
1/8

Basic Science for Software Developers

David Lorge Parnas, P.Eng.
Michael Soltys

Department of Computing and Software
Faculty of Engineering

McMaster University, Hamilton, Ontario, Canada - L8S 4K1

1 Introduction

Every Engineer must understand the properties of the materials that they use. Whether it be
concrete, steel, or electronic components, the materials available are limited in their capabilities
and an Engineer cannot be sure that a product is “fit for use” unless those limitations are known
and have been taken into consideration. The properties of physical products can be divided into two
classes:

• technological properties, such as rigidity, which apply to specific products and will
change with new developments,

• fundamental properties, such as Maxwell’s laws or Newton’s laws. These properties will
not change with improved technology.

In many cases technological properties are expressed in terms of numerical parameters and the
parameter values appear in product descriptions. This makes these limitations concrete and
meaningful to pragmatic developers. It is the responsibility of engineering educators to make sure
that our students understand the technological properties, know how to express them, know how
to determine them for any specific product, and know how to take them into account when
designing or evaluating a product.

However, it is also the responsibility of engineering educators to make sure that our students
understand the fundamental limitations on the materials that they use. It is for this reason, that
accredited engineering programmes are required to include a specified amount of basic science.
Explaining the relevance of basic science to Engineers is a difficult job; Technological limitations
are used to compare products; in contrast, fundamental limitations are never mentioned in
comparisons because they apply to all competing products. As a result, the technological
limitations seem more real and students do not perceive fundamental limitations as relevant
because they do not expect to have to apply their understanding of those limitations. Nonetheless,
an understanding of basic science is essential to an Engineer. For example, an Engineer who
understands the principle of conservation of energy can often find quick and simple solutions to
problems that appear difficult to others.

For Software Engineers, the materials used for construction are computers and software. In this
area too, the limitations can also be divided into two classes:

• technological limitations, such as memory capacity, processor speed, word length, types
of bus connections, precision obtained by a specific program, availability of specific soft-
ware packages, etc.,

• fundamental limitations, such as limits on computability, complexity of problems, and the
inevitability of noise and other forms of error in data.

Computer Scientists have developed a variety of useful models that allow us to classify
problems and determine which problems can be solved by specific classes of computing devices.

2/8

The most limited class of machine is the finite state machine. Finite state machines can be
enhanced by adding a “last-in-first-out” memory known as a stack. Adding an infinitely extensible
tape that can move both forwards and backwards through the reader/writer makes the machine
more powerful (in an important sense) than any computer that can actually be built. Practising
software developers can use these models to determine how to approach a problem. For example,
there are many problems that can be solved completely with the simplest model, but others must
be restricted before they can be solved. Many people know these things in theory, but most do not
understand how to use the theory in practice.

Like the students in other engineering disciplines, software engineering students must be able
to understand and deal with the technological limitations. Even the youngest have seen rapid
improvements in technology and understand how to characterise what has changed. They see that
products differ in these properties and most of them easily understand the practical implications of
those differences.

It is not useful to spend a lot of time on the technological limitations of specific current
products. Much of what students learn about today’s products will be irrelevant before they
graduate. However, it is very important to teach the full meaning of technological parameters and
how to determine which products will be appropriate for a given application.

The fundamental laws that professional software developers should understand limit the
capabilities ofall products. Because these limitations do not distinguish products, they are not
mentioned in product descriptions and are rarely well understood by software practitioners.
Consequently they often seem irrelevant to students, some software educators, and most
experienced developers.

Nonetheless, the fundamental properties of computers are very important because they affect
what we can and cannot do. Sometimes, an understanding of these properties is necessary to find
the best solution to a problem. In most cases, those who understand computing fundamentals can
anticipate problems and adjust their goals so that they can get the real job done. Those who do not
understand these limitations, may waste their time attempting something impossible or, even
worse, produce a product with poorly understood or unclearly stated capabilities. Further, those
that understand the fundamental limitations are better equipped to clearly state the capabilities and
limitations of a product that they produce. Finally, an understanding of these limitations,and the
way that they are proven, often reveals practical solutions to practical problems. Consequently, this
“basic science” should be a required component of any accredited Software Engineering
programme.

In the next section, we will give a few illustrations to make these points clearer. In the final
section, we will sketch a course designed to introduce Software Engineering students to the basic
science that is specific to their discipline.

2 A few anecdotes

 2.1 What can be said with grammars

Many years ago, Robert Floyd encountered a graduate student who was trying to find a
complete context-free grammar for Algol-60, one that specified that all variables must be declared
before use. The student’s plan was to use the grammar as input to a compiler generator. Floyd’s
understanding of CS fundamentals allowed him to prove that no such grammar could exist. The
graduate student was saved months, perhaps years, of futile effort. With this information he

3/8

understood that he would have to find another way to express those restrictions as input to his
compiler generator. [1]

This anecdote makes it clear that it is very important to be able to decide whether or not a task
is impossible. Some people spend their lives trying to solve impossible problems.

 2.2 Arithmetic Decisions

A problem is decidable if we can come up with an algorithm to solve it. More precisely, given
any input, our algorithm must compute the correct output, and it must always halt.

For example, the Satisfiability problem [7,9] is decidable: given a boolean formula, we can
check if there is a truth value assignment to its variables that makes the formula true. The
Satisfiability problem can be solved with the following brute force algorithm: check systematically

all possible truth value assignments to the variables in the formula. For n variables, there are 2n

assignments, so we will either find one that satisfies it, or check them all and conclude that the
formula is unsatisfiable.

Note that to show that a problem is decidable, we must show that there exists an algorithm that
solves it and always halts. On the other hand, to show that a problem is undecideable, we must
show that there is no algorithm that solves it. Thus, showing undecidability involves showing that
any algorithm that we apply to our problem fails to provide correct answers (or any answer at all,
if it fails to halt) on some inputs (note that if it fails, it has to fail on infinitely many inputs, since
otherwise we could “patch it up” on those finitely many” bad” inputs).

The Halting Problem is the prototypical example of an undecideable problem. The truth of
statements about arithmetic is another such example [9].

Interestingly enough, if we restrict arithmetic to the usual statements, but without
multiplication (for example, statements like: a+b=b+a, or a+(b+c)=(a+b)+c), then this fragment
of arithmetic, called Presburger’s arithmetic, is decidable!

Sometimes, a small modification or restriction makes an otherwise impossible problem
tractable. For example, while it is true that some problems in number theory are undecideable [8],
those problems in a number theory with only “+” (Presburger's Arithmetic) are decidable. It is true
the computational complexity of the algorithm is very high, but in some cases, this is not an
insurmountable barrier. In other words, if it is not the most general case of a given problem that we
have to solve, negative results may not be applicable, but the practitioner must understand why.

 2.3 The meaning of computational complexity.

Computer Scientists have developed ways to classify the complexity of algorithms and to
classify problems in terms of the complexity-class of the best solution to those problems. This
allows them to determine whether or not an algorithm is a good as it can get (optimal). However,
strange as it may sound, sometimes an “optimal” algorithm is not the best choice for a practical
application.

In the 70’s Fred Brooks, working on visualisation tools for chemists, announced that he wanted
an optimal algorithm for a well defined problem. A very bright graduate student proposed such an
algorithm and submitted a short paper proving that it was optimal. Brooks insisted that the
algorithm be implemented and its performance compared with the performance of the method that
they had been using; the performance of the “optimal” algorithm was worse than the old one.
Computer Science complexity methods refer to asymptotic performance, that is performance for
very large problems. Algorithms that are not optimal may actually be faster than the “optimal” ones

4/8

for certain values of the key parameters. Since a developer may find an “optimal” algorithm in a
textbook, she must be aware of what “optimal” means and check to see that the performance is
actually better in practice than other algorithms. Moreover, a developer who knows the
asymptotically optimal algorithm can often modify it to produce an algorithm that will be fast for
the application at hand. Another such example is Linear Programming. A widely used algorithm
is the Simplex Method, known to be exponential in the worst case. However, the Simplex Method
ha superb performance in practice (in fact, it’s expected performance is provably polynomial). On
the other hand, the first “worst-case” analysis polynomial algorithm for Linear Programming,
known as the Ellipsoid Algorithm, appears to be impractically slow. [9]

Similarly, the fact that a problem is known to belong to a high complexity class (NP-complete),
does not mean that we cannot do anything with it. We may be able to solve it for small values of
the parameters using brute force, we may be able to use approximation algorithms, or we may be
able to restrict the problem to a special case for which we can use a less complex algorithm. For
example, while 3-colourability [7] is NP-hard, 2 colourability has a simple polytime algorithm, or
while 3-SAT is NP-hard, 2-SAT has a simple polytime algorithm.

Further, while general boolean expression in conjunctive normal form are hard to decide if they
are satisfiable, a large class of them, called Horn Formulas [9], have a simple polytime algorithm
for satisfiability (a fact that has been exploited by researchers in Artificial Intelligence). Here too,
an understanding of computational complexity, can lead a developer to a practical algorithm that
they might not otherwise find.

 2.4 The practicality of a “bad” solution to the “Knapsack Problem”

In the “Knapsack Problem” the input is a set of weights w1,w2,...,wd, and the capacity, C, of
the knapsack. We want to pack as much weight into the knapsack, without going over the capacity.

The most obvious approach, starting with the largest weights, does not work, because if we
have three weights w1=51,w2=50,w3=50, and C=100, and our strategy is to pack as much as
possible at each step, we would put 51 in, and we would have no more space left for w2 and w3.
The optimal solution is of course w2+w3=100.

The “Knapsack Problem” can be solved with Dynamic Programming, where we construct a
table with dimensions (d, C) (d= number of weights, C=capacity), and fill it out using simple
recursion. A classical worst-case running time analysis of the dynamic programming algorithm
shows that it requires exponential time. The reason is that the algorithm builds a dxC table, so if
C is given in binary, the size of the table in exponential in the size of the capacity (i.e., exponential
in the size of the input). Therefore, the dynamic programming solution to the Knapsack Problem
runs in exponential time in the size of the capacity of the knapsack, and hence it is asymptotically
infeasible.

In fact, the dynamic programming solution to the “Knapsack Problem” is ubiquitous in
Computer Science. In applications such as Compilers and Optimization problems, equivalent
problems arise frequently, and they are solved using dynamic programming. The method is
practical, even with many weights, for reasonable C.

Thus, even though “Knapsack Problem” is in a bad complexity class, and the dynamic
programming solution is exponential in the capacity (C), it is nevertheless a very good solution for
many situations.

5/8

One should not interpret this as meaning that the theoretical complexity is useless;au
contraire,it demonstrates why even practitioners who think that they are not interested in “theory”
should understand computational complexity when developing algorithms for difficult problems.

 2.5 Maximum size for a halting problem

Two software developers were asked to produce a tool to check for termination of programs in
a special purpose language used for building discrete event control systems. One refused the job
claiming that it was impossible because we cannot solve the halting problem. A second, who
understood the proof of the impossibility of the halting problem, realised that the language in
question was so limited that a check would be possible if a few restrictions were added to the
language. The resulting tool was very useful. Here again, an understanding of the nature of this
“very theoretical” result was helpful in developing a practical tool with precisely defined
limitations.

 2.6 Can we prove that loops terminate

Dr. Robert Baber, a software engineering educator who has long advocated more rigorous
software development [2, 3, 4, 5] was giving a seminar in which he stated that it was the
responsibility of programmers to determine whether or not loops they have written will terminate.
He was interrupted by a young faculty member who asserted that this was impossible, “the halting
problem says that we cannot do that”. In fact, the halting problem limits our ability to write a
program that will testall programs for termination, not about our ability to check a given program
for termination or the importance of writing programs in such a way that checking for termination
is possible and carried out rigorously. This incident shows that a superficial understanding of
computer science theory can lead people astray and cause them to be negligent.

Clearly, we must teach fundamentals in such a way that the student knows how to translate
theoretical results into practical knowledge. For example, when teaching about the general
undecidability of halting problems, one can accompany the proof with an assignment to determine
the conditions under which a particular machine or program is sure to terminate. Comparing the
general result with the specific example helps the student to understand the real meaning of the
general result.

 2.7 The implications of finite word length.

In 1969, some software developers became enthusiastic about a plan to store 6 bytes in a 4 byte
word. They proposed computing the product of 6 bytes and converting the result to a 4 byte
floating-point number. Sadly, none of the programmers in the organization understood the
impossibility of this scheme and they invested a lot of time discussing it. Luckily, an academic
visitor who did understand basic information theory, could convince them of its applicability by
providing a counter-example, i.e an example where the same output would be obtained for two
different inputs. It was quite possible that even extensive testing would not have revealed the error,
but it would cause “bugs” in practice.

 2.8 The limitations on push-down automata.

Recently one of us had occasion to talk to some people who were familiar with the standard
results about push-down automata, i.e. that the class of problems that they could solve was smaller
than that for Turing machines. He reminded them that in today’s market, one can buy an auxiliary
disk and attach it to a lap top or other personal computer. He asked if this changed the fundamental
properties of the machine (it does not). He then asked what would happen if we could buy an
auxiliary push-down stack and attach it as a separate device on a push-down automata that already

6/8

had one stack. All claimed that the result would still be a push-down automata, i.e. they did not
recognize that having a second (independently accessible) stack changed the fundamental
capabilities of the machine. The same group included many who did not realise that placing limits
on the depth and item size of the stack in a push-down automaton made it no more powerful than
any other finite state machine. This meant that they did not understand that there would be an upper
limit in the number of nested parenthesis in an expression that would be parsed by any realisable
push-down automaton, or that a twin-stack push-down automaton (with infinite stacks) was as
powerful as a Turing machine and more powerful than any realisable computer.

 2.9 The practical limitations of open questions.

There are number of problems in computability and complexity theory that remain open. Many
practitioners and students believe that these problems are of interest only to theoreticians. In fact,
they have very practical implications. Probably the most dramatic of these is the “P = NP” question
[6] for which a prize of $1,000,000 has been offered. This does not interest most students who
realize that they will not win the prize. However, the question has very important implications in
cryptography. Some very widely used encoding algorithms are only “safe” if the answer is that P

≠ NP. If it is not, it might be possible to find ways to crack codes quickly [6, 7].

3 A course in basic science for Software Engineers.

McMaster Universities CEAB accredited Software Engineering Programme includes a course
designed to teach its students both the parts of “theoretical computer science” that they ought to
know and how to use them. This section sketches the contents of that course. More complete
descriptions are available on the appropriate web pages. Deeper discussions can be found in [7, 8,
9].

1. Finite Automata (finite number of states, and no additional memory)
• deterministic finite automata (DFA)
• nondeterministic finite automata (NFA) (Given any state and an input, there may be more

than one choice for the next state.)
• nondeterministic finite automata with “epsilon” transitions (epsilon-NFA) (An epsilon

transition is a spontaneous transitions, that is, a state transition that occurs when there is
no input.)

• regular languages
• DFAs, NFAs, and epsilon-NFAs, recognize the same classes of languages; that is, whatev-

er can be computed with one of them, can be computed with the others
• Pumping Lemma for showing that certain languages are not regular (in general, showing

that a problem cannot be solved with a given model of computation, or within a given
complexity class, is very difficult, so the Pumping Lemma is nice, as it is a simple and
easy to use tool for proving that particular languages cannot be decided with finite autom-
ata).

2. Regular Expressions (the basis of many useful notations and compiler tools)
• building regular expressions
• converting DFAs to regular expressions
• converting regular expressions to epsilon-NFS (thus finite automata and regular expres-

sions are equivalent)
• regular expressions in UNIX

7/8

• algebraic rules for regular expressions
• closure properties of regular expressions (complements, intersections, unions)
• testing emptiness and membership in regular expressions (this is undecideable for Turing

Machines, but decidable for regular expressions)
• equivalence of automata (algorithm for showing that two DFAs are equivalent)
• minimal automata (algorithm for producing a minimal DFA equivalent to a given DFA)

3. Context-Free Grammars - (used to describe many programming languages)
• derivations (show that a given string is described by a given CFG)
• left-most and right-most derivation
• parse trees
• trees and derivations
• YACC parser generator (also mention XML)
• ambiguity

4. Pushdown Automata (a useful model for many algorithms in language processing)
• equivalence of PDA and CFG
• PDA with two stacks are equivalent to general computers
• PDA with finite stack are equivalent to finite automata

5. Turing Machines (TM) (simplified model of a general computer, but more powerful than real
computers)
• Design of TM
• encoding a TM as a string of symbols
• languages vs problems (i.e., the mapping between classes of languages and classes of

problems)
• Church-Turing thesis (all algorithms can be simulated on TMs)
• Robustness (all variants of TMs are equivalent) (many tapes, tapes infinite in one direction

only)
• Decidable, Undecideable, and Semi-decidable languages
• Halting Problem (can we design an algorithm, which given a TM and an input to that TM,

decides if the TM will halt; answer: NO)
• Diagonalization (a method for showing that problems like the Halting Problem is not de-

cidable)
• Enumerable languages, are languages whose elements can be listed (enumerable languag-

es are not necessarily decidable languages, since at any giving point in the listing of the el-
ements, we do not know if the element we are waiting for is not on the list, or simply has
not appeared yet). Enumerable languages are equivalent to semi-decidable languages.

6. Rudimentary Computational Complexity
• Feasibility Thesis (TMs are reasonable model of computation; a polytime program on a

RAM machine requires polynomially many steps on a TM)
• the class P, the class NP (P: problems which can be solved in polytime, and therefore, fea-

sibly. NP: problems whose solutions can be verified feasibly)
• the P vs NP problem, relation to feasibility, and relation to cryptography (cryptography se-

cure if P not= NP)
• P vs NP: verifying vs computing

8/8

• NP-completeness (if SAT is in P, P=NP)
• reducing practical problems to known problems (e.g. all NP-complete problems are really

SAT in disguise)

4 Conclusions

Established engineering accreditation rules require that each engineering student have a
minimum exposure to basic science. As accredited software engineering programs are relatively
new, there is no clear understanding what constitutes appropriate basic science. Although we
believe that every Engineer should have been taught basic physical science, we believe that those
who will specialise in software require a thorough exposure to the topics discussed above. This
paper has illustrated why, a course on these topics should be required as part of the basic science
component of a programme for engineers specialising in software intensive products.

5 References
1. Robert Floyd, personal communication.

2. Baber, R.L. “Software Reflected: the Socially Responsible Programming of Our Comput-
ers”, North-Holland Publishing Co., Amsterdam, 1982. German translation: Softwarere-
flexionen: Ideen und Konzepte für die Praxis, Springer-Verlag, 1986.

3. Baber, R.L, “ The Spine of Software: Designing Provably Correct Software - Theory and
Practice”, John Wiley & Sons, Chichester, 1987.

4. Baber, R.L., “Error Free Software: Know-How and Know-Why of Program Correctness”,
John Wiley & Sons, Chichester, 1991. German original: Fehlerfreie Programmierung für
den Software-Zauberlehrling, R. Oldenbourg Verlag, München, 1990.

5. Baber, R.L., Praktische Anwendbarkeit mathematisch rigoroser Methoden zum Sicherstel-
len der Programmkorrektheit, Walter de Gruyter, Berlin, 1995.

6. Cook, S. “The P versus the NP Problem”, Clay Mathematics Institute, University of To-
ronto, www.claymath.org/prizeproblems/p_vs_np.pdf

7. Garey, M.R., Johnson, D.S. “Computers and Intractability: A Guide to the Theory of NP-
Completeness” W.H. Feeman and Company, 1979.

8. Hopcroft, Motwani and Ullman, “Introduction to Automata”, Addison Wesley, 2nd edi-
tion.

9. Papadimitriou, Christos H., “Computational Complexity”, Addison-Wesley, 1994).

