
Boolean Programs and Quantified
Propositional Proof Systems

Stephen Cook and Michael Soltys

July 29, 1999

Abstract

We introduce the notion of Boolean programs, which provide more
concise descriptions of Boolean functions than Boolean circuits. We
characterize nonuniform PSPACE in terms of polynomial size families
of Boolean programs. We then show how to use Boolean programs to
witness quantifiers in the subsystems G1 and G∗

1 of the proof system
G for the quantified propositional calculus.

1 Introduction

A Boolean circuit can be explained as a straight line program in which each
line defines a new Boolean variable in terms of input variables and previ-
ously defined variables. In this paper we introduce an extension of this idea:
A Boolean program is a straight line program in which each line defines a
Boolean function in terms of previously defined Boolean functions. Just as
the evaluation problem for Boolean circuits is complete for polynomial time,
the evaluation problem for Boolean programs is complete for polynomial
space.

In Section 3 we show how a family of Boolean programs provides a nat-
ural way of describing the language accepted by a polynomial space Turing
machine. Since the validity problem for quantified Boolean formulas is com-
plete for PSPACE, Boolean programs can be used to witness the existential
quantifiers in a valid quantified Boolean formula. In Sections 4 and 5 we be-
gin the study of how this idea can be used to shed light on the computational
power of proof systems involving quantified Boolean formulas.

1

2 Boolean Programs

A Boolean program P is specified by a finite sequence {f1, . . . , fm} of function
symbols, where each symbol fi has an associated arity ki, and an associated
defining equation

fi(p̄i) := Ai

where p̄i is a list p1, ..., pki
of variables and Ai is a formula (see below) all of

whose variables are among p̄i and all of whose function symbols are among
f1, ..., fi−1.

The formulas of P are defined as follows:

i. 0, 1, and any propositional variable p.

ii. If f is a k-ary function symbol in P and B1, ..., Bk are formulas, then
f(B1, ..., Bk) is a formula.

iii. If A and B are formulas, then (A∧B), (A∨B), and ¬A are formulas.

We give the obvious semantics to Boolean programs. We identify 0 with
false and 1 with true. Each function symbol fi in P is interpreted as a Boolean
function (also denoted fi) according to its defining equation fi(p̄i) := Ai,
where fi : {0, 1}ki −→ {0, 1}. We say that P computes each such function fi.

Example 1 The following is a Boolean program computing the parity of n
variables using dlg(lg n)e function definitions, the longest of size O(n). We
assume that n = 22m

for some integer m, so that dlg(lg n)e = lg(lg n) = m.
This is not an unreasonable assumption since we can always pad the input
with zeroes to put it in this form. Note that the original function has only
two variables.

f0(p1, p2) := (¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)

f1(p1, p2, p3, p4) := f0(f0(p1, p2), f0(p3, p4))

f2(p1, . . . , p16) :=

f1(f1(p1, . . . , p4), f1(p5, . . . , p8), f1(p9, . . . , p12), f1(p13, . . . , p16))

...

fn(p1, . . . , p22n) :=

fn−1(fn−1(p1, . . . , p22n−1), . . . , fn−1(p(22n−22n−1
+1), . . . , p22n))

2

We are interested in the complexity of the following problem: Given a
Boolean program P computing a k-ary function f and given an argument
ā ∈ {0, 1}k, evaluate f(ā).

For example, we can evaluate f1(0, 1, 0, 0) from the parity program above
as follows:

f1(0, 1, 0, 0) = f0(f0(0, 1), f0(0, 0))

= f0(1, 0)

= 1

The size |P | of a Boolean program P = {f1, ..., fm} is the total number
of symbols in the sequence of function definitions f1(p̄1) := A1, ..., fm(p̄m) :=
Am.

Theorem 1 The following problem can be solved by a multitape Turing
machine in space O(|P |): Given a Boolean program P computing a function
f , and given an argument ā for f , find the value f(ā).

Proof of Theorem 1. Suppose P has function definitions

f1(p̄1) := A1, ..., fm(p̄m) := Am

We describe a recursive procedure for evaluating fi(b̄) given i and the ar-
gument b̄, which proceeds by evaluating the leftmost innermost unevalu-
ated subterm of Ai. In the general case, certain subterms of Ai will have
been evaluated. Let A′

i be the simplification of Ai resulting by replacing
each subterm of Ai by its value, whenever the value is known. (We assume
that all the connectives ∧,∨,¬ are evaluated whenever their arguments are
known.) Let fj(c̄) be the leftmost innermost unevaluated subterm of A′

i,
where c̄ ∈ {0, 1}kj . Then call the procedure recursively to evaluate fj(c̄).
Note that j < i.

Observe that the depth of the recursion is at most m, and at each point
in the computation each activation record on the stack corresponds to an
evaluation of fi(b̄), where all the indices i are distinct. Further, note that the
number of bits of space required for each such record, say to evaluate fi(b̄), is
bounded by a constant times the number of symbols in the original definition
fi(p̄i) := Ai. This is true, even taking into account that the number of bits
needed to express one symbol fj or pj could be log m. The reason is that the
original definition fi(p̄i) := Ai is available on the (read-only) input tape, and
need not be repeated at each level. Thus the total number of bits of working
space needed to evaluate fm(ā) is O(|P |). 2

3

3 Uniform and Non-uniform PSPACE

Recall that a language L ⊆ {0, 1}∗ is in PSPACE iff some multitape Turing
machine decides L using space at most p(n), for some polynomial p. The
corresponding nonuniform class is PSPACE/poly. We say that a language L
is in PSPACE/poly iff there exists an advice function A(n) and a polynomial
space Turing Machine M such that x ∈ L iff M(x, A(|x|)) = “yes”, where M
has two read-only input tapes, one containing x and the other containing the
advice A(|x|). We say that a family P1, P2, ... of Boolean programs computes
a language L if Pn computes the characteristic function of L∩{0, 1}n, for all
n. The family is polynomial size if |Pn| ≤ p(n) for some polynomial p.

The following result is the analog for space of the standard characteriza-
tion of nonuniform polytime: A language L is in P/poly iff L can be computed
by some polynomial size family of Boolean circuits (see [3, note 11.5.24]).

Theorem 2 A language L is in PSPACE/poly iff L is computed by some
polynomial size family of Boolean programs.

Proof of Theorem 2. ⇐= Let A(n) be the encoding of the Boolean program
that computes f(x1, . . . , xn). Design M with advice A(n) as follows: on
input x ∈ {0, 1}n, M evaluates f(x1, . . . , xn). By Theorem 1, this can be
done in PSPACE.
=⇒ Suppose L ∈ PSPACE/poly. Then there exists an advice function A(n)
and a polynomial space TM M such that x ∈ L iff M(x, A(|x|)) = “yes”. For
each n and each input x of length n, each configuration in the computation
of M with input (x, A(n)) can be coded in a standard way by a bit string
p̄ = p1, ..., pr, where r = nk + k, for some k. We define the Boolean program

Pn = {ḡ0, ḡ1, ..., ḡr, Init, Out, f}

where:

ḡ0(p̄) is the successor configuration to p̄

gi+1(p̄) = ḡi(ḡi(p̄)) 0 ≤ i < r

Init(x) = p̄ is the initial configuration for input x

Out(p̄) = 1 iff p̄ codes an accepting configuration

f(x) = Out(ḡr(Init(x)))

4

Notice that ḡi(p̄) is the configuration 2i steps after configuration p̄, and 2r is
an upper bound on the total number of steps in the computation, since no
configuration can repeat. Thus f(x) = 1 iff M accepts x with advice A(n).
2

We say that a family P1, P2, ... of Boolean programs is uniform if some
Turing machine can, given n, output a code for Pn in time polynomial in n.
The following result is proved by a slight modification of the above proof,
and holds true for a variety of definitions of uniform.

Theorem 3 A language L is in PSPACE iff L is computed by some uniform
polynomial size family of Boolean programs.

The Boolean program value problem is: Given a Boolean program P com-
puting a function f , and given an assignment ā to the arguments of f , de-
termine whether f(ā) = 1. The following result follows easily from Theorem
1 and the proof of Theorem 2.

Theorem 4 The Boolean program value problem is log-space complete for
PSPACE.

We close this section with one other characterization of the class nonuni-
form PSPACE. It is well known [3, p. 456] that the set of valid quantified
Boolean formulas is complete for PSPACE. It is not hard to modify the proof
of this well known fact to prove the following:

Theorem 5 L ∈ PSPACE/poly iff there exists a polynomial size family of
quantified Boolean formulas {α1(x1), α2(x1, x2), α3(x1, x2, x3), . . .} such that
x ∈ L ∩ {0, 1}n iff αn(x) is valid.

4 Witnessing G1 Proofs

In this section we consider G1, a restricted version of the quantified proposi-
tional proof system G (see [2, p. 57] for a detailed definition) and construc-
tively show how to witness the existential quantifiers with Boolean programs
of size polynomial in the size of the proof. For our purposes it suffices to
know that G is based on the propositional part of Gentzen’s system LK (for
∧,∨,¬,0,1), with rules to introduce ∧,∨,¬ and the propositional quantifiers
∃p, ∀p. The system G1 is G restricted to Σq

1 formulas; that is formulas equiv-
alent to existential formulas. Here we consider a slight restriction of G1 in

5

which formulas must be strict Σq
1; that is formulas beginning with a block

of existential quantifiers followed by a quantifier-free formula. Our result
readily generalizes to G1 itself.

Our purpose is to give a poly-time procedure α which does the following:
given as input a G1 proof π of a sequent S of the form

. . . , Ai(p̄), . . . ,∃x̄jBj(p̄, x̄j), . . . → . . . , Cs(p̄), . . . ,∃ȳtDt(p̄, ȳt), . . . (1)

where the A’s, B’s C’s, and D’s are quantifier-free formulas and p̄ is a list of
all free variables, the procedure outputs a sequent

. . . , Ai(p̄), . . . , Bj(p̄, q̄j), . . . → . . . , Cs(p̄), . . . , Dt(p̄, f̄t(p̄, q̄)), . . . (2)

together with a Boolean program P that computes the functions f̄ such that
(2) is a valid sequent (under the given semantics of P). Here the function
list f̄ has distinct function symbols for distinct formulas Dt.

The argument list q̄ of each function symbol includes places for all exis-
tentially quantified variables on the left side of (1) (with distinct variables
for distinct formulas Bj).

It follows from results presented in [2] that the problem of transforming a
G1 proof π and values for the variables into witnesses for the quantifiers has
the complexity of Papadimitriou’s NP search class PLS (Polynomial Local
Search). Thus apparently the full power of Boolean programs is not needed,
and it would be interesting to find a natural restriction that does the job.

The procedure α converts each sequent (1) in the proof π in turn to
the form (2), building a Boolean program P as it goes, where P computes
all function symbols in all sequents that have been converted so far. The
axioms for G1 are the quantifier-free sequents p → p, 0 →, → 1 (where p
is a variable) and are unchanged in the conversion. The other sequents in
π follow from earlier sequents by rules of LK and they are converted in a
manner depending on the rule. Here we explain the conversion for the more
interesting cases.

In what follows we do not mention the free variables p̄ for reasons of
clarity (but they are there!).

contraction left:
Γ A, A → ∆

Γ, A → ∆

Let A = ∃z̄B(z̄). Suppose the top has been converted to

Γ′(q̄), B(ū1), B(ū2) → ∆′(f̄(q̄, ū1, ū2))

6

Then the procedure converts the bottom to

Γ′(q̄), B(ū) → ∆′(f̄ ′(q̄, ū))

where we add the function definitions f̄ ′(q̄, ū) := f̄(q̄, ū, ū) to the Boolean
program P .

contraction right:
Γ → ∆, A,A

Γ → ∆, A

Let A = ∃z̄B(z̄) and suppose that the top has been converted to

Γ′(q̄) → ∆′, B(ḡ(q̄)), B(h̄(q̄))

The procedure converts the bottom to

Γ′(q̄) → ∆′, B(f̄(q̄))

where f̄ has function definitions

f̄(q̄) :=

{
ḡ(q̄) if B(ḡ(q̄))

h̄(q̄) otherwise

(This is easily changed to the format of a Boolean program.)

∧-intro right:
Γ → ∆, A Γ → ∆, B

Γ → ∆, A ∧B

Suppose the procedure has converted the top two sequents to

Γ′(q̄1) → ∆′(ḡ(q̄1)), A
′(s̄(q̄1)) and Γ′(q̄2) → ∆′(h̄(q̄2)), B

′(r̄(q̄2))

with a Boolean program P to compute the functions. Then the sequent

Γ′(q̄1) → ∆′(ḡ(q̄1)), ∆
′(h̄(q̄1)), A

′(s̄(q̄1)) ∧B′(r̄(q̄1))

is valid. Now proceed as in contraction right to combine the two versions
of ∆′.

cut rule:
Γ → ∆, A A, Γ → ∆

Γ → ∆

7

Suppose the top two sequents have been converted to

Γ′(q̄1) → ∆′(ḡ(q̄1)), A
′(r̄(q̄1)) and A′(q̄), Γ′(q̄2) → ∆′(h̄(q̄, q̄2))

with a Boolean program P . The idea is to substitute r̄(q̄1) for q̄ and substitute
q̄1 for q̄2 in the second sequent to match the two versions of A. Thus we
introduce the function definitions

h̄′(q̄1) := h̄(r̄(q̄1), q̄1)

so the sequent
Γ′(q̄1) → ∆′(ḡ(q̄1)), ∆

′(h̄′(q̄1))

is valid when P is augmented with h̄′. Now we proceed to combine the two
versions of ∆′ as in the case contraction right.

∃-intro right:
Γ → ∆, A(B)

Γ → ∆,∃xA(x)

Suppose the top has been converted to Γ′(q̄) → ∆′, (A′(B))(f̄(q̄)). Then the
procedure converts the bottom to

Γ′(q̄) → ∆′, (A′(g(q̄))(f̄(q̄))

where g has defining equation g(q̄) := B(f̄(q̄))

5 Witnessing G∗
1 Proofs

The system G∗
1 is identical to G1, except that proofs are required to be treelike

(i.e. each sequent in the proof can be used at most once as a hypothesis for a
later sequent). We show that the existential quantifiers in G∗

1 proofs can be
witnessed by functions defined using a restricted form of Boolean program.
These Restricted Boolean programs are like extension definitions in Extended
Frege Proofs [1, 2], and hence they correspond to Boolean circuits. Thus the
existential quantifiers in a G∗

1 proof can be witnessed in time polynomial in
the length of the proof.

We define a Restricted Boolean program to be the same as a Boolean
program, with the restriction that in each function definition fi(p̄i) := Ai,

8

each occurrence of a function symbol fj in Ai must be in the context fj(p̄j)
(i.e. the left side of the definition of fj).

Thus all functions in a Restricted Boolean program can be evaluated
at a given assignment to its variables by a single pass through the program
(which is certainly a poly-time algorithm). If each term fi(p̄i) in the program
is replaced by fi, and if each symbol := is replaced by the Boolean connective
↔, then the program becomes a sequence of extension definitions defining
values for the variables fi. The fi can also be thought of as gates in a Boolean
circuit.

We now describe a polytime procedure β which does the same thing as
the procedure α in the previous section, except the input proof π must be
a G∗

1 proof instead of a G1 proof, and the Boolean program P computing
the functions f̄ is a Restricted Boolean program. Our proof can be easily
modified to show that Extended Frege systems p-simulate G∗

1, thus providing
an alternative proof to the more interesting half of Lemma 4.6.3 in [2].

Our new procedure β is similar to procedure α, except in converting
each successive sequent S in the proof π, we will be free to modify (and
not just extend) the Restricted Boolean programs generated for the previous
conversions. This modification was not done in procedure α because the
programs might be needed to convert later sequents (and their duplication
could cause an exponential increase). However since the present proof π is
treelike, each Boolean program is needed only once in its original form.

We now explain for each case considered in the previous section how to
modify the argument to produce a Restricted Boolean program P .

contraction left:
The function definition f̄ ′(q̄, ū) := f̄(q̄, ū, ū) is not allowed in a Restricted

Boolean program. Instead we modify the Restricted Boolean program P
computing f̄(q̄, ū1, ū2) by identifying corresponding variables in the two lists
ū1, ū2 and renaming them to ū throughout P . The result is a Restricted
Boolean program computing f̄ ′(q̄, ū).

contraction right:
No modification is needed.

∧-intro right:
Simply modify the programs computing h̄(q̄2) and r̄(q̄2) by renaming q̄2

to q̄1, so that the programs compute h̄(q̄1) and r̄(q̄1)

9

cut rule:
We form a restricted program P computing h̄′(q̄1) by concatenating the

restricted program P1 computing r̄1(q̄1) with a modification P ′
2 of the re-

stricted program P2 computing h̄(q̄, q̄2). We may assume that the function
symbols in P1 and P2 are distinct, and that P2 has no variables other than q̄
and q̄2 (by deleting them from function terms and substituting 0 for them in
other terms). The modification consists of first, renaming q̄2 to q̄1 through-
out P2, second, replacing each variable qi in the list q̄ by the corresponding
term ri(q̄1) in the list r̄(q̄1), and finally, replacing each function term f(...) by
f ′(q̄1). Thus, semantically, f ′(q̄1) = f(...). In particular h̄′(q̄1) = h̄((r̄(q̄1), q̄1)
as required.

∃-intro right:
No modification is needed.

References

[1] Stephen Cook and Robert Reckhow. The relative efficiency of proposi-
tional proof systems. Journal of Symbolic Logic, 44(1), 1979.

[2] Jan Krajicek. Bounded Arithmetic, Propositional Logic, and Complexity
Theory. Cambridge, 1995.

[3] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[4] Alasdair Urquhart. The complexity of propositional proofs. Bulletin of
Symbolic Logic, 1(4):425–467, 1995.

University of Toronto
Department of Computer Science

10

