖Ci+1 = CiAi+1‖n is a set of extension
definitions that define the set of Boolean variables denoted by Ci+1, in terms of
the sets of Boolean variables that define Ci and Ai+1. Because this interplay is
well defined, we sometimes abuse notation, and go between the two “modes” in
the proofs.
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If A,B are n × m matrices, let ‖A = B‖n,m denote the following set of
extension definitions:

{Aij ↔ Bij}1≤i≤n,1≤j≤m (4)

Note that over more general fields, we would also need to define the scalar
multiplication of a matrix. But, over Z2, aA is either the zero matrix, if a = 0,
or it is A if a = 1. In any case, it is easy to define it, even for bigger fields.

Now, we can define more complicated formulas recursively. Suppose that we
want to state the following: A+ (B +E) = AE. First we would express B +E
with C1, A + C1 with C2, AE with C3, and finally, we would state C2 = C3.
Here, C1, C2, C3 are the sets of new extension variables. Thus, A+(B+E) = AE
would be expressed as follows:

‖C1 = B + E‖n,n, ‖C2 = A+ C1‖n,n, ‖C3 = AE‖n, ‖C2 = C3‖n,n

where n is the parameter of the translation; there is a Boolean formula for each
value of n, i.e., for each fixed size of matrices. The matrices are assumed to be
square, of size n.

As a second example, consider AB = I ⊃ BA = I. First of all, note that I
is a constant matrix, for any given size n. That is, we have a set of extension
definitions {Iij ↔ 0}1≤i 6=j≤n, {Iii ↔ 1}1≤i≤n. We state the identity as follows:∧

‖AB = I‖n ⊃
∧
‖BA = I‖n (5)

Note that ‖AB = I‖n is a set of extension definitions, so
∧
‖AB = I‖n denotes

the conjunction (properly parenthesized) of all these extension definitions. Same
holds for

∧
‖BA = I‖n. We can take the extension definitions for I to be axioms

of our eFrege system (instead of adding them to tautology (5), but this does not
matter either way for proof length). Again, n is the parameter of the translation.

From this, it is hopefully clear how to translate general (universal) matrix
identities into families of Boolean formulas. Thus, instead of writing (5), we
will simply state ‖AB = I ⊃ BA = I‖n, and in general, if α(A1, A2, . . . , An) is
a universal matrix identity, where A1, A2, . . . , An denote the free matrix vari-
ables, then ‖α(A1, A2, . . . , An)‖m will denote the tautology we obtain when all
matrices have size m, and {‖α(A1, A2, . . . , An)‖m} will denote the family of all
such tautologies, parametrized by m.

The following four matrix identities are allegedly hard for Frege, and so we
call them hard matrix identities (we explain below exactly what we mean by
“hard for Frege”).

(AB = I ∧AC = I) ⊃ B = C I

AB = I ⊃ (AC 6= 0 ∨ C = 0) II

AB = I ⊃ BA = I III

AB = I ⊃ AtBt = I IV

Identity I states that right inverses are unique, identity II states that units
are not zero-divisors, and identity III states that a right inverse is an inverse.
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Identity III was proposed by Cook as a candidate for the separation of Frege
and Extended Frege propositional proof systems.

We explain what we mean by “hard for Frege.” Consider for example identity
III, and let {τn} be (5). Then, there is no polynomial p(x) ∈ N[x] such that for
all n, τn has a Frege proof of size bounded by p(n).

Conjecture 1 Identities I, II, III, IV are hard for Frege; that is, if α is one of I,
II, III, or IV, then, for every polynomial p ∈ N[x], there exists an n0 sufficiently
big so that ‖α‖n0

does not have a Frege proof of size ≤ p(n0).

It is enough to show that one of these identities, e.g., AB = I ⊃ BA = I,
cannot be proven in polysize Frege to conclude that none of them can be proven
in polysize Frege. If one of them can be proven in polysize Frege (or eFrege),
then all can be proven in polysize Frege (or eFrege). See [6] for details.

Theorem 1 All the ring properties of matrices can be proven in polysize Frege.
That is, commutativity and associativity of matrix addition and multiplication,
as well as distributivity, can be proven in polysize Frege. For example, there
exists a polynomial p ∈ N[x], so that ‖A(BC) = (AB)C‖n has Frege proofs of
size ≤ p(n).

See [6] for a proof of this theorem.

3 eFrege and Gaussian Elimination

In this section we show that the correctness of Gaussian Elimination can be
proven with short eFrege proofs, and we show that because of that, hard matrix
identities also have short eFrege proofs.

3.1 Correctness of GE

Recall that a matrix is in row-echelon form if it satisfies the following two
conditions: (i) if there is a non-zero row, the first non-zero entry of every row
is 1, (the pivot), and (ii) the first non-zero entry of row i+1 is to the right of
the first non-zero entry of row i. In short, a matrix is in row-echelon form if it
looks as follows: 

1 ∗ . . . ∗ ∗ ∗ . . . ∗ ∗ ∗ . . . ∗ ∗
1 ∗ . . . ∗ ∗ ∗ . . . ∗ ∗

. . . 1 ∗ . . . ∗ ∗
0 1 . . .

. . .
...

. . .

 (6)

where the ∗’s indicate entries from Z2.
We define the function Gaussian Elimination, GE : Mn×m −→Mn×n, to be

the function which given an n×m matrix A as input, it outputs an n×n matrix
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GE(A), with the property that GE(A)A is in row-echelon form. We call this
property the correctness condition of GE.

We show how to compute GE(A), given A. The idea is, of course, that
GE(A) is equal to a product of elementary matrices which bring A to row-
echelon form. We start by defining elementary matrices. Let Tij be a matrix
with zeros everywhere except in the (i, j)-th position, where it has a 1. A matrix
E is an elementary matrix if E has one of the following three forms:

I + aTij i 6= j (elementary of type 1)

I + Tij + Tji − Tii − Tjj (elementary of type 2)

I + (c− 1)Tii c 6= 0 (elementary of type 3)

Let A be any matrix. If E is an elementary matrix of type 1, then EA is A with
the i-th row replaced by the sum of the i-th row and a times the j-th row. If
E is an elementary matrix of type 2, then EA is A with the i-th and j-th rows
interchanged. If E is an elementary matrix of type 3, then EA is A with the
i-th row multiplied by c 6= 0.

We compute GE recursively, on the number of rows of A. If A is a 1 ×m
matrix, A = [a11a12 . . . a1m], then:

GE(A) =

{
[1/a1i] where i = min{1, 2, . . . ,m} such that ai1 6= 0

[1] if a11 = a12 = · · · = a1m = 0
(7)

In the first case, GE(A) = [1/a1i], GE(A) is just an elementary matrix of size
1 × 1, and type 3, c = ai1. In the second case, GE(A) is a 1 × 1 identity, so
an elementary matrix of type 1 with a = 0. Also note that in the first case
we divide by a1i. This is not needed when the underlying field is Z2, since a
non-zero entry is necessarily 1. However, we claim throughout this paper that
our arguments hold regardless of the underlying field, so we want to make the
function GE field independent.

Suppose now that n > 1. If A = 0, let GE(A) = I. Otherwise, let:

GE(A) =

[
1 0
0 GE((EA)[1|1])

]
E (8)

where E is a product of at most n+1 elementary matrices, defined below. Note
that C[i|j] denotes the matrix C with row i and j deleted, so (EA)[1|1] is the
matrix A multiplied by E on the left, and then the first row and column are
deleted from the result. Also note that we make sure that GE(A) is of the
appropriate size (i.e., it is an n× n matrix), by placing GE((EA)[1|1]) inside a
matrix padded with a 1 in the upper-left corner, and zeros in the remaining of
the first row and column.

Definition of E: If the first column of A is zero, let j be the first non-zero
column of A (such a column exists by the assumption A 6= 0). Let i be the index
of the first row of A such that Aij 6= 0. If i > 1, let E = I1i (E interchanges
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row 1 and row i). If i = 1, but Alj = 0 for 1 < l ≤ n, then E = I (do nothing).
If i = 1, and 1 < i′1 < i′2 < · · · < i′k are the indices of the other rows with
Ai′lj

6= 0, let E = Ei′1
Ei′2
· · ·Ei′k

, where Ei′l
is the elementary matrix that adds

the first row of A to the i′l-th row, of A so that it clears the j-th entry of the
i′l-th row (this is over Z2; over a bigger field, we might need a multiple of the
first row to clear the i′l-th row).

If the first column of A is not zero, then let ai1 be its first non-zero entry
(i.e., aj1 = 0 if j < i). We want to compute a sequence of elementary matrices,
whose product will be denoted by E, which accomplish the following sequence
of steps:

1. they interchange the first and i-th row,

2. they divide the first row by ai1,

3. and they use the first row to clear all the other entries in the first column.

Let ai11, ai21, . . . , aik1 be the list of all the non-zero entries in the first column
of A, not including ai1, ordered so that:

i < i1 < i2 < · · · < ik

Let the convention be that if ai1 is the only non-zero entry in the first row, then
k = 0. Define E to be:

E = Ei1Ei2 · · ·EikE
′E′′

where Eij = I − aij1Tij1, so Eij clears the first entry from the ij-th row of A.
Note that if k = 0 (if ai1 is the only non-zero entry in the first column of A),
then E = E′′E′. Let

E′′ = I +

(
1

ai1
− 1

)
T11 and E′ = I + Ti1 + T1i − Tii − T11

Thus, E′′ divides the first row by ai1, and E′ interchanges the first row and the
i-th row. End of definition of E.

We define the Boolean formula RowEchelon(C11, C12, . . . , Cnm) to be the
disjunction of (9) and (10) below: ∧

1≤i≤n,1≤j≤m

¬Cij (9)

∧
1≤i<n,1<j≤m

(¬C(i+1)1 ∧ . . . ∧ ¬C(i+1)(j−1) ∧ C(i+1)j) ⊃
∨

1≤k≤j−1

Cik

 (10)

Note that (9) states that C is the zero matrix, and (10) states that the first
non-zero entry of row i + 1 is to the right of the first non-zero entry of row i.
Moreover, if the (i+ 1)-st row has a non-zero entry, then the i-th row must also
have a non-zero entry. Note that we do not need to state the condition that
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the first non-zero entry of each row is 1, since the field is Z2; over more general
fields, we would have to state this condition as well.

We will abuse notation slightly, and sometimes write RowEchelon(C) in
place of RowEchelon(C11, C12, . . . , Cnm).

Theorem 2 eFrege proves the correctness of GE with proofs of size polynomial
in the given matrix. More precisely, the family of tautologies given by:

{
∧
‖C = GE(A)A‖n,m ⊃ RowEchelon(C)} (11)

has short eFrege proofs.

Proof: We prove that (11) has short eFrege proofs. More precisely, from the
constructions of the derivations given below, it is possible to come up with a
constant d, so that the size of these derivations (measured in the number of
symbols) is bounded by (n+m)d, n,m ≥ 1. We do not give d explicitly.

We build the proof of (11) inductively on n. Suppose first that A is a 1×m
matrix. Let G = GE(A), then from (7) we see that G = [1], so it is represented
by the single extension definition G11 ↔ 1. Now, define C = GA with m
extension definitions, and show that

∧
‖C = A‖1,m. Since A has only one row,

and it is a matrix over Z2, it follows that A is in row-echelon form, and hence
RowEchelon(C) follows.

Now suppose that A is a (n+1)×m matrix. Let G′ = GE((EA)[1|1]), and
we already have the set of extension definitions for G′ by induction. Thus, from:

G =

[
1 0
0 G′

]
E

we obtain the set of extension definitions for G = GE(A). This set is short
because the definition of E is short (see (3) for the definition of iterated matrix
products), and because the definition of G′ is short, by induction. More pre-
cisely, E is given by at most n+2 elementary matrices of size (n+1)×(n+1) each;
thus, it involves n+1 new matrix definitions, each definition of size bounded by
O((n+1)3) (just recall the definition of ‖C = AB‖n+1). Each of the elementary
matrices that make up E (see the definition of E above), over Z2, has a definition
of constant size (in terms of the entries of A). Thus, the extension definitions
of E are of size bounded by O((n + 1)4). Therefore, G can be defined with
O((n + 1)4) + (nr. of extension definitions for G′) extension definitions, which

is O(
∑n+1

k=1 k
4) ≤ O((n+ 1)5) many extension definitions in total for G.

Let C ′ = G′((EA)[1|1]), and C = GA. By induction,∧
‖C ′ = G′((EA)[1|1])‖n ⊃ RowEchelon(C ′)

has an eFrege proof of size bounded by (n+m)d. We now want to show that given
the extension definitions for G′ and G, RowEchelon(C ′) ⊃ RowEchelon(C) has
short eFrege proofs. Since

C = GA =

[
1 0
0 G′

]
EA =

[
first row of EA

0 G′((EA)[1|1])

]
=

[
first row of EA

0 C ′

]
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To see this, note that the first column of EA is zero, except possibly for the
first entry. By the choice of E, either (EA)11 6= 0, in which case we have
RowEchelon(C), or the first non-zero entry of the first row of EA is to the left
of the first non-zero column of C ′, in which case we also have RowEchelon(C).
Also note that we use associativity of iterated matrix products in the above
reasoning. That is, we assume that the way we parenthesize an iterated matrix
product is not important, since by associativity we always get the same result.
This can be shown with short eFrege proofs as well. �

Theorem 3 The existence of the inverse of GE(A) can be shown with short
eFrege proofs.

Proof: We have to show that given ‖G = GE(A)‖n, the Boolean variables
G−111 , G

−1
12 , . . . , G

−1
nn , corresponding to G−1, can be constructed with short ex-

tension definitions, and that eFrege proves ‖GG−1 = I‖n with short proofs.
Just as we defined G inductively with extension definitions, we define G−1

inductively. Given E = Ei1Ei2 · · ·EikE
′E′′, we can compute E−1 immediately

by letting it be E′′−1E′−1E−1ik
· · ·E−1i2

E−1i1
. Each of these inverses can be com-

puted very easily, because they are elementary matrices. So, since we are dealing
with Z2, E′′ = E′′, and E′ is also its own inverse, and Eij is a matrix with 1s

on the diagonal, and 1 in the position (p, q), so E−1ij
is a matrix with 1s on the

diagonal, and a 1 in position (q, p).
Thus, we showed how to compute G−1. We still need to show that the family

of tautologies {‖GG−1 = I‖n,m} has short eFrege proofs, for any n×m matrix
A. We can prove this inductively on the number of rows of A, just as in the
proof of Theorem 2, so we do not repeat it here. �

Corollary 1 It can be shown with short eFrege proofs that GE(A)A has 1s on
the main diagonal, or its last row is zero.

Proof: The truth of this assertion is obvious from (6). Let C = GA, and
suppose that there is a zero entry on the diagonal, i.e., ¬

∧
1≤i≤n Cii ↔ 1.

We want to show that the last row is zero,
∧

1≤i≤n Cni ↔ 0. We know that
RowEchelon(C) is valid, and provable in polysize eFrege (by Theorem (2)).
From (10) we can conclude with short eFrege proofs that:∧

1≤j≤k

¬Cij ⊃
∧

1≤j≤k+1

¬C(i+1)j (12)

That is, if the first k entries of row i are zero, then the first (k + 1) entries of
row (i + 1) are zero. Let Cii be the zero, with the smallest i. Now, from (12)
we prove that: ∧

1≤j≤i

Cij ↔ 0 (13)

Using (12) repeatedly, for 0 ≤ k ≤ n− i, we show that the first (i+k) entries of
row (i+ k) are zero. Thus, we can conclude that the first n entries of the n-th
row are zero, and, therefore, the n-th (last) row is zero altogether.
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In fact, note that given RowEchelon(C), all we needed was polysize Frege
to prove that if some Cii is zero, then the last row of C is zero. �

3.2 Extended Frege proofs of hard matrix identities

It was shown in [6], that the identities I, II, III, and IV, presented in section 2.1,
are equivalent, and furthermore, their equivalence can be shown with short Frege
proofs. Thus, by showing that one of the four identities has short eFrege proofs,
we show that they all do. We choose AB = I ⊃ BA = I.

Theorem 4 The tautologies ‖AB = I ⊃ BA = I‖n have short eFrege proofs.

Proof: Suppose that AB = I. By Corollary 1, GE(A)A has 1s on the diagonal,
or its bottom row is zero. Since AB = I, it follows that:

GE(A) = GE(A)(AB) = (GE(A)A)B

so, if the bottom row of the matrix GE(A)A is zero, then so is the bottom row
of the matrix (GE(A)A)B, and hence so is the bottom row of GE(A), which
by Theorem 3 is not possible (since if a matrix has a row of zeros, it cannot
have an inverse). Hence, GE(A)A has 1s on the diagonal. Using a sequence of
elementary matrices F1 . . . Fk, we can clear the entries above the main diagonal,
so that:

FkFk−1 · · ·F1GE(A)A = I

and hence C = FkFk−1 · · ·F1GE(A) is the left inverse of A.
Now that we know that A has a left inverse, and since we can show with

basic ring properties that AB = I ⊃ A(BA−I) = I, it follows that BA = I. To
see that AB = I ⊃ A(BA− I) can be proven with ring properties, note that if
AB = I, then (AB)A = A, so by associativity, A(BA) = A, so A(BA)−A = 0,
so by left-distributivity, A(BA− I) = 0. Also, since AB = I ⊃ A(BA− I) = 0
can be shown with ring properties, it follows that it can be proven with polysize
Frege proofs. �

4 Conclusions and Open Problems

We have seen that the correctness of the Gaussian Elimination algorithm can
be proven with polysize eFrege proofs. That is, the tautologies which express
the relation “GE(A)A is in row-echelon form,” have uniform polysize (in size of
A) eFrege proofs. Our proofs work over the field Z2, but all the results can be
replicated for bigger fields, such as Zp or Q.

We have also seen that because Gaussian Elimination has short eFrege proofs
of correctness, the matrix identity AB = I ⊃ BA = I, and hence a host of
matrix identities (we called them “hard matrix identities”), have short eFrege
proofs. In fact, many combinatorial principles, such as the “Odd Town Theo-
rem,” can also be proven with short eFrege proofs; see [6] for details.
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Two important questions arise, for future research: (i) are “hard matrix
identities” indeed hard ? The identity AB = I ⊃ BA = I has been proposed
by Cook as a candidate for separating Frege and eFrege; we have seen that it
has short eFrege proofs, so if it is hard for Frege, we would have the separation
of Frege and eFrege. If it turns out that AB = I ⊃ BA = I has short Frege
proofs after all, then we could take it as evidence that we have to work harder
on trying to prove that Frege is just as strong as eFrege, besides trying to prove
the separation.

(ii) Can “hard matrix identities” be proven in quasi-polysize Frege ? In [6],
it is shown how to construct a theory of linear algebra based on Berkowitz’s
algorithm (which computes the characteristic polynomial of a matrix), rather
than on the Gaussian Elimination algorithm. The advantage of this approach is
that, while Gaussian Elimination is a sequential polytime algorithm, Berkowitz’s
algorithm is a fast parallel algorithm, that runs in time O(log2 n), where n is the
size of the given matrix. Berkowitz’s algorithm can be formalized with quasi-
polysize Boolean formulas, but it is not known how to prove it correct with such
formulas. If we could prove it correct with short quasi-polysize Frege, we would
also have short quasi-polysize Frege of AB = I ⊃ BA = I. This would be
an important step forward in understanding the complexity of proofs of matrix
identities.
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