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Abstract

We investigate the theories LA,LAP,∀LAP of linear algebra,
which were originally defined to study the question of whether com-
mutativity of matrix inverses has polysize Frege proofs. We give sen-
tences separating quantified versions of these theories, and define a
fragment ∃LA of ∀LAP in which we can interpret a weak theory V 1 of
bounded arithmetic and carry out polynomial time reasoning about
matrices - for example, we can formalize the Gaussian elimination al-
gorithm. We show that, even if we restrict our language, ∃LA proves
the commutativity of inverses.

1 Introduction

Linear algebra was first suggested by Bonet, Buss and Pitassi [2] as a source
for hard tautologies separating the Frege and Extended Frege propositional
proof systems. In this paper we are particularly interested in the implica-
tion AB = I ⊃ BA = I of matrix algebra (“commutativity of inverses”),
proposed by Cook. This is believed to be hard because all known proofs
of it involve more than the simple manipulations of matrices in terms of
their elements; they require, for example, going through an algorithm (such
as Gaussian elimination or computing a determinant), or using a counting
argument (about the size of a basis set).
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In [7] Soltys studied this problem and gave a precise meaning to “simple”
above. He defined a theory LA (for Linear Algebra) with three sorts - index
elements, field elements and matrices. A matrix is treated as a table of field
elements, coordinates in the table being given by index elements. It turns
out that LA is strong enough to prove all the ring properties of the set of
matrices (i.e., the associativity of matrix multiplication, commutativity of
matrix addition, etc.). On the other hand, LA is weak enough that all the
theorems of LA translate into families of boolean tautologies with polysize
Frege proofs.

Soltys defined two extension of LA, to LAP which also has a symbol for
matrix powering and to ∀LAP which additionally has induction for formulas
with universal matrix quantifiers. LAP can formalize Berkowitz’s algorithm
[1] and prove the equivalence of many important universal principles of linear
algebra. ∀LAP can prove the Cayley Hamilton theorem using Berkowitz’s
algorithm, and it seems that ∀LAP can prove all the universal principles of
linear algebra (such as the commutativity of inverses and the multiplicativity
of the determinant). See [4] for a survey of related results on the algorithmic
versions of these problems.

In this paper we explore a little further the relative strengths of these
theories and answer some of the questions posed in [7].

Section 2 gives the definitions of the theories mentioned above, together
with new theories ∃LA and ∀LA with induction for formulas with existential
or universal matrix quantifiers but without powering. If we have index sub-
traction in our language (see below) then these two theories are equivalent.

In section 3 we show that ∀LA proves the commutativity of inverses, and
in section 4 we show that ∃LA is strong enough to interpret the theory V 1. We
use the techniques of this section to show in section 5 that we can formalize
in ∃LA complicated arguments about matrices, in particular the Gaussian
elimination algorithm. In the last section we give sentences separating the
theories LA, LAP and ∃LA.

We pay careful attention to the language in which we are working. In [7]
LA and the theories extending it are defined with a very rich language for
index elements, including addition, multiplication, quotient and remainder,
and with a symbol for field inverse. However in [8] it was shown that ∀LAP
proves the Cayley-Hamilton Theorem and the multiplicativity of determi-
nant over commutative rings, without using inverse. Also, small adjustments
to the arguments in [7] show that an index language with only successor,
predecessor, ordering and a function max(i, j) is enough to develop the basic
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matrix properties in LA.
In this paper we try to work in this weaker version of LA, and in particular

our matrix entries come in general from a ring with cancellation rather than
a field, and we have changed the name of the sort accordingly. In section 2
we define our theories in the rich language, for completeness. The proofs in
sections 3 and 6 work in the weak language. In section 4 we need the richer
index language to prove that ∃LA interprets V 1, and in section 5 we need
a term in the language for field inverse to do complicated reasoning about
general matrices (rather than the binary matrices dealt with in section 4).

The restricted index language seems to be sufficient for most arguments
in linear algebra, and weakening the definitions of our theories in this way
should make the main conjecture in this area, that commutativity of inverses
is not provable in LA, easier to approach. However the restriction takes us
away from one of the motivations for the definition of LA, that it should tell us
something about provability in propositional calculus. Since in propositional
proofs we can group together arbitrary collections of variables, it is natural
to allow LA to define complicated sets of index elements; the simpler we
force our definable sets to be, the less close is the match with propositional
proof systems and the less a proof that LA does not prove commutativity of
inverses would tell us about a propositional lower bound.

2 Definitions

We begin with the description of the logical theory LA. See [7] and [8] for
a complete description. The three sorts of LA are indices, ring elements (we
weaken the assumption in [7] that these must be from a field) and matrices.
Where it is important to distinguish between the symbols in the language
associated with different sorts, we will use subscripts i,r ,m. We will typically
denote index elements by i, j, k, ring elements by a, b, c, and matrix elements
by capital letters.

We have three equality symbols, one for each sort, and a relation ≤i for
the ordering on the indices.

We define the function symbols in (the rich version of) our language:
(m+in), (m∗in), (m−in), div(m,n), rem(m,n) are function symbols of type
index that take inputs m,n of the index sort. (t +r u), (t ∗r u), (−rt), (t−1)
are function symbols of type ring and take inputs t, u of the ring sort. Note
that −1 is defined everywhere, even at 0.
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If T is a term of type matrix, then r(T ), c(T ) are terms of type index
which respectively denote the number of rows and columns of T , and Σ(T ) is
a term of type ring that denotes the sum of all the entries of T , and if m,n are
terms of type index, then e(T,m, n) is a term of type ring which denotes the
(m,n) entry of the matrix T . We also have a way of constructing matrices
using some rudimentary λ-calculus: if m,n are terms of type index, and t is a
term of type ring, then λij〈m,n, t〉 is a constructed term of type matrix (note
that the index variables i, j cannot occur free in m,n) with the properties
r(λij〈m,n, t〉) = m, c(λij〈m,n, t〉) = n, and e(λij〈m,n, t〉, i, j) = t.

Example 2.1 We can define the sum of two n×n matrices A,B as follows:
λij〈n, n, e(A, i, j) + e(B, i, j)〉, where e(A, i, j) + e(B, i, j) is a ring term in
the language of LA, expressing the (i, j)-th entry of the matrix A+B. Thus,
when we write A+B we really mean the matrix λij〈n, n, e(A, i, j)+e(B, i, j)〉.

Finally, if α is a formula where all the atomic subformulas are of type
index (that is, are of the form m =i n or m ≤i n), then condi(α,m, n) and
condf (α, t, u) are terms of type index and ring respectively, and the idea
is that condi(α,m, n) has the value m if α is true, and n otherwise, and
similarly for condf . The restriction that all the atomic subformulas of α are
of type index is there because in the translations into propositional formulas
all the free index variables get values, and therefore α will becomes true or
false.

We now specify the axioms of the theory LA. When working in a restricted
language, we use the suitable fragment of our axioms.

Firstly, all the usual axioms for equality are in LA, for each of our three
sorts.

For elements of the index sort we have the usual axioms of Robinson’s
arithmetic together with axioms defining div, rem, and an axiom scheme for
condi (with an axiom for each α):

j 6= 0 ⊃ rem(i, j) < j

j 6= 0 ⊃ i = j ∗ div(i, j) + rem(i, j)

(α ⊃ cond(α, i, j) = i) ∧ (¬α ⊃ cond(α, i, j) = j)

The axioms for ring elements are the usual axioms for an integral domain
(and, if we are including it in the language, an axiom for field inverse) together
with axioms for condr, similar to those for condi.
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Finally, we have axioms for matrices: first of all, we want e(A, i, j) = 0
for all i, j which are out of bounds:

(i = 0 ∨ r(A) < i ∨ j = 0 ∨ c(A) < j) ⊃ e(A, i, j) = 0.

Next, the definition for constructed matrices (with three axioms for each t):

r(λij〈m,n, t〉) = m

c(λij〈m,n, t〉) = n

1 ≤ i ≤ m ∧ 1 ≤ j ≤ n ⊃ e(i, j, λij〈m,n, t〉) = t

Lastly we define how our term Σ behaves. There is nothing that prevents
us from constructing a matrix with zero rows or zero columns, so we need
the following axiom: r(A) = 0 ∨ c(A) = 0 ⊃ ΣA = 0. There are four more
axioms that give a recursive definition of Σ; we do not give them here, but
the idea is simple:

Σ(A) = a11 + Σ(R) + Σ(S) + Σ(A[1|1])

where R, S are the first row and column of A (without the first entry), respec-
tively, and A[1|1] is the standard notation for the principal minor of A. The
three submatrices R, S,A[1|1] can be defined from A using the constructed
matrices. See [7, Chapter 2.3] for all the details of this definition.

To make sure that our inductive definitions (in particular that of Σ) are
well behaved, LA has the following induction axiom for open formulas φ
possibly containing parameters (of any sort):

φ(0) ∧ ∀i (φ(i) ⊃ φ(i+ 1)) ⊃ ∀i φ(i).

We also have the obvious axiom for matrix equality:

c(A) = c(B) ∧ r(A) = r(B) ∧ ∀i, j e(A, i, j) = e(B, i, j) ⊃ A = B.

In [7] LA was introduced as a quantifier-free theory in the style of the
sequent calculus, with special rules to deal with induction and matrix iden-
tity. Here we treat it as a first order theory with the normal logical rules
and with induction and matrix identity axiom schemes. Standard soundness
and completeness arguments show that the two are equivalent, in that they
prove the same universal sentences.
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We define the other theories we will use. LAP is LA together with a term
P(i,X) of type matrix and axioms P(0, A) = Ir(A) and P(i+1, A) = P(i, A)A.

A bounded universal matrix quantifier has the form ∀X ≤ i . . . meaning
∀X (c(X) ≤ i ∧ r(X) ≤ i ⊃ . . .). Bounded existential matrix quantifiers are
defined dually. An ∀LA (∃LA) formula consists of a block of bounded univer-
sal (existential) matrix quantifiers followed by a quantifier-free LA formula.
The theory ∀LA is the extension of LA that also includes induction axioms
for ∀LA formulas, and ∃LA is similar. ∀LAP is the analagous extension of
LAP.

If we have index subtraction then ∀LA and ∃LA are equivalent by the
standard argument, deriving induction on i in ∃Y φ(i, Y ) from induction on
j in ∀Y ¬φ(i− j, Y ).

All the theorems of LA translate into families of boolean tautologies with
polysize Frege proofs. Also, the theorems of LAP translate into quasi-poly-
size Frege proofs (because the P function translates into NC2-circuits, i.e.,
circuits of poly-size and O(log2) depth), and the theorems of ∀LAP translate
into poly-size Extended Frege proofs. See [7, Chapter 7] for the details on
these translations (note that the underlying ring is one of the parameters of
the translation).

For clarity of presentation we will write Xi,j for e(X, i, j) and Wj for
e(W, 1, j) if W is a row matrix. In the presence of the functions e and λ we
can identify ring elements with 1×1 matrices, and for example quantify over
ring elements wherever we are allowed to quantify over matrices.

3 Hard Matrix Identities

We show that AB = I ⊃ BA = I can be proven in ∀LA, using an argument
based on Gaussian elimination. We do not want to use +, ∗, div or rem in
our index language, and without these we cannot talk about sequences of
matrices, or even define an elementary matrix, so cannot carry out the text-
book Gaussian elimination algorithm (although with them in the language,
we can; see section 5). Instead we will do a simple induction, based on a
computation step in Gaussian elimination.

Since all the hard matrix identities can be proven equivalent in LA (see [7]
for details), it follows that all the hard matrix identities can be proven in
∀LA.

Theorem 3.1 ∀LA ` ∀A ∀B, BA = I ⊃ BA = I.
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Proof The proof is by induction on the size of the matrices involved. Our
induction hypothesis is:

∀A6n ∀B6n∀a, (a 6= 0 ∧ AB = aIn) ⊃ BA = aIn

where a is a ring element. We include the factor a because this way we do
not need to use multiplicative inverses in the proof.

The base case n = 1 follows from the axiom for the commutativity of ring
multiplication.

Now suppose that the hypothesis holds for matrices of size n and let A,B
be matrices of size n+ 1 with AB = In+1. We will construct matrices E1, E2

(whose inverses are easy to compute) such that the first column of E2E1A
consists only of 0s except possibly for the first entry. This will allow us to
apply the inductive hypothesis.

If the first column of A is all 0s already, then we are done and we can set
E1 = E2 = In+1. Otherwise let k be a row with a nonzero entry in the first
column. We take E1 to be the permutation matrix that moves the kth row
to the top and moves rows 1, . . . , k − 1 down one place. This matrix exists,
since it is given by the term

λij〈n+1, n+1, cond((i = 1∧j = k)∨(1 < i 6 k∧j = i−1)∨(i > k∧i = j), 0, 1)〉.

Let E∗1 be the inverse of E1; it also exists, since it is just the transpose of E1.
Now let c1, . . . , cn be the entries in the first column of E1A (so c1 6= 0)

and let E2 and E∗2 be as follows:

E2 =


1 0 0 . . . 0
−c2 c1 0 . . . 0
−c3 0 c1 . . . 0

... 0 0
. . . 0

−cn+1 0 0 . . . c1

 E∗2 =


c1 0 0 . . . 0
c2 1 0 . . . 0
c3 0 1 . . . 0
... 0 0

. . . 0
cn+1 0 0 . . . 1


so thatE2E1A has c1 in the top-left position and has its first column otherwise
zero and E2E

∗
2 = E∗2E2 = c1In+1. Clearly E2 and E∗2 can be given by terms.

Let E = E2E1 and E∗ = E∗1E
∗
2 . Now since AB = aIn+1, it follows that

E(AB)E∗ = c1aIn+1 so by associativity (EA)(BE∗) = c1aIn+1.
Now let b = c1, or if the first column of A was originally all 0s, let b = 1.

In either case, we now have non-zero elements b, a and matrices E,E∗ such
that EA is in the desired form, (EA)(BE∗) = baIn+1 and E∗E = bIn+1.
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Now we need to examine the entries of EA and BE∗, so let

EA =

(
x1 R1

0 M1

)
BE∗ =

(
x2 R2

S2 M2

)
where x1, x2 are ring elements, M1,M2 are n× n matrices and R1, R2, S2 are
row and column matrices. Using this notation, we have that

bBA = (BE∗)(EA) =

(
x1x2 x2R1 +R2M1

x1S2 S2R1 +M2M1

)
We show that this matrix is baIn+1. we know that (EA)(BE∗) = baIn+1 so
we have

1. M1M2 = baIn,

2. x1x2 +R1S2 = ba,

3. M1S2 = 0,

4. x1R2 +R1M2 = 0.

From 1. and the inductive hypothesis M2M1 = baIn. From 3. we know
that M2M1S2 = 0 hence baS2 = 0 so S2 is the zero vector by cancellation.
Thus from 2. we know that x1x2 = ba. Multiplying 4. on the left by x2 and
on the right by M1 we get x2x1R2M1 + x2R1M2M1 = 0 and so baR2M1 +
x2R1ba = 0; hence by cancellation x2R1 + R2M1 = 0. Therefore bBA =
baIn+1 and with one more cancellation we are done. �

4 Recursion and bounded index quantifiers

We can use the axiom for matrix equality to write certain statements involv-
ing index quantifiers as quantifier free formulas in LA. For example, suppose
that we have a formula φ(i) that can be represented by a term t, by which
we mean that t(i) = 0 when φ(i) is false and t(i) = 1 when φ(i) is true. Then
LA proves

(∀16 i6nφ(i))↔ λij〈n, 1, t(i)〉 = λij〈n, 1, 1〉.
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We can use this idea to express that a matrix satisfies a recursive property,
then use ∃LA induction to show that such a matrix exists and thus to carry
out the recursion. For example, suppose we have a term t taking ring elements
to ring elements, and we want to iteratively apply this n times to a ring
element a. Then any 1×n matrix X with the following property will encode
the correct sequence of values:

X = λij〈1, n, cond(j = 1, a, t(Xj−1)〉.

In words the first entry in X is a and every other entry is t applied to the
preceding entry. ∃LA-induction is sufficient to prove that for every a a unique
such X exists.

The most useful example of this is the following: let mult(X,W ) be the
formula

W = λij〈1, c(X), cond(j = 1, X1, XjWj−1)〉.

Then mult(X,W ) holds if for each j, Wj is the product X1 · . . . · Xj. In
particular the open induction available in LA is enough to prove that if X is
a 0− 1 matrix then

∃W 6c(X) (mult(X,W ) ∧Wc(X) = 1)↔ ∀16j6c(X)Xj = 1.

∃LA-induction further proves that for every X some W exists with
mult(X,W ). Hence we can use an ∃LA formula to evaluate a single index
quantifier.

We can extend this to deal with nested quantifiers. We will show this for
one alternation, it naturally extends to any number of alternations.

Suppose φ(i, j, x̄) is represented by a term tφ and we want to evaluate

∀16 i6s(x̄)∃16j6s(x̄)φ(i, j, x̄)

where s is an index term and x̄ is a tuple of parameters of any type, which
we will suppress in what follows.

Define the formula Mult(X,W, n) as:

W = λij〈1, c(Y ), cond(rem(j, n) = 1, Xj, XjWj−1)〉.

This is similar to mult except that W , rather than multiplying together all
the elements of X, multiplies each block of n elements of X separately. As
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with mult, ∃LA proves that if X is a 0−1 matrix then for each n there exists
W such that Mult(X,W, n) and for every i,

Wn·i = 1↔ ∀(i− 1)n<j6 inXj = 1.

So that we can deal with the existential quantifier as the dual of the uni-
versal quantifier, write Ȳ for the matrix obtained by subtracting the elements
of Y from 1 (ie. inverting Y ). Now let Φ(X,W,X ′,W ′) be the conjunction
of:

1. X = λkl〈1, s2, tφ(div(l − 1, s) + 1, rem(l − 1, s) + 1)〉;

2. Mult(X̄,W, s);

3. X ′ = λkl〈1, s, 1−Wl·s〉;

4. mult(X ′,W ′);

5. W ′
s = 1.

Here 1. expresses that X is a 1× s2 matrix coding the truth values of φ(i, j)
in the natural way, and 2. and 3. together mean that X ′ is a 1 × s matrix
coding the truth values of ∃1 6 j 6 s φ(i, j) in the same way. Finally 4.
expresses that W ′

s codes the truth value of ∀16 i6s ∃16 j6s φ(i, j) and 5.
says that this value is 1.
∃LA-induction proves that matrices W and W ′ always exist, so we have

that ∃LA proves

∃X ,W,X ′,W ′Φ(X,W,X ′,W ′)↔ ∀16 i6s ∃16j6s φ(i, j).

Extending this argument to formulas of any quantifier complexity, we
have

Theorem 4.1 If Ψ is any formula consisting of a sequence of bounded index
quantifiers followed by a formula that can be expressed as a term, then Ψ is
equivalent to an ∃LA formula, provably in ∃LA.

We now have everything we need to show that ∃LA interprets V 1, which
is a two-sorted version of Buss’ theory S1

2 [3]. See [5, 7] for a description of
V 1. It is a variant of the second order theories V i

j introduced in [3].
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We give a translation from the language of V 1 into the language of LA.
The two sorts of V 1 are numbers and strings, we translate these into index el-
ements and binary row matrices respectively. The algebraic properties of the
numbers in V 1 follow immediately from the properties of the index elements
in LA (if we use the rich language for indices).

To show that the induction in V 1 holds, we will show how to translate the
ΣB

1 formulas of V 1 into ∃LA formulas. (The formulas ΣB
0 are V 1 formulas

with bounded index quantifiers, and no string quantifiers; the formulas ΣB
1

are V 1 formulas of the form ∃X1 ≤ t1 · · · ∃Xn ≤ tnα, where α ∈ ΣB
0 .)

We translate quantifier free formulas φ in the language of V 1 into LA
terms tφ such that tφ is 1 if φ is true and 0 if φ is false. If φ is an atomic
formula in the language of indices, we translate it into cond(φ, 1, 0). If φ is
of the form “i ∈ X” we translate it as e(X, 1, i). For boolean connectives,
inductively we translate φ ∧ ψ as tφ · tψ and ¬φ as 1− tφ. Then by theorem
4.1 in ∃LA every ΣB

0 formula is equivalent to an ∃LA formula. Hence every
ΣB

1 formula is equivalent to an ∃LA formula and so induction holds for such
formulas.

Theorem 4.1 If we are allowed to use the full language of arithmetic for
indices, then V 1 is conservative over ∃LA. �

V 1 is a variant of S1
2 , and can be thought of as formalizing “polynomial

time reasoning”. So provided that we work over the two-element field, it is
not hard to give in V 1 a proof of correctness for the natural polynomial time
algorithm for Gaussian elimination. This can be extended to other fields
whose elements can straightforwardly be coded in binary. Since ∃LA can
interpret V 1 by the previous arguments, it follows that ∃LA can prove the
correctness of Gaussian elimination as well, over these fixed fields.
∃LA is field independent (so field elements do not have to be encoded),

and obviously more suitable for algebraic reasoning than V 1. In the next
section we show directly that if we use our rich language, then ∃LA formalizes
and proves the Gaussian elimination algorithm correct.

We note that the interpretation in this section could have been obtained
easily in ∀LAP, since matrix powering already gives us a way of multiplying
the elements of a row matrix together (see [7]).
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5 Gaussian elimination

Theorem 5.1 If we use the full index language and include a term for field
inverse, then every formula in the language of LA containing only bounded
index quantifiers is equivalent, in ∃LA, to an ∃LA formula.

Proof We show that any quantifier free LA formula can be expressed as a
block of bounded index quantifiers followed by t = 1, for some term t of type
ring whose value, for any arguments, is either 1 or 0.

First we rewrite each matrix equality X = Y as

c(X) =i c(Y )∧r(X) =i r(Y )∧∀16 i6c(X)∀16j6r(X) e(X, i, j) =r e(Y, i, j).

Then we move the index quantifiers to the front. Field inverse gives us a way
of representing equality between ring terms as a term: 1−(t−u)(t−u)−1 = 1 if
t = u, and 0 otherwise. We can express equality or ordering of index elements
as a term using cond, as in the last section. This covers the atomic formulas;
we can express logical combinations of atomic formulas as a term in the usual
way.

Thus any formula with only bounded index quantifiers can be translated
into a form to which we can apply theorem 4.1. �

We want to show that the textbook Gaussian elimination algorithm can
be proven correct in ∃LA. Given a matrix A with n rows, the Gaussian elim-
ination algorithm states that there exists a sequence of elementary matrices
E1, E2, . . . , Ek such that the matrix Ek · · ·E2E1A is in reduced row-echelon
form.

Fix the n × m matrix A that we want to reduce. We need to be able
to talk about sequences of matrices, but we can do that by concatenating
a sequence of l many n × n matrices into a single n × ln matrix X. We
can define X(i) =def λkj〈n, n, e(X, k, n · (i − 1) + j)〉 to be the i-th matrix
encoded in X, so X = [X(1), X(2), . . . , X(l)].

Let Y be the matrix of the same size as X such that

Y (1) = X(1) ∧ (∀i < l)Y (i+ 1) = Y (i)X(i)

so Y (n) is equal to the product of the matrices encoded by X. It can be
shown in ∃LA that such a Y exists. Thus we can define a function Π in ∃LA
which computes the product of all the matrices encoded by a given matrix
X.
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A matrix C is in reduced row-echelon form if all the empty rows are at
the bottom, the first non-zero entry of any row is a 1, this leading one is
the only non-zero entry in its column, and if the position of this leading 1
is (i, j), then all the elements in positions (p, q), where p > i and q ≤ j are
zero.

We say that a matrix is in i-partial reduced row-echelon form if its first i
columns are in reduced row-echelon form. We let the formula PRRE(C, i)
assert that the matrix C is in i-partial reduced row-echelon form. Note that
this is expressible using bounded index quantifiers, and thus is expressible as
an ∃LA formula. Similarly there is an ∃LA formula expressing that a ma-
trix is elementary and an ∃LA formula EL(X) expressing that every matrix
encoded by X is elementary.

We prove by induction on i that for all 0 ≤ i ≤ m,

∃X6 i(n+ 1), EL(X) ∧ PRRE((ΠX)A, i).

The base case i = 0 is trivial. For the inductive step, suppose we have a
witness X for i and want to find a witness X ′ for i+ 1.

Let j be the first empty row in the first i columns of (ΠX)A. If the
entries j to n of the i+ 1st column of (ΠX)A are all 0, then we do not need
to do anything and can set X ′ = X. Otherwise let k be a row in this range
with a non-zero entry in this column. We construct a sequence of 6 n + 1
elementary matrices that move this entry to the jth row, normalize it to 1,
and subtract suitable multiples of it from the other rows to make their entries
0 (as in the proof of theorem 3.1). We append these matrices to X, and use
induction to show that each one has the desired effect as we add it.

At the end we have X with PRRE((ΠX)A,m), so (ΠX)A is in reduced
row-echelon form and we are done.

6 Separations

We show that LAP is not conservative over LA and ∃LA is not conservative
over LAP. However the ideas used in this section are not capable of showing
that these theories do not all prove the same quantifier free sentences (in
particular the commutativity of inverses).

These separations do not make use of the symbol for field inverse or of
anything in the index language except for ordering, successor and predecessor.
However the arguments still work in the richer language.
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Let F be the field obtained from the two element field by adjoining all
the nth roots of unity for all n ∈ N. Let G be the set of all (standard)
matrices over F. The three sorted structure (N,F,G) can be considered as a
structure in the language of LAP, giving the symbols of LAP their standard
interpretation.

Let A = (I, F,G) be an elementary extension of (N,F,G) containing
nonstandard index elements. We will make some models of LA by taking the
closure in A of I together with a subset of F under terms in the language.

We characterize carefully the set of terms we want to close under.

Definition 6.1 Ring terms are functions of the form Im × F n → F for
m,n ∈ N. We think of the ring tuple from F n as a set of parameters; we will
be interested in the behaviour of a term when we fix the ring parameters and
let the index arguments range over all index elements.

The set T of ring terms is defined inductively as follows, where we use ī
to stand for index elements and x for a ring element:

1. The identity function x 7→ x on ring elements is in T ;

2. If t1, t2 ∈ T , then t1 + t2, t1 · t2,−t1 ∈ T ; t−11 ∈ T if we are including −1

in our language;

3. If t1(̄i), t2(̄i) ∈ T and φ(̄i) is any formula whose atomic formulas are
of type index, then the function cond(φ(̄i), t1(̄i), t2(̄i)) is in T ;

4. If t(i1, . . . , ik) ∈ T and f(ik+1, . . . , ik+l) is any term of type index then
t(i1, . . . , ik−1, f(ik+1, . . . , ik+l)) is in T ;

5. If t(i1, . . . , ik) ∈ T then the function

i1, . . . , ik 7→
i1∑
j=1

t(j, i2, . . . , ik)

is in T . In the language of LA we write this function formally as
Σ(λij〈1, i1, t(j, i2, . . . , ik)〉).

We also close T under padding out a function with extra arguments and under
permuting the arguments.
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Lemma 6.2 Given a subset X ⊆ F we can build a model B of LA as follows.
The index part of B is the same as the index part I of A. The ring part FB
of B contains all elements of F of the form t(̄i, x̄) for t a ring term, ī ⊆ I
and x̄ ⊆ X. The matrix part GB of B contains all matrices in G of the form
λj1j2〈k1, k2, t(j1, j2, ī, x̄)〉 for t a ring term, ī, k1, k2 ⊆ I and x̄ ⊆ X.

The functions and relations of B are the ones induced by A.

Proof Firstly, by the definition of ring terms the elements of B are closed
under all terms in the language of LA. Hence B is a substructure of A, so
all the universal axioms of LA are true in B because they were true in A.

To show that the matrix equality axioms hold in B, suppose there are
matrices X and Y in B with B |= X 6= Y . Then X and Y must differ in
A at some coordinates (i, j), and since the index parts of A and B are the
same X and Y differ at (i, j) in B.

It remains to show that open induction holds in B. So let φ(i) be any
quantifier-free formula with one free index variable i and parameters from B.
Let j ∈ I.

Suppose that B |= φ(0) and that B |= φ(i) ⊃ φ(i+ 1) for all i ∈ I. Then
this is also true if we replace B with A because B is a substructure of A and
φ is quantifier-free. Hence by open induction in A we know that A |= φ(j).
Hence this must also be true in B. �

Now let B be the structure given by this lemma if we take X to be all of
F . Note that if X = F , then B is the same as A in the index and ring part,
but GB is a proper subset of G, i.e., A has more matrices.

Lemma 6.3 Every matrix in B contains only a finite number of different
ring elements.

Proof We will show that for every ring term t there is a constant s ∈ N
such that if we fix the ring arguments and let the index arguments range over
all of I, the range of t contains at most s many different ring elements.

This is proved by induction on the complexity of t, and the only case that
raises any difficulties is case 5 of the definition of a ring term. So suppose
t(̄i) is a ring term, that we have fixed the ring parameters and that only the
elements a1, . . . , as can appear in the range of t as we vary ī. Because we are
in a field of characteristic 2, the sum of any combination of these elements
can be reduced to the form c1a1 + . . . + csas where each cl is either 0 or 1.
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Hence there are at most 2s different values that such a sum can take. So if
we let u be the ring term

i1, . . . , ik 7→
i1∑
j=1

t(j, i2, . . . , ik)

then the range of u (once we have fixed the ring arguments) has size at most
2s. �

Lemma 6.4 There is an ∃LA formula Φ(x, n) expressing that the powers
x, x2, . . . , xn are distinct.

Proof Let Pow(x, n,W ) be the formula

W = λij〈1, n, cond(j = 1, x, xWj−1)

expressing that W encodes the first n powers of x. Let χ(X) be the formula:

∃Y, λij〈r(X), c(X), Xi,jYi,j〉 = λij〈r(X), c(X), 1〉.

expressing that some Y codes the inverse of every element of X, so in any
model of the true theory of (N,F,G) it will be true if and only if none of the
elements of X is zero.

Now take Φ(x, n) to be the formula

∃W, Pow(x, n,W ) ∧ χ(λij〈n, n, cond(i = j, 1,Wi −Wj)〉).

The matrix defined by the λ term here has its (i, j)th entry zero (for i 6= j)
if and only if the ith and jth powers of x are the same. �

Lemma 6.5 The sentence “for all x and all n there is a row matrix W
consisting of the first n powers of x” is false in B.

Proof Let n be a nonstandard element of I. The sentence ∀i ∃xΦ(x, i) is
true in (N,F,G) because given i we can take x to be a root of unity so that
x, x2, . . . , xi are all distinct: let j = i if i is odd, and j = i+1 if i is even, and
let x be the jth primitive root of unity. Then x is a root of the polynomial
xj − 1, and in the field of characteristic two the formal derivative of xj − 1
is just xj−1 (since j is odd). Since xj − 1 and xj−1 are relatively prime (by
the Euclidean Algorithm), it follows that all the roots of xj − 1 are distinct
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(see [6]). This is also true in A, so we can find an x in A such that the first
n powers of x are distinct.

Now A contains a unique matrix W consisting of the sequence of these
powers, but by construction this matrix is not in B since it contains infinitely
many different ring elements. �

Corollary 6.6 LAP is not ∀∃LA conservative over LA. �

For the other separation result, to build a model of LAP that is not a
model of ∃LA we need to add a case to the inductive definition of a ring term
to handle the addition of matrix powering to the language:

6. For k > 2, if t(i1, . . . , ik) is a ring term then so is

i1, . . . , ik, ik+1, ik+2 7→ e(P (ik+1, λj1j2〈ik+2, ik+2, t(j1, j2, i3, . . . , ik)〉), i1, i2).

Lemma 6.7 If X ⊆ F we can form a model C of LAP by taking the closure
of X and I in A under all ring terms (including those defined using the new
case 6), just as in lemma 6.2. �

Lemma 6.8 Every ring element of F that is in the range of a ring term with
parameters from our original field F is itself in F.

Proof Suppose our parameters are b1, . . . , bm ∈ F. There is a finite subfield
E of F containing b1, . . . , bm. If t is a ring term with these parameters, then
it is true in (N,F,G) that everything in the range of t is still in E, because
in the standard model none of the operations described by ring terms can
take us out of the field E. Because E is finite this property of t (with these
parameters) is expressible by a first order formula, hence it is also true in
A. �

Theorem 6.9 LAP 6` ∃LA.

Proof Let C = (I, FC , GC) be the substructure of A given by lemma 6.7,
taking X to be all of the field F. Then C |= LAP, and by lemma 6.8 FC = F.

Let i be any element of I. Then if i ∈ N there is an element x of F whose
powers x, x2, . . . , xi are all distinct (namely an ith or i + 1st primitive root
of unity). If i /∈ N then there is no such element x, because every element
of F has finite order. Hence C |= ∃xΦ(x, 0) and C |= ∀i, ∃xΦ(x, i) ⊃
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∃xΦ(x, i + 1), but it is not the case that C |= ∀i ∃xΦ(x, i). So C is not a
model of ∃LA. �
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