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Introduction

The material in these notes comes from the Introduction to Proof Theory, by S. Buss,
pages 31-36 in the Handbook of Proof Theory, where S. Buss proved theorem 1 for
the more restricted case where all axioms are sentences, and there is no induction
rule.

Here we extend this result to the case where the axioms are allowed to be general
sequents consisting of formulas with free variables. The idea for the new proof is
also due to S. Buss (private communication to S. Cook). At the end, we show how
to extend the theorem further by allowing rules for induction.

Of course these results follow from the completeness of LK with cut, together
with the cut elimination arguments provided by S. Buss in the Handbook of Proof
Theory. The idea in the present notes is to avoid cut elimination by giving a simple
model-theoretic completeness proof.

Completeness of Anchored LK Proofs

We use S. Buss’s definition of logical consequence, that is, Π � Γ → ∆ if the
universal closure of Π implies Γ → ∆ in the usual sense of logical consequence. We
say that an LK-proof is anchored if the principal formula of every cut is the direct
descendent of a formula occurring in an initial sequent.

Theorem 1 If Π � Γ → ∆, then there is a finite subset Π0 of Π = the closure of Π
under all substitutions of terms for free variables, so that Γ → ∆ has an anchored
LK proof with initial sequents in Π0.
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We present an algorithm which constructs such a proof. The idea is to build an
anchored LK-proof of Γ → ∆ from the bottom up, working backwards from Γ → ∆
to initial sequents, using the axioms from Π on the way. We need the following
lemma:

Lemma 1 There is an LK proof of Γ → ∆ from B1, . . . , Bm, Γ → ∆, C1, . . . , Cn,
and all the sequents of the form:

Ci, B1, . . . , Bm,Γ → ∆, C1, . . . , Ci−1 for i ∈ {1, . . . , n} (∗)
Bj+1, . . . , Bm,Γ → ∆, Bj for j ∈ {1, . . . ,m} (∗∗)

Furthermore, this proof uses only cuts whose principal formulas are B1, . . . , Bm and
C1, . . . , Cn, and uses no other inference rules.

Proof of Lemma 1. We can cut out Cn from B1, . . . , Bm, Γ → ∆, C1, . . . , Cn us-
ing (∗) with i = n to get B1, . . . , Bm, Γ → ∆, C1, . . . , Cn−1. We repeat this with
B1, . . . , Bm, Γ → ∆, C1, . . . , Cn−1 and (∗) with i = n − 1, and so on until we have
B1, . . . , Bm, Γ → ∆. Then we do the same on the other side using (∗∗) with
j = 1, . . . ,m, until we get Γ → ∆.

The algorithm works as follows: we enumerate all pairs of formulas and terms
〈Ai, tj〉 over L (thus L has to be a countable first order language) so that each pair
occurs infinitely often in the enumeration; each stage of the construction of the proof
P considers a new sequent from Π and the next such pair. Initially, P is the single
sequent Γ → ∆. We define an active leaf in the proof P to be a leaf sequent which
is not in Π (i.e. it is not an axiom), and no formula appears in both its antecedent
and succedent.
Loop: let Sl be the next sequent in Π, and let 〈Ai, tj〉 be the next pair in the
enumeration.

1. Suppose Sl is given by B1, . . . , Bm → C1, . . . , Cn. Replace every active leaf
Γ′ → ∆′ in P by its anchored derivation from initial sequents of the form

Ci, B1, . . . , Bm,Γ → ∆, C1, . . . , Ci−1 for i ∈ {1, . . . , n}
Bj+1, . . . , Bm,Γ → ∆, Bj for j ∈ {1, . . . ,m}

and B1, . . . , Bm, Γ → ∆, C1, . . . , Cn (which can be obtained by weakening Sl).
We know from the proof of lemma 1 how to construct such a derivation. So
we construct it and prune it so that no non-leaf sequent has a formula which
occurs in both its succedent and antecedent.
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2. If Ai in 〈Ai, tj〉 is atomic we proceed to the next step. Otherwise modify P at
the active leaf sequents which contain Ai by doing one of the following:

case 1. If Ai is of the form ¬B, then every active sequent in P which contains
Ai, say Γ′,¬B, Γ′′ → ∆′, is replaced by the derivation:

Γ′, Γ′′ → ∆′, B

Γ′,¬B, Γ′′ → ∆′

and similarly, every active sequent in P of the form Γ′ → ∆′,¬B, ∆′′ is
replaced by the derivation

B, Γ′ → ∆′, ∆′′

Γ′ → ∆′,¬B, ∆′′

case 2. If Ai is of the form B ∨ C, then every active sequent in P of the form
Γ′, B ∨ C, Γ′′ → ∆′, is replaced by the derivation

Γ′, B, Γ′′ → ∆′ Γ′, C, Γ′′ → ∆′

Γ′, B ∨ C, Γ′′ → ∆′

and every active sequent in P of the form Γ′ → ∆′, B ∨C, ∆′′ is replaced
by the derivation

Γ′ → ∆′, B, C, ∆′′

Γ′ → ∆′, B ∨ C, ∆′′

case 3. The cases where Ai has outermost connective ∧ are dual to case 2.

case 4. If Ai is of the form (∃x)B(x), then every active sequent in P of the form
Γ′, (∃x)B(x), Γ′′ → ∆′ is replaced by the derivation

B(c), Γ′, (∃x)B(x), Γ′′ → ∆′

Γ′, (∃x)B(x), Γ′′ → ∆′

where c is a new variable not used in P yet, and any sequent of the form
Γ′ → ∆′, (∃x)B(x), ∆′′ is replaced by the derivation

Γ′ → ∆′, (∃x)B(x), ∆′′, B(tj)

Γ′ → ∆′, (∃x)B(x), ∆′′

note that this case, and the dual ∀ left case, are the only cases where tj
is used. Also note that in ∃ and ∀ cases it is really necessary to keep the
formula Ai in the new active sequent.
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case 5. The cases where Ai is of the form (∀x)B(x) are dual to case 4.

3. Stop if P has no more active leafs. If P has no more active leafs, then every
leaf sequent can be obtained by weakening an axiom in Π, or by weakening an
initial sequent of the form A → A. We do that where necessary to obtain a
complete proof.

End Loop.

Lemma 2 If the above algorithm halts, then the output is an anchored proof of
Γ → ∆ from a finite subset of Π. If it doesn’t halt, then Γ → ∆ is not a logical
consequence of Π.

Proof of Lemma 2. We show that if the algorithm doesn’t halt, then we can con-
struct a valuation M that satisfies Π and doesn’t satisfy Γ → ∆. So suppose the
algorithm doesn’t halt. From the construction, P will be an infinite tree (except in
the exceptional case where Γ → ∆ contains only atomic formulas and Π is empty,
in which case P is the single sequent Γ → ∆). By König’s Lemma, P has an infi-
nite branch π starting at the root. We use π to construct the valuation M. The
universe of M is the set of L-terms, tM is t for any term, and PM(t1, . . . , tn) is true
iff P (t1, . . . , tn) appears in the antecedent of a sequent contained in the branch π.

Let A be any formula occurring in the antecedent of a sequent in π. It is easy
to show by structural induction on the complexity of A that AM is true. We can
use structural induction because no formula contained in a sequent in the branch
π appears as a result of a weakening rule since we apply weakenings to non-active
leaves only (see step 1. and step 3.).

Similarly, every formula occurring in the succedent of a sequent in π is false (note
that if a formula occurred on both sides of a sequent in π, then the branch would
have terminated). Thus Γ → ∆ must be false in M.

On the other hand, at each stage we consider a different sequent Sl from Π.
Suppose that Sl is of the general form B1, . . . , Bm → C1, . . . , Cn. Then one of the
following must occur:

1. some Ci appears in the antecedent of a sequent contained in the branch π, in
which case Ci is true in M, and hence Sl is true in M, or

2. some Bj appears in the succedent of a sequent contained in the branch π, in
which case Bj is false in M, and hence Sl is also true in M.
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Thus, M satisfies Sl in either case, and since each Sl from Π is “represented” (by
some formula from its antecedent or succedent) in the branch π, it follows that M
satisfies Π.

Induction Rules

We want to show that theorem 1 still holds if we add an induction axiom scheme to
the set of axioms Π. Let Ψ be some class of formulas closed under substitution of
terms for variables, and let Ψ-IND be the set of sequents of the form

→
(
A(0) ∧

(
A(b) ⊃ A(b + 1)

))
⊃ A(t)

where t is any term, b appears only as indicated, and A belongs to Ψ. Let the set
of all axioms be Π together with Ψ-IND. Add the following rule to LK:

IND:
Γ, A(b) → A(b + 1), ∆

Γ, A(0) → A(t), ∆

(b must appear only where indicated) and extend the definition of an anchored cut
to include cuts on direct descendents of the principal formulas of this rule, that is,
cuts on direct descendents of A(0) and A(t).

To prove completeness in the case of induction on formulas in Ψ, we amend
the algorithm as follows: if for a given pair 〈Ai, tj〉 Ai is of the form Ai(tj), then
before step 1. in the algorithm, replace every active leaf Γ′ → ∆′ by the following
derivation:

1 Γ′, Ai(0), Ai(b) → Ai(b + 1), Ai(tj), ∆
′ (new leaf)

2 Ai(tj), Γ
′ → ∆′ (new leaf)

3 Γ′ → Ai(0), ∆′ (new leaf)

4 Γ′, Ai(0), Ai(0) → Ai(tj), Ai(tj), ∆
′ by IND from 1

5 Γ′, Ai(0) → Ai(tj), ∆
′ applying contraction left and right to 4

6 Γ′, Ai(0) → ∆′ anchored cut from 5 and 2

Γ′ → ∆′ anchored cut from 6 and 3

If Γ → ∆ is a logical consequence of Π and Ψ-IND, the new algorithm will
construct the proof. To see this, we extend the proof of lemma 2 to show that: if
the algorithm doesn’t halt, then the term model M satisfies every sequent in Ψ-IND
(as well as every sequent in Π, as was shown in the previous section). So suppose
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that the infinite branch π passes through Γ′ → ∆′. Then π must continue through
one of the following three paths:

Γ′
...→ Ai(0), ∆′

Γ′ → ∆′

Ai(tj), Γ
′

...→ ∆′

Γ′, Ai(0) → ∆′

Γ′ → ∆′

Γ′, Ai(0), Ai(b)
...→ Ai(b + 1), Ai(tj), ∆

′

Γ′, Ai(0), Ai(0) → Ai(tj), Ai(tj), ∆
′

Γ′, Ai(0) → Ai(tj), ∆
′

Γ′, Ai(0) → ∆′

Γ′ → ∆′

Since formulas in the antecedents of sequents in π are true in M, and formulas in
the succedents of sequents in π are false in M, in all three cases the induction axiom

→
(
A(0) ∧

(
A(b) ⊃ A(b + 1)

))
⊃ A(t)

is true in M. Since all the formulas Ai(tj) are listed infinitely often in the enu-
meration 〈Ai, tj〉, all the formulas in Ψ are used at some point in π, and hence M
satisfies all the induction axioms.

The case of polynomial induction

→
(
A(0) ∧

(
A(b) ⊃ A(2b) ∧ A(2b + 1)

))
⊃ A(t)

can be treated similarly with the new rule being

PIND:
Γ, A(b) → A(2b), ∆ Γ, A(b) → A(2b + 1), ∆

Γ, A(0) → A(t), ∆
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