
Perceptions of Foundational Knowledge by Computer
Science Students

Katharine Blanchard
Dept. of Communication
1280 Main Street West

Hamilton, ON. L8S4K1, Canada
McMaster University

blanchkg@mcmaster.ca

Michael Soltys
Dept. of Computing & Software

1280 Main Street West
Hamilton, ON. L8S4K1, Canada

McMaster University
soltys@mcmaster.ca

ABSTRACT
In this paper we are concerned with computer science stu-
dents’ perceptions of foundational knowledge, understood
as the mathematical underpinnings of the field. We review
recent literature on the subject, propose an approach for
teaching foundational knowledge, and finally present a case
study where we analyze the merits of our approach. We
make our observations based on experience and on a stu-
dent survey.

Categories and Subject Descriptors
K.3.2 [Computers and Eduction]: Curriculum

General Terms
Theory, Human Factors

Keywords
Curriculum, Foundations, Theory, Perceptions, Satisfaction

1. INTRODUCTION
Computer Science (CS) and Software Engineering (SE)

have become fashionable fields of study due to the high em-
ployability of its graduates. From software development to
system administration, the job market has an insatiable ap-
petite for highly skilled individuals. However, after the dot-
com bubble burst in 2001, CS enrollments decreased dramat-
ically. Enrollment has since recovered, and while it never
rose to the levels of its halcyon days1, yet it is now encour-
agingly high.

1The U.S. Computer Research Association has tracked en-
rollments and graduation rates of CS students for the last
40 years. The Association’s April 2011 report shows that
during the dot-com era enrollments swelled—in 2001 the av-
erage enrollment in CS departments in U.S. universities was
398, and in 2007 it dropped by half. Since then enrollments
average 253 students per department (see [21]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WCCCE’12, May 4–5, 2012, Vancouver, British Columbia, Canada.
Copyright 2012 ACM 978-1-4503-1407-7/12/05 ...$10.00.

Expectations and perceptions of the field evolve with new
trends in technology; as computer technology changes, per-
ceptions of CS change as well. For example, the “Millenni-
als,” also called the “Nintendo generation” in [9], have grown
up with Xbox and Nintendo, and often envision CS as a
branch of the entertainment industry. The student gener-
ation arising from the “Millennials” is perceived to be less
satisfied with the curriculum. These students are seen as
surprised with the amount of mathematics and theory that
is involved in the field. “Students often have misconceptions
about the field of computer science. . . other students like
to play video games, so their dreams are to become video
game programmers. They often do not realize the math-
ematics and computer skills necessary for such endeavors”
[3].

We propose that the view of CS and SE students as“math-
averse” is not accurate. While many of the “Millennials” are
surprised by the amount of foundational/mathematical ma-
terial, a solid majority of the students are satisfied with
the curriculum. The enrollment in CS, despite the ups and
downs in the last decade, remains high. While many stu-
dents express dissatisfaction with foundational material (en-
rollment being high, there will be a portion of dissatisfied
students), our survey shows that more than three-quarters of
the students are quite satisfied with the math content, and
realize its importance. In turn, it is crucial for educators
to realize two things: the intrinsic importance of theoretical
material, and the fact that it is well received when properly
taught and motivated.

Administrators and educators alike, when faced with dis-
satisfaction in the student ranks, may be too quick to diag-
nose the problem as“too much mathematics too early.” But,
for example, a 2006 study from the University of Washing-
ton CS and Engineering Department ([19]) reports that after
the dot-com collapse of 2001 they were facing “a collective
struggle” to figure out what to teach and how to teach it.
They named several common problems that prompted the
study: (i) a decline in student satisfaction and enrollment in
introductory courses; (ii) a decline in applicants to the ma-
jor, especially women; (iii) inconsistency in teaching among
instructors; (iv) a lack of basic programming skills reported
by upper-division instructors.

The study found that after redesigning their introductory
CS courses to emphasize problem solving, procedural decom-
position and mastery of basic skills, enrollments increased,
satisfaction rates rose, and more women entered the pro-
gram. While the curriculum changes were only in place for

four semesters at the time of the study, early results showed
a marked increase in satisfaction and higher evaluations2.
In fact, rather than reduce mathematics to increase student
satisfaction, they increased the mathematical content; the
two seemed directly rather than inversely proportional.

These findings corroborate the experience of the second
author: a “problem solving” approach, where foundational
knowledge is transmitted with examples of applications to
current technology, yields high levels of satisfaction among
students. It is important to stress to students that, if they
learn fundamentals, they will have the skills to master the
latest technology on their own. The latest technology should
be presented, but as an example rather than to build the
curriculum around it, as it will change by the time the stu-
dents graduate. However, a solid foundational background
will give them the ability to learn new technologies as they
arise, for the rest of their careers.

A longitudinal study performed by the Rochester Insti-
tute of Technology ([11]) surveyed undergraduate students
of CS over a three-year period. The study examined stu-
dents’ needs based on several measures including their pre-
vious computer background, knowledge of programming lan-
guages, what attracted them to a degree in CS, demography
and finally personal learning style. The research found that
students often had a different idea of what CS studies en-
tailed prior to entering the program and this—among other
factors—led to a high attrition rate in the program. No
student enters a program as a tabula rasa, and to a certain
extent universities have no control over incoming students’
preconceptions. On the other hand, it is important to ad-
vertise programs honestly, so that students know what to
expect, but also so that students who enroll for “mercenary
reasons”—without a penchant for the field—have a chance
to re-examine their decision.

There are many studies that cover the issues discussed in
this introduction. For a different context see [22], a 2007
study conducted at the University of Edinburgh Business
School. The purpose of the study was to investigate the ed-
ucators’ perceptions as to the primary purpose of undergrad-
uate degrees: “theory or practice?” Other relevant studies
are given in [10], [14] and [18]. An interesting article about
the “cool factor” of computer science, especially in light of
the 2010 movie about Facebook, “The Social Network,” can
be found in [15]. Finally, the issues discussed in this paper
have been the subject of intense debate since a long time;
see for example [7].

2. FOUNDATIONAL MATERIAL AND SAT-
ISFACTION STUDY

This paper is concerned with the teaching of foundational
knowledge to computer scientists and software engineers,
and especially with the perceptions that these students form
of foundations. As was written in [17]3:

Every Engineer must understand the properties
of the materials that they use. Whether it be
concrete, steel, or electronic components, the ma-
terials available are limited in their capabilities
and an Engineer cannot be sure that a prod-
uct is “fit for use” unless those limitations are

2In a personal communication, the author expects to
work on a follow-up, but the statistics can be seen at
http://www.cs.washington.edu/homes/reges/stats.pdf
3The longer version of this appeared in [16].

known and have been taken into consideration.
The properties of physical products can be di-
vided into two classes: (1) technological prop-
erties, such as rigidity, which apply to specific
products and will change with new developments,
(2) fundamental properties, such as Maxwell’s
laws or Newton’s laws, which will not change
with improved technology.

There is no doubt that a solid grounding in mathematics,
especially discrete mathematics, or what is known as the
“theoretical foundations of computer science” is necessary in
any curriculum. Much has been written on this need, and
on the methodology to teach the mathematical foundations
of computation; an interesting perspective on imbuing com-
puter science with mathematics can be found in [20].

However, comparatively little has been written on the sub-
ject of “student satisfaction,” which, as we understand it in
this paper, is not a way to “sell” a mathematically biased
curriculum to our undergraduates, but rather a pedagog-
ical savoir faire of transmitting to the students the value
of foundations knowledge. How can we communicate to
the “Nintendo Generation” the importance of propositional
logic, partial orders or Turing machines?

If we are to focus on student satisfaction as in regard to
their perception of the mixture of theory and practice we
must examine the possible scenarios: whether the students,
by and large, are satisfied with the foundational knowledge
that they receive (in terms of both perceived relevance and
amount), and whether a particular curriculum serves the
right mix of foundations and practical examples, or does
not. We have the four possible scenarios:

right mix not right mix

satisfied 1 2
not satisfied 3 4

1 and 4 are the“to be expected”cases. The cognitive disso-
nance is in cases 2 and 3. Lets consider case 3 first: suppose
that the curriculum carries the right amount of theory and
practice, but that the students are not satisfied. This is the
case that interests us the most, as it is often seen as the most
common situation. The reasons can be any combination of
the following four.

(i) “Legacy prejudice.” There is a certain undergraduate
culture that disparages theoretical material. Previous year
students repeat the mantra of “useless material” about a
certain subject, and an attitude among current students is
formed. It is difficult to break through it; an instructor
might start a class with typical examples of the importance
of the“propositional satisfiability”problem, but it is difficult
to change a culture of perception with a speech.

(ii) The instructors have not provided the right justifica-
tion; the right focus, or the right examples. In short, they
have not made a case for the importance of the theoretical
material that is being presented.

(iii) The nature of education is to bring students out of
“ignorance” into “enlightenment.” The students are not sat-
isfied to the degree that they are ignorant, i.e., they do not
know what is good for them. This is an elitist view, held by
some but rejected by most instructors.

(iv) “Customer mentality,” that is, we—the university—
offer a service, and the students are our customers. As any
salesman we woo them with promises, and it is in the nature
of a customer to “whine” a little bit, that is, to place the

psychological burden of the inconvenience of having to work
intellectually on the professor, who after all is getting paid
“because I toil.” This is a cynical view, embraced by some
professors as a reaction against the view of universities as
just a business.

We believe that (i) and (ii) are the best ways to focus on
the problem. There is little, in the short term, that can be
done about (i), but theoretical knowledge can be justified
with excellent examples of relevance. For example, instead
of presenting the dynamic programming problem of finding
the shortest path in a graph, focus on computing routing
tables in a TCP/IP protocol; the mathematical content is
the same, but the practical focus makes all the difference to
the students. This is discussed more in depth in the next
section.

The second case is (ii) where the mix is not right; there are
two possibilities here: too much theory, or too much prac-
tice. Universities by their very nature will likely sway in
the direction of too much theory. Academics are interested
in the way things are, in generalizations and theories; ele-
gant thinking is more important than the necessarily more
“messy”world of industrial applications. Most curricula offer
a good mixture of both; however, as [19] points out, a com-
mon problem is the inconsistency of what is being taught
(inconsistency between different instructors, and inconsis-
tency between instructors and the curriculum).

In 2010/11 [4] conducted a satisfaction study of 100 stu-
dents in the department of Computing & Software at Mc-
Master University. These were second year students in a
software development course, and fourth year students in a
networks & security course, both courses taught by the sec-
ond author. A correlation was found in that the highest level
of satisfaction came from the students who intended to go
to graduate school (60% “very satisfied” and 20% “satisfied”)
while the lowest level of satisfaction came from students
whose intended career path was to become a consultant; see
figure 1. Interestingly enough, the study [22] mentioned in
the introduction had almost identical findings. These find-
ings were to be expected as the curriculum for both courses
had a lot of foundational/theoretical material, and it is nat-
ural that students with a penchant for theory would form a
desire to stay longer in academia.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

sm
all

 sta
rtu

p

lar
ge

 co
rpo

rat
ion

sys
tem

 ad
m

co
nsu

lta
nt

gra
du

ate
 sc

ho
ol

do
n't

 kn
ow

Not Satisfied at all

Somewhat Satisfied

Very Satisfied

Figure 1: Correlation between program satisfaction
and intended career path (100 students).

In terms of the perceptions of the program that the stu-
dents formed prior to entering university, [4] found that the
students who felt that they had the most accurate mental
picture of what to expect, were students who visited the
campus and spoke with a person (a professor, a counselor, a

student). The students who felt that they had the least ac-
curate picture of the program were those who formed their
opinion of CS and/or Software Engineering based on the
material on the departmental web site.

Of course, it would also be interesting to measure the ac-
curacy of students’ perception regarding their future career
path. That is, do students understand what graduate school
is about, what is involved in working for a large corporation
such as Google, or what it means to be a system administra-
tor? Fourth year students are more mature, and one hopes
that their expectations are realistic, but there is no data
to support this. We have some anecdotal evidence (mostly
emails from former students) that they were surprised by
the usefulness of foundational knowledge once they entered
the work place, but unfortunately, it is not enough to form
a robust opinion. Nevertheless, [4] also measured the per-
ceptions of the theoretical content by asking students “how
relevant they felt foundations were to their intended pro-
fessions.” Surprisingly, 53% agreed that mathematics was
relevant to their intended profession, while 21% disagreed.
62% stated that the foundational knowledge they learned
was “very valuable,” while 33% believed that it was “par-
tially valuable.” These are encouraging findings.

3. A CASE STUDY
The results in the previous section were gathered while

the second author was teaching two courses in the second
term of 2010/11: software design and networks & security.
In this section we offer some practical observations based on
the experience with these two courses, supported by a survey
administered to this group of students, and the resulting
conclusions in [4].

The teaching philosophy that we propose is that of a
“problem solving” approach, where foundational knowledge
is transmitted with examples of applications to current tech-
nology. We believe that this is the best way to teach theoret-
ical material, as it yields high levels of satisfaction among
students, and prepares them for the job market by giving
them the tools to master new material and technologies on
their own. We list below the assignments given in these
courses, which were designed to reflect this philosophy.

Mentioning current events related to the lecture material
is also a fantastic stab at the elusive “relevance.” For exam-
ple, the movie The social network (2010), i.e., the “Facebook
movie,” came out last year and it prompted a discussion of
social networks, search engines, and gave an opportunity to
“defend” graphs, and incidence matrices and eigenvalues, as
so much of the technology is based on that concept (see, for
example, “The Anatomy of a Large-Scale Hypertextual Web
Search Engine” by Sergey Brin and Lawrence Page—the
founders of Google [5]). Another event was the IBM’s “Wat-
son” that pitted man versus machine on Jeopardy. These
vast projects can be used to illustrate almost every aspect
of the theoretical underpinnings of CS: for example, social
networks are best explained with graph theory4, and IBM’s
“Watson” can be used to motivate parsing (and many other
topics)5. It is very surprising that graph theory appears to

4See, for example, [13], pages 75–76.
5IBM has produced fantastic video segments explaining the
science behind “Watson”:
http://www-03.ibm.com/innovation/us/watson/what-
is-watson/science-behind-an-answer.html

be a lost art, at a time when it is the conceptual framework
for Internet data mining and social networks.

In the following case study, each of the two courses were
built around six tests and three programming assignments.
The tests were given every two weeks, and they consisted
of three questions: one question about concepts and defi-
nitions, and two questions where the students had to solve
problems (which were simple, as they had only 50 minutes
for each test). The frequency of the tests prompted the
students to stay on top of the material, and gave them am-
ple practice in solving problems, as they were given practice
problems first—and they were motivated to do them in order
to prepare for the tests.

The assignments had a strong algorithmic flavor, and con-
sisted of three main components: (i) a simple user interface,
(ii) an algorithm, and (iii) displaying an output. We used
Python 2.6. In the past we selected one of C, C++, Java
and Perl as the programming language, but this year we de-
cided to use Python. The advantage of Python is that it is
an easy language to learn, and there is a magnificent book,
with an early version (1.1.22) available for free as a PDF file
on the web [8]. The disadvantage of Python, as we found
out, was that it is very much version dependent (2.6 ver-
sus 2.7 or 3.0) and platform depended (a Windows machine
versus Mac OS X or Linux). The same program would not
run with different versions or platforms. This resulted in a
lot of headaches for the teaching assistants and for students
who would submit a version confident that their program
runs, and get back a grade of zero. The resulting regrading
was a massive drain on the time resources of the teaching
assistants (3 assistants per course).

There were three technical issues that in hindsight should
have been addressed proactively. It was assumed that the
students would install and learn Python on their own, choose
a text editor to work with, and also learn subversion for
team-work and submitting assignments (we use subversion
on a UNIX server for submitting assignments)6. A good
technical tutorial given by the teaching assistants at the be-
ginning of the course would have saved everyone a lot of
time. Even fourth year students find these technical aspects
of the course challenging. We also propose to set up an on-
line discussion group for the students, where they can help
each other with technical difficulties. The teaching assis-
tants could monitor the discussions.

Many of the issues discussed in the above paragraph came
to the surface once the course was over, and the instructor
and the teaching assistants engaged in a SWOT (“Strengths,
Weaknesses, Opportunities, Threats”) analysis at the end of
the course. This year was the first time that the instructor
engaged in such an exercise, and it cannot be overstated how
fruitful it was.

Assignment 1. Write a Python program that takes as
input the description of a grid, and outputs its minimum
cost spanning tree. An n-grid is a graph consisting of n2

nodes, organized as a square array of n × n points. Every
node may be connected to at most the nodes directly above
and below (if they exist), and to the two nodes immediately
to the left and right (if they exist). An example of a 4-grid
is given in figure 2.

6Students who worked with Windows OS on their
home computers were especially confused when in-
stalling SVN; an excellent resource for them is
http://tortoisesvn.tigris.org .

◦ 4 ◦

3

◦

15

◦

1

◦ 1

9

◦ 1

2

◦

1

◦

23

◦ 5

7

◦

6

◦

3

◦

3

◦
4

◦ ◦
7

◦

Figure 2: An example of a 4-grid.

The students were supposed to write a program which,
when given as input a list of triples describing a graph (a
triple consisted of two nodes and the value of the edge be-
tween them), the program had to check whether the list
describes a proper grid, and compute a minimum cost span-
ning tree, and display (as a text-based graphic) this tree.
The students struggled with parsing the input; the input is
a text based list of triples, with many possible interpreta-
tions: how do we interpret spaces, unbalanced parenthesis,
the same triple repeated, or given once as (i, j, n) and then
a second time as (j, i, n) (the grid was assumed to be undi-
rected). Thus, establishing whether a given set of triples is
a valid grid was more difficult than implementing Kruskal’s
algorithm. We found that in general parsing the input tends
to be the most challenging part of the assignment.

Assignment 2. Write a program that implements a dy-
namic routing policy mechanism; a routing table manage-
ment daemon, which maintains a link-state database ac-
cording to the OSPF (Open Shortest Path First—described
in RFC 2328) interior routing protocol. The program had
a user interface which added routers and networks, deleted
them, as well as created connections. It also had a command
for displaying the routing table, and another command for
computing a tree of shortest paths for a given node x. One
group was asked to implement Dijkstra’s greedy algorithm
for shortest path, and the other group the Bellman-Ford
“dynamic programming” algorithm. Part of the assignment
was to research RFC (Request for Comment) documenta-
tion on the web, explaining the implementation of such a
daemon. This assignment is a great way for introducing
“shortest-path” algorithms in a way that is very relevant to
the students: via Internet protocols.

Assignment 3. Write a Python program that imple-
ments DES, the “Data Encryption Standard,” following the
description of DES in section 3.3 of [12]. Part of the chal-
lenge was to find a good source of “S-boxes” on the web—
they were given in the textbook, but transcribing such a
large amount of data would surely result in typos. The other
challenge was to come up with a testing mechanism; how did
the students know that their code was working correctly?
The program was command driven and was supposed to
take a 64-bit string as input (the plaintext) as well as a 54-
bit string (the key), and output the corresponding 64-bit
output (the DES ciphertext).

It was valuable to hear the students’ observations regard-
ing team-work on a large programming project. It seems
that the biggest challenge in the end was not technical; it

was not conceptual either. While there is no data to support
this observation, it seems that the greatest source of diffi-
culty for the students was task management. Many teams
found themselves writing the project the night before it was
due, dismissing years of drilling on the proper software de-
sign cycle: design, prototyping, testing, etc. Work manage-
ment is a difficult issue for them, and many are going into
the industry with poor work habits. It has been a goal of the
second author to develop material for a sequence of two or
three lectures where time management issues are discussed.
There are two sources that can be given to the enterprising
students, but a synthesis of them could also be given to the
entire class at the beginning of the year. The material could
be prepared based on [6] and [1].

Finally, many students perceive CS to be a lonely field,
where workers toil on code in isolation; this is not true.
Most IT specialists work in teams, where communication
skills are essential. Emphasizing the aspect of team-work
and community in CS can be a way of retaining students. An
excellent source for students to read about the community
aspects of CS, especially in light of the tremendous success
of the “Open Software” movement, can be found in [2].

4. CONCLUSION
Neither faculty nor administrators should be afraid of a

healthy dose of theoretical material in undergraduate CS
courses. A “problem solving” approach, where the math-
ematical underpinning of computer science are mixed with
relevant examples results in a high student satisfaction. This
is confirmed by studies such as [19], and in the case of Mc-
Master University by [4] and the experience of the second
author. Just as in the humanities students respond well to
the “Great Books” programs, so in CS students respond very
well to learning timeless principles, and seeing how they arise
in practice. We also suggest that foundational knowledge be
taught as early as possible, so that students may have the
opportunity to observe how it arises in different domains of
the field of CS and SE, and profit from their insight.

5. ACKNOWLEDGMENTS
We are grateful to Dave Scholz for his comments, feedback

and guidance on [4]. We are also grateful to the students who
participated in the study.

6. REFERENCES
[1] D. Allen. Getting Things Done: The Art of Stress-Free

Productivity. Penguin, 2002.

[2] J. Bacon. The art of community. O’Reilly, 2009.

[3] T. Beaubouef and J. Mason. Why the high attrition
rate for computer science students: Some thoughts and
observations. The SIGCSE Bulletin, 37(2), June 2005.

[4] K. Blanchard. Undergraduate computer science
students: measuring perception, marketing and
satisfaction. A case study undertaken for a course in
“public relations research” (MCM 712), at the
DeGroote School of Business, McMaster University.

[5] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proceedings of the
seventh international conference on World Wide Web
7, WWW7, pages 107–117, Amsterdam, The
Netherlands, The Netherlands, 1998. Elsevier Science
Publishers B. V.

[6] S. R. Covey. The 7 Habits of Highly Effective People.
Free Press, revised edition, 2004.

[7] P. J. Denning. A debate on teaching computing
science. Commun. ACM, 32:1397–1414, December
1989.

[8] A. Downey. Think Python: How to Think Like a
Computer Scientist. Green Tea Press, 2008.

[9] M. Guzdial and E. Soloway. Teaching the nintendo
generation to program. Communications of the ACM,
45(4), April 2002.

[10] D. Hagan and S. Markham. Does it help to have some
programming experience before beginning a computing
degree program? In ITiCSE, pages 25–28, 2000.

[11] T. Howles. Preliminary results of a longitudinal study
of computer science student trends, behaviors and
preferences. J. Comput. Small Coll., 22:18–27, June
2007.

[12] C. Kaufman, R. Perlman, and M. Speciner. Network
Security: Private Communication in a Public World.
Prentice Hall, 2 edition, 2002.

[13] J. Kleinberg and É. Tardos. Algorithm Design.
Pearson Education, 2006.

[14] C. Lewis. Attitudes and beliefs about computer
science among students and faculty. SIGCSE Bull.,
39:37–41, June 2007.

[15] C. C. Miller. Computer studies made cool, on film and
now on campus. New York Times, June 2011.

[16] D. L. Parnas and M. Soltys. Basic science for software
developers. SQRL 7, McMaster University, October
2002.

[17] D. L. Parnas and M. Soltys. Basic science for software
developers. In Formal Methods 2006, Educational
Workshop, 2006.

[18] R. Rashid. Image crisis: Inspiring a new generation of
computer scientists. Commun. ACM, 51:33–34, July
2008.

[19] S. Reges. Back to basics in CS1 and CS2. SIGCSE
Bull., 38:293–297, March 2006.

[20] E. Sekerinski. Teaching the unifying mathematics of
software design. In R. Brouwer, D. Cukierman, and
G. Tsiknis, editors, WCCCE ’09: Proceedings of the
14th Western Canadian Conference on Computing
Education, pages 109–115, Burnaby, British Columbia,
Canada, May 2009. ACM.

[21] P. Thibodeau. Computer science enrollments rebound,
up 10% last fall. COMPUTERWORLD, April 2011.

[22] A. Tregear, S. Dobson, M. Brennan, and S. Kuznesof.
Critically divided? How marketing educators perceive
undergraduate programmes in the UK. European
Journal of Marketing, 44(1):66–86, 2010.

