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Abstract

We introduce three formal theories of increasing strength for lin-
ear algebra in order to study the complexity of the concepts needed to
prove the basic theorems of the subject. We give what is apparently the
first feasible proofs of the Cayley-Hamilton theorem and other proper-
ties of the determinant, and study the propositional proof complexity
of matrix identities such as AB = I → BA = I.

1 Introduction

The complexity of the basic operations of linear algebra such as the deter-
minant and matrix inverse has been well-studied. Over the field of rationals
it lies within the complexity class NC2, and is complete for the class DET
[Coo85]. Here we are concerned with the proof complexity of linear algebra,
which roughly speaking is the complexity of the concepts needed to prove
the basic properties of these operations. In general proof complexity has
two aspects: uniform and nonuniform (see [Kra95] for a treatise on the sub-
ject). The uniform aspect concerns the power of logical theories required
to prove a given assertion, while the nonuniform aspect concerns the power
of propositional proof systems required to yield polynomial size proofs of a
tautology family representing the assertion.

The method of Gaussian elimination can be used to give polynomial
time algorithms for the determinant, matrix inverse, etc. (see [Sol02]), but
it does not yield the fast parallel algorithms which place these operations in
NC2. We base our treatment of linear algebra on Berkowitz’s elegant algo-
rithm [Ber84], which gives field-independent reductions of these operations
to matrix powering (the complexity class DET) (see [vzG93] for alternative
algorithms).

We are interested in the question of whether the basic properties of the
determinant can be proved using concepts restricted to the class DET, and



we make this question precise by defining a quantifier-free theory LAP for-
malizing reasoning about matrix algebra based on matrix powering. We
use LAP to present Berkowitz’s algorithm. Since this algorithm computes
not only the determinant of a given square matrix A, but also the coeffi-
cients of the characteristic polynomial pA(x) = det(xI −A), it is natural to
ask whether LAP proves the Cayley-Hamilton (C-H) theorem, which asserts
pA(A) = 0. We leave this question open, but we demonstrate its impor-
tance by showing that LAP proves the equivalence of the C-H theorem with
two other basic results: the cofactor expansion of the determinant and the
axiomatic definition of the determinant.

If we cannot prove the C-H theorem in LAP, can we at least find a feasible
proof; i.e., one using only polynomial time concepts? This question (over
finite fields and over the rationals) has a natural precise formalization, since
feasible reasoning has been well-studied using ∀-equivalent theories such as
Cook’s PV [Coo75] or Buss’s S1

2 [Bus86]. A study of the linear algebra
literature has turned up no such feasible proof, and in fact most proofs of
the C-H theorem are based directly or indirectly on the Lagrange expansion
of the determinant, which represents an exponential time algorithm.

Thus a major contribution of this paper is our success in finding a feasible
proof of the C-H theorem. We formalize this proof in the field-independent
theory ∀LAP, which extends LAP by allowing induction over formulas with
bounded universal matrix quantifiers. We justify the label “feasible” for the
proof in several ways, including an interpretation of ∀LAP (when the under-
lying field is finite or the rationals) into the feasible theory V1

1 (equivalent
to Buss’s S12). Our feasible proof yields feasible proofs of many basic ma-
trix properties, including the multiplicativity of the determinant, and the
correctness of algorithms based on Gaussian elimination.

One specific motivation for this research is to find natural tautology fam-
ilies which may distinguish the power of Frege and Extended Frege (eFrege)
propositional proof systems. (A line in a Frege proof is a propositional for-
mula which is an immediate logical consequence of earlier lines, whereas a
line in an eFrege proof may also introduce a new propositional variable by
definition, allowing for concise abbreviations of exponentially long formulas).
The principle

AB = I =⇒ BA = I (1)

where A and B are n × n matrices, may provide such an example. This
principle (over Z2 or Z) is readily translated into a tautology INVn of size
polynomial in n. It is plausible to conjecture that the family 〈INVn〉 does
not have polynomial size Frege proofs, since the proof of (1) seems to require
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concepts such as Gaussian elimination or matrix powering whose complexity
apparently cannot be expressed by polynomial size propositional formulas
(i.e., is not in NC1). On the other hand, we show that (1) can be proved
using polynomial time concepts, and hence (by a general result) 〈INVn〉 does
have polynomial size eFrege proofs.

Altogether we introduce three logical theories of increasing power

LA ⊂ LAP ⊂ ∀LAP

to formalize linear algebra reasoning. Each theory has three sorts: indices
(i.e., natural numbers), field elements, and matrices, and all theorems hold
for any choice of the underlying field. The base theory LA allows the basic
ring properties of matrices to be formulated and proved. The principle (1)
can be formulated in LA but (we conjecture) not proved. We show that LA
proves the equivalence of (1) with other “hard” matrix identities. Theorems
of LA translate into tautology families with polynomial size Frege proofs.

We extend LA to LAP by adding a new function, P, which is intended to
denote matrix powering, i.e., P(n,A) means An. LAP is well suited for for-
malizing Berkowitz’s algorithm, and it is strong enough to prove the equiv-
alence of some fundamental principles of linear algebra. The theorems of
LAP translate into quasi-poly-bounded Frege proofs.

We finally extend LAP to ∀LAP by allowing induction on formulas with
bounded universal matrix quantifiers. This new theory is strong enough
to prove the C-H theorem, and hence (by our equivalence) all the major
principles of Linear Algebra. The theorems of ∀LAP translate into poly-
bounded Extended Frege proofs.

This paper is based on the PhD thesis [Sol01] of the first author, which
is available on the Web.

2 The Theory LA

We define a quantifier-free theory of Linear Algebra (matrix algebra), and
call it LA. Our theory is strong enough to prove the ring properties of
matrices such as A(BC) = (AB)C and A + B = B + A but weak enough
so that all the theorems of LA (over finite fields or the field of rationals)
translate into propositional tautologies with short Frege proofs.

Our theory has three sorts of object: indices (i.e., natural numbers),
field elements, and matrices, where the corresponding variables are denoted
i, j, k, ...; a, b, c, ...; and A,B,C, ..., respectively. The semantics assumes that
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objects of type field are from a fixed but arbitrary field, and objects of type
matrix have entries from that field.

In fact, almost all results in this paper hold when objects of type field
range over an arbitrary commutative ring. Multiplicative inverses are not
needed except in the proofs of Lemma 3.1 and Theorem 4.1.

Terms and formulas are built from the following function and predicate
symbols, which together comprise the language LLA:

0index, 1index,+index, ∗index,−index, div, rem,

0field, 1field,+field, ∗field,−field,
−1, r, c, e,Σ,

≤index,=index,=field,=matrix, condindex, condfield

(2)

The intended meanings should be clear, except −index is cutoff subtraction
(i− j = 0 if i < j), a−1 is the inverse of a field element a with 0−1 = 0, and
for the following operations on a matrix A: r(A), c(A) are the numbers of
rows and columns in A, e(A, i, j) is the field element Aij (where Aij = 0 if
i = 0 or j = 0 or i > r(A) or j > c(A)), Σ(A) is the sum of the elements
in A. Also cond(α, t1, t2) is interpreted if α then t1 else t2, where α is a
formula all of whose atomic sub-formulas have the form m ≤ n or m = n,
where m,n are terms of type index, and t1, t2 are terms either both of type
index or both of type field. (The restriction on α greatly simplifies the
propositional translations described in section 6.) The subscripts index, field,
and matrix are usually omitted, since they are clear from the context.

We use n,m for terms of type index, t, u for terms of type field, and
T,U for terms of type matrix. Terms of all three types are constructed from
variables and the symbols above in the usual way, except that in addition
terms of type matrix are either variables A,B,C, ... or λ terms λij〈m,n, t〉.
Here i and j are variables of type index bound by the λ operator, intended to
range over the rows and columns of the matrix. Here also m,n are terms of
type index not containing i, j (representing the numbers of rows and columns
of the matrix) and t is a term of type field (representing the matrix element
in position (i, j)).

Atomic formulas have the forms m ≤ n,m = n, t = u, T = U , where the
three occurrences of = should have subscripts index,field ,matrix respectively.
Formulas are built from atomic formulas using the propositional connectives
¬,∨,∧. Formulas may not have quantifiers.

Note that a precise definition requires terms and formulas to be defined
together recursively, because cond(α, t1, t2) is a term whenever α is a formula
satisfying the restrictions explained above.
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2.1 Defined terms

The λ terms allow us to construct the sum, product, transpose, etc., of
matrices. We use the notation := to introduce abbreviations for terms.

Integer maximum

max{i, j} := cond(i ≤ j, j, i)

Matrix sum

A+B := λij〈max{r(A), r(B)}, max{c(A), c(B)}, Aij +Bij〉 (3)

Note that A + B is well defined even if A and B are incompatible in size,
because of our convention that out-of-bound entries are 0.

Scalar product
aA := λij〈r(A), c(A), a ∗Aij〉 (4)

Matrix transpose
At := λij〈c(A), r(A), Aji〉 (5)

Zero and Identity matrices

0kl := λij〈k, l, 0〉 and Ik := λij〈k, k, cond(i = j, 1, 0)〉 (6)

Sometimes we will just write 0 and I when the sizes are clear from the
context.

Matrix trace
tr(A) := Σλij〈r(A), 1, Aii〉 (7)

Dot product

A ·B := Σλij〈max{r(A), r(B)}, max{c(A), c(B)}, Aij ∗Bij〉 (8)

Matrix product

A∗B := λij〈r(A), c(B),λkl〈c(A), 1, e(A, i, k)〉·λkl〈r(B), 1, e(B, k, j)〉〉 (9)

Finally, the following decomposition of an n × n matrix A will be used
in our axioms defining Σ(S) and in presenting Berkowitz’s algorithm:

A =

(
a11 R
S M

)
(10)
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where a11 is the (1, 1) entry of A, and R,S are 1 × (n−1), (n−1) × 1
submatrices, respectively, and M is the principal submatrix of A Therefore,
we make the following precise definitions:

R(A) := λij〈1, c(A) − 1, e(A, 1, i + 1)〉
S(A) := λij〈r(A)− 1, 1, e(A, i + 1, 1)〉
M(A) := λij〈r(A)− 1, c(A)− 1, e(A, i+ 1, j + 1)〉

(11)

2.2 Proofs in LA

We use Gentzen’s sequent calculus LK (with quantifier rules omitted) for
the underlying logic (see [Bus98, Chapter 1]). A sequent has the form
α1, ...,αk → β1, ...,β! where each αi and βj is a formula. The intended
meaning of the sequent is

∀x1 . . . xn




k∧

i=1

αi ⊃
l∨

j=1

βj





where x1, . . . , xn is the list of all the free variables of all three sorts that
appear in the sequent.

The system LK has the axiom scheme α → α, the structural rules Ex-
change, Contraction, and Weakening (left and right), the Cut rule, and rules
for introducing each of the three connectives ¬,∨,∧ on the left and right.

In addition to these axioms and rules, LA has axiom schemes and a rule
for equality, an induction rule, and axiom schemes giving the properties of
numbers, fields, and matrices.

A proof in LA of a sequent S is a finite sequence of sequents ending in
S, such that each sequent in the proof is either an axiom, or follows from
earlier sequents by a rule of inference. If α is a formula, then we regard a
proof of the sequent → α as a proof of α.

We now give the axioms of LA (other than the logical axioms α → α of
LK described above). For each axiom listed below, every legal substitution of
terms for free variables is an axiom of LA. Note that in a λ term λij〈m,n, t〉
the variables i, j are bound. Substitution instances must respect the usual
rules which prevent free variables from being caught by the binding operator
λij. The bound variables i, j may be renamed to any new distinct pair of
variables.

Equality Axioms
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These are the usual equality axioms, generalized to apply to the three-sorted
theory LA. Here = can be any of the three equality symbols, x, y, z are vari-
ables of any of the three sorts (as long as the formulas are syntactically
correct). In A4, the symbol f can be any of the nonconstant function sym-
bols of LA. However A5 applies only to ≤, since this in the only predicate
symbol of LA other than =.

A1 → x = x
A2 x = y → y = x
A3 (x = y ∧ y = z) → x = z
A4 x1 = y1, ..., xn = yn → fx1...xn = fy1...yn
A5 i1 = j1, i2 = j2, i1 ≤ i2 → j1 ≤ j2

Axioms for indices

A6 → i+ 1 .= 0
A7 → i ∗ (j + 1) = (i ∗ j) + i
A8 i+ 1 = j + 1 → i = j
A9 → i ≤ i+ j
A10 → i+ 0 = i
A11 → i ≤ j, j ≤ i
A12 → i+ (j + 1) = (i+ j) + 1
A13 i ≤ j, j ≤ i → i = j
A14 → i ∗ 0 = 0
A15 i ≤ j, i+ k = j → j − i = k and i ! j → j − i = 0
A16 j .= 0 → rem(i, j) < j and j .= 0 → i = j ∗ div(i, j) + rem(i, j)
A17 α → cond(α, i, j) = i and ¬α → cond(α, i, j) = j

Axioms for field elements

A18 → 0 .= 1 ∧ a+ 0 = a
A19 → a+ (−a) = 0
A20 → 1 ∗ a = a
A211 a .= 0 → a ∗ (a−1) = 1
A22 → a+ b = b+ a
A23 → a ∗ b = b ∗ a
A24 → a+ (b+ c) = (a+ b) + c
A25 → a ∗ (b ∗ c) = (a ∗ b) ∗ c
A26 → a ∗ (b+ c) = a ∗ b+ a ∗ c
A27 α → cond(α, a, b) = a and ¬α → cond(α, a, b) = b

1This axiom is not used except in the proof of Lemma 3.1 and Theorem 4.1
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Axioms for matrices

Axiom A28 states that e(A, i, j) is zero when i, j are outside the size of A.
Axiom A29 defines the behavior of constructed matrices. Axioms A30-A33
define the function Σ recursively by first defining it for row vectors, then
column vectors (recall At is the transpose of A), and then in general using
the decomposition (11). Finally, axiom A34 takes care of empty matrices.

A28 (i = 0 ∨ r(A) < i ∨ j = 0 ∨ c(A) < j) → e(A, i, j) = 0
A29 → r(λij〈m,n, t〉) = m and → c(λij〈m,n, t〉) = n and
1 ≤ i, i ≤ m, 1 ≤ j, j ≤ n → e(λij〈m,n, t〉, i, j) = t
A30 r(A) = 1, c(A) = 1 → Σ(A) = e(A, 1, 1)
A31 r(A) = 1, 1 < c(A) → Σ(A) = Σ(λij〈1, c(A)− 1, Aij〉) +A1c(A)

A32 c(A) = 1 → Σ(A) = Σ(At)
A33 1 < r(A), 1 < c(A) → Σ(A) = e(A, 1, 1)+Σ(R(A))+Σ(S(A))+Σ(M(A))
A34 r(A) = 0 ∨ c(A) = 0 → ΣA = 0

Rules for LA

In addition to the logical rules of Gentzen’s LK, our system LA has two
rules: matrix equality and induction. In specifying the rules below, Γ and
∆ are cedents; that is, finite sequences of formulas. We allow either Γ or ∆
to be empty.

Matrix equality rule

Γ → ∆, e(T, i, j) = e(U, i, j) Γ → ∆, r(T ) = r(U) Γ → ∆, c(T ) = c(U)

Γ → ∆, T =U

Here the variables i, j may not occur free in the bottom sequent; otherwise
T and U are arbitrary matrix terms. Our semantics implies that i and j are
implicitly universally quantified in the top sequent. The rule allows us to
conclude T = U , provided that T and U have the same numbers of rows and
columns, and corresponding entries are equal. The rule can be replaced by
the axiom λij〈r(T ), c(T ), e(T, i, j)〉 = T (similar to an η-axiom in lambda
calculus) provided that an axiom is also added which is like A4 with λij
replacing f .

Induction rule
Γ,α(i) → α(i+ 1),∆

Γ,α(0) → α(n),∆

Here the variable i (of type index) may not occur free in either Γ or ∆. Also
α(i) is any formula, n is any term of type index, and α(n) indicates n is
substituted for free occurrences of i in α(i). (Similarly for α(0).)

8



This completes the description of LA. We finish this section by observing
the substitution property in the lemma below. We say that a sequent S′ of
LA is a substitution instance of a sequent S of LA provided that S′ results
by substituting terms for free variables of S. Of course each term must
have the same sort as the variable it replaces, and bound variables must be
renamed as appropriate.

Lemma 2.1 Every substitution instance of a theorem of LA is a theorem
of LA.

This follows by straightforward induction on LA proofs. The base case
follows from the fact that every substitution instance of an LA axiom is an
LA axiom.

3 The Theorems of LA

We show that all matrix identities which state that the set of n×n matrices
form a ring, and all identities that state that the set of m × n matrices
form a module over the underlying field, are theorems of LA. However, LA
is apparently not strong enough to prove matrix identities which require
arguing about inverses. We present four such examples at the end of this
section, and show that LA proves their equivalence.

Formally an LA proof of an identity T = U is a sequent derivation of
→ T = U from the axioms and rules presented in the previous section.
Below we present at most informal sketches of these formal proofs.

In general, we use the following strategy to prove a matrix identity T =
U . We first show that r(T ) = r(U) and c(T ) = c(U), and then we show
e(T, i, j) = e(U, i, j), from which we can conclude that T = U by the matrix
equality rule. Thus we conclude two matrices are equal if they have the
same size and same entries.

For the sake of readability we will omit “∗” (the multiplication symbol),
as it will always be clear from the context when it is required.

Refer to section 2.1 for definitions of terms such as max{i, j} and A+0kl.
The results in the section (except the Odd Town Theorem at the end)

continue to hold when the underlying field is replaced by any commutative
ring.

Ring properties

T1 A+ 0r(A)c(A) = A
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Proof. The row and column identities follows from max{i, i} = i. Equality of
corresponding entries follows from the the field axiom A18 stating a+0 = a.
!

T2 A+ (−1)A = 0r(A)c(A)

Proof. Equality of corresponding entries follows from the field property
a+ (−1)a = 0. !

Commutativity and associativity of matrix addition follow from the cor-
responding field properties, together with theorems T3 and T5 below to
derive the row and column identities.

T3 max{i, j} = max{j, i}

T4 A+B = B +A

T5 max{i, max{j, k}} = max{max{i, j}, k}

T6 A+ (B + C) = (A+B) + C

Before we prove the next theorem, we outline a strategy for proving
claims about matrices by induction on their size. The first thing to note is
that it is possible to define empty matrices (matrices with zero rows or zero
columns), but we consider such matrices to be special. Our theorems hold
for this special case, by axioms A28 and A34, so we will always implicitly
assume that it holds. Thus, the Basis Case in the inductive proofs that will
follow, is when there is one row (or one column). Therefore when applying
the Induction rule, instead of doing induction on i we do induction on j,
where i = j + 1.

Also note that the size of a matrix has two parameters: the number of
rows, and the number of columns. We deal with this problem as follows:
suppose that we want to prove something for all matrices A. We define a
new (constructed) matrix M(i, A) as follows: first let d(A) be:

d(A) := cond(r(A) ≤ c(A), r(A), c(A))

that is, d(A) = min{r(A), c(A)}. Now let:

M(i, A) := λpq〈r(A)−d(A)+i, c(A)−d(A)+i, e(A, d(A)−i+p, d(A)−i+q)〉
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that is, M(i, A) is the i-th principal submatrix of A. To prove that a property
P holds for A, we prove that P holds for M(1, A) (Basis Case), and we prove
that if P holds for M(i, A), it also holds for M(i + 1, A) (Induction Step).
From this we conclude, by the Induction rule, that P holds for M(d(A), A),
and M(d(A), A) is just A. Note that in the Basis Case we might have to
prove that P holds for a row vector or a column vector, which is a k × 1 or
a 1× k matrix, and this in turn can also be done by induction (on k).

T7 Σ0kl = 0field

Proof. This follows by induction as outlined above, using the axioms A30-
A33 giving a recursive definition of Σ. !

T8 AIc(A) = A and Ir(A)A = A

Proof. For the first case, equality of entries is proved by induction on c(A),
using T7 when entries are out of bounds. !

The next four theorems are helpful for proving the associativity of matrix
multiplication, T13.

T9 Σ(cA) = cΣ(A)

T10 Σ(A+B) = Σ(A) + Σ(B)

The next theorem states that we can “fold” a matrix into a column
vector. That is, if we take Σ of each row, then the Σ of the resulting column
vector is the same as the Σ of the original matrix.

T11 ΣA = Σλij〈r(A), 1,Σλkl〈1, c(A), Ail〉〉

Proof. Induction on r(A), using A30-A33. !

T12 Σ(A) = Σ(At)

Proof. Induction on r(A), using A30-A33 and the definition of A transpose
(section 2.1). !

T13 A(BC) = (AB)C
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Proof. The idea is to show that the sum of all entries in a matrix can be
computed either by summing along the rows first, or by summing along the
columns first. This can be formalized using T9-T12. No induction is needed.
!

T14 max{i, max{j, k}} = max{max{i, j}, max{i, k}}

T15 A(B + C) = AB +AC

Proof. The row and column identities are proved using the properties of
max, including T14. The equality of corresponding entries follows from the
distributive law for fields (A26), together with T10. !

T16 (B + C)A = BA+ CA

Module properties

T17 (a+ b)A = aA+ bA

T18 a(A+B) = aA+ aB

T19 (ab)A = a(bB)

Inner product

The following theorems show that our dot product is in fact an inner
product:

T20 A · B = B · A

T21 A · (B + C) = A · B +A · C

T22 aA · B = a(A · B)

Miscellaneous theorems

T23 a(AB) = (aA)B ∧ (aA)B = A(aB)

T24 (AB)t = BtAt

T25 Itk = Ik ∧ 0tkl = 0lk

T26 (At)t = A
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3.1 Hard matrix identities

In this section we present four matrix identities which we call hard matrix
identities. They are hard in the sense that they seem to require computing
inverses in their derivations, and therefore appear not to be provable in the
theory LA. We show however that LA proves that each is equivalent to each
of the others.

AB = I,AC = I → B = C I

AB = I → AC .= 0, C = 0 II

AB = I → BA = I III

AB = I → AtBt = I IV

Identity III was proposed by the second author as a candidate for the separa-
tion of Frege and Extended Frege propositional proof systems. The relation
between theorems of LA and the power of propositional proof systems is
discussed in section 6.

Theorem 3.1 LA proves the equivalence I ⇔ II ⇔ III ⇔ IV.

Proof. We show that I ⇒ II ⇒ III ⇒ IV ⇒ I.
I ⇒ II Assume AB = I ∧ AC = 0. By A4, AB + AC = I + 0, and by T1
and T15, A(B + C) = I. Using I, B = B +C, so by T2, C = 0.
II ⇒ III Assume AB = I. By A1 and A4, (AB)A = IA, by T2, (AB)A+
(−1)IA = 0, by T13 and T23, A(BA) +A(−1)I = 0, and by T15, A(BA+
(−1)I) = 0. By II, BA+ (−1)I = 0, and by T2, BA = I.
III ⇒ IV Assume AB = I. By III, BA = I, and by A29 (BA)t = It. By
T24, we obtain AtBt = I.
IV ⇒ I Assume AB = I ∧ AC = I. By T2 AB + (−1)AC = 0, by T23,
AB+A(−1)C = 0, by T15, A(B+(−1)C) = 0, by T13, (BA)(B+(−1)C) =
0. Now, using transpose property T24, we get (B+ (−1)C)t(BA)t = 0, and
since AB = I, by IV, AtBt = I, so by T24 again, (BA)t = I, so we obtain
that (B + (−1)C)t = 0, so B + (−1)C = 0, so B = C. !

There is one more identity equivalent to I–IV, proposed by C. Rackoff:

If A,B are n× n and the last column of A is 0, then AB .= I (V)

Lemma 3.1 LA proves (using the field inverse axiom A21) the equivalence
of V and I–IV.
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Proof. It is easy to see that III implies V. To show that V implies II, we
prove the contrapositive. Suppose that II is false, so that AB = I,AC = 0,
and C .= 0. Then for some column vector X .= 0 we have that AX = 0. It
follows that the columns of A must be linearly dependent. Let Ai denote
the i-th column of A. Using the field inverse axiom A21 we may suppose
that An = c1A1 + c2A2 + · · ·+ cn−1An−1 (if this is not the case for the n-th
column it will be true for some column Ai, and we can place Ai at the end
of the matrix using a permutation matrix).

Let A′ be A with the last column, An, replaced by a column of zeros. Let
B′ be B, with the following modification: the i-th row of B′, for 1 ≤ i < n,
is the sum of the i-th row of B with the last row of B multiplied by ci, and
the last row of B′ is zero (or anything, it does not really matter).

Then, A′B′ = I, because AB = I. But the last column of A′ is zero,
which contradicts V. !

The Odd Town Theorem was proposed in [BBP94] as an example gener-
ating tautologies hard for Frege systems. This theorem states the following:
Suppose a town has n citizens, and that there is a set of clubs, each consist-
ing of citizens, such that each club has an odd number of members, and such
that every two clubs have an even number of members in common. Then
there are no more than n clubs.

It is not hard to see that LA, together with the axiom a = 0∨ a = 1 (as-
serting that the underlying field is Z2), proves the Odd Town Theorem from
the assumption III above. Suppose that the town satisfies the hypotheses of
the theorem, and the town has n citizens and m clubs, where m > n. Let A
be a m×m matrix in which Aij is 1 if citizen i is in club j, and 0 otherwise.
Then the last m − n columns of A are 0. By the hypotheses concerning
clubs, it follows that AAt = Im. Therefore, by III, AtA = Im. But this is
impossible, since the top row of At is 0.

It is an open question whether LA (over any field) proves the hard iden-
tities, or the Odd Town Theorem.

4 Berkowitz’s Algorithm and LAP

Berkowitz’s algorithm allows us to reduce the computation of the charac-
teristic polynomial of an n × n matrix A, traditionally given by pA(x) =
det(xI − A), to the operation of matrix powering. This algorithm, and
all results in this section except Theorem 4.1, continue to hold when the
underlying field is replaced by any commutative ring.
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We begin by presenting an extension LAP to the system LA which in-
cludes matrix powering.

4.1 The theory LAP

We add a new binary function symbol P to the language LLA of LA to form
the language LLAP of the theory LAP. (Here P(n,A) is intended to mean
An.) The axiom schemes and rules of LAP are the same as for LA, except
for two additional axiom schemes which give a recursive definition of P:

A35 → P(0, A) = I
A36 → P(n+ 1, A) = P(n,A) ∗A.

As in the case of the other axiom schemes, n can be replaced by any
LLAP term of type index and A can be replaced by any LLAP term of type
matrix.

We can express iterated matrix product in LAP using the standard
method of reducing this to matrix powering. Let A1, A2, . . . , Am, be a se-
quence of square matrices of equal size. To compute the iterated matrix
product A1A2 · · ·Am, we place these matrices into a single big matrix C,
above the main diagonal of C. More precisely, assume that the Ai’s are
n× n matrices. Then, C is a (m+ 1)n × (m+ 1)n matrix of the form:





0 A1 0 · · · 0
0 0 A2 · · · 0

0 0 0
. . . 0

0 0 0 · · · Am

0 0 0 · · · 0





Now, compute Cm. The product A1A2 . . . Am is the n×n upper-right corner
of Cm.

4.2 Berkowitz’s algorithm

Suppose we decompose the n× n matrix A according to (10). That is,

A =

(
a11 R
S M

)
(12)

where R is an 1×(n−1) row matrix and S is a (n−1)×1 column matrix and
M is (n− 1)× (n− 1). Let p(x) and q(x) be the characteristic polynomials
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of A and M respectively. Suppose that the coefficients of p form the column
vector

p =
(
pn pn−1 . . . p0

)t
(13)

where pi is the coefficient of xi in det(xI − A), and similarly for q. Then
Berkowitz [Ber84] showed

p = C1q (14)

where C1 is an (n+1)×n Toeplitz lower triangular matrix (Toeplitz means
that the values on each diagonal are the same) and where the entries in the
first column are defined as follows:

ci1 =






1 if i = 1

−a11 if i = 2

−(RM i−3S) if i ≥ 3

(15)

For example, If A is a 4× 4 matrix, then p = C1q is given by:




p4
p3
p2
p1
p0




=





1 0 0 0
−a11 1 0 0
−RS −a11 1 0

−RMS −RS −a11 1
−RM2S −RMS −RS −a11









q3
q2
q1
q0



 (16)

Berkowitz’s algorithm consists in repeating this for q, and continuing so that
p is expressed as a product of matrices:

p = C1C2 · · ·Cn (17)

where Ci is an (n + 2 − i) × (n + 1 − i) Toeplitz matrix defined as in (15)
except A is replaced by its i-th principal sub-matrix.

4.3 Defined terms and theorems in LAP

The right-hand side of (17) can be expressed as a term in LAP using the
method given by (16). We use this term as the definition in LAP of the
characteristic polynomial p, given in (13), of the matrix A. (If n = 1 and
A = (a), then p = (1 − a)t.)

Also in LAP we define

det(A) := (−1)np0 (18)

where p0 is as in (13), and we define

adj(A) := (−1)n−1(pnA
n−1 + pn−1A

n−2 + . . .+ p1I) (19)
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Recall that in the usual definition, the (i, j)-th entry of the adjoint of A is
(−1)i+jdet(A[i|j]), where A[i|j] is the minor obtained by deleting the i-th
row and j-th column of A. The equivalence of this and (19) can be proved
in LAP using the Cayley-Hamilton (C-H) Theorem as an assumption.

Recall that the C-H theorem states that p(A) = 0. From (19) we have
that:

A adj(A) = (−1)n−1(p(A)− p0I)

Assuming p(A) = 0 we have by (18) that:

A adj(A) = adj(A)A = det(A)I (20)

In fact LAP easily proves the equivalence of (20) with the C-H theorem. We
also have

Theorem 4.1 LAP (over any field) proves that the C-H theorem implies
the hard matrix identities I–IV of section 3.

Proof. It suffices to consider the identity III:

AB = I → BA = I

Using the assumption AB = I it suffices to show that there is some left
inverse C of A, since using simple ring properties of matrices (formalizable
in LA) it is easy to show AB = I and CA = I implies BA = I.

To show that a left inverse C exists, we use the C-H theorem p(A) = 0,
where p is the characteristic polynomial of A. Since p is not the zero poly-
nomial (it has leading coefficient 1), there must be k ≥ 0 and a polynomial
q such that

0 = p(A) = q(A)Ak (21)

where q has a nonzero constant term. From AB = I we can show in LAP
by induction on i that AiBi = I. Thus multiplying (21) on the right by Bk

we obtain q(A) = 0, which we can write as

q̂(A)A = −q0I

where q0 is the constant coefficient of q. Dividing by −q0 we obtain the
required left inverse C = (−1/q0)q̂(A). !

It is an open question whether LAP proves the C-H theorem in general,
although it does prove the C-H theorem for triangular matrices [Sol01].

By the axiomatic definition of the determinant we mean that the deter-
minant function det(A) satisfies the three conditions
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• det is multi-linear in the rows and columns of A

• det is alternating in the rows and columns of A

• if A = I, then det(A) = 1

It is well-known that these conditions completely characterize the determi-
nant.

By the cofactor expansion we mean for every 1 ≤ i ≤ n

det(A) =
n∑

j=1

(−1)i+jaij det(A[i|j]) (22)

where A[i|j] denotes the matrix obtained from A by removing the i-th row
and the j-th column. For each i, the RHS of the equation is called the
cofactor expansion of A along the i-th row, and (22) states that we obtain
det(A) expanding along any row of A. Applying this recursively results
in an exponential time algorithm for computing det(A), showing that the
expansion completely defines the determinant.

By the multiplicativity of the determinant we mean

det(AB) = det(A)det(B)

where A,B are n× n matrices.
The following is the major result of this section.

Theorem 4.2 LAP (over any commutative ring) proves the equivalence of
the following principles:

1. C-H theorem

2. Axiomatic definition of det

3. Cofactor Expansion

and LAP also proves the following implications:

4. Multiplicativity of det =⇒ C-H theorem

5. C-H Theorem + {det(A) = 0 → AB .= I} =⇒ Multiplicativity of det.
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The rest of section 4 will consist of the proof of this theorem. The proof
is long, so it is given in four sections: 4.4 (1 =⇒ 2), 4.5 (2 =⇒ 3), 4.6
(3 =⇒ 1), and 4.7 (implications 4 and 5).

In section 5, we will show that the multiplicativity of the determinant
can be proven in the theory ∀LAP, which is an extension of LAP where
we allow induction on formulas with a bounded universal matrix quantifier
(i.e., formulas of the form ∀X ≤ nα, where α has no quantifiers, and X is
a variable of type matrix, with r(X) ≤ n and c(X) ≤ n). From this, and
from 4 above, it follows that all the principles listed above can be proven in
∀LAP. Since we show that all the theorems of ∀LAP have feasible proofs, it
will follow that all these principles have feasible proofs.

The following lemmas are needed in the proof of Theorem 4.2.

Lemma 4.1 LAP proves

det(A) = a11 det(M)−R adj(M) S (23)

where A is given by (12).

Proof. Using the definition of det (given by (18)) we have:

det(A) = (−1)n(pA)0

where (pA)0 denotes the constant coefficient of the characteristic polynomial
of A. From Berkowitz’s algorithm and the definition of the adjoint (given
by (19)):

= (−1)n(−a11(pM )0 − (−1)n−2R adj(M) S)

since LAP proves (−1)even power = 1, we have:

= a11(−1)n−1(pM )0 −R adj(M) S

and by using (18) one more time:

= a11 det(M)−R adj(M) S

This argument can be clearly formalized in LAP. !

Lemma 4.2 LAP proves that A and At have the same characteristic poly-
nomial, i.e., pA = pAt .
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Proof. The proof is by induction on the size of A. The Basis Case is trivial
because (a)t = (a). Suppose now that A is an n× n matrix, n > 1. By the
IH we know that pM = pM t. Furthermore, if we consider the matrix C1 in
the definition of Berkowitz’s algorithm, we see that the entries 1 and −a11
do not change under transposition of A, and also, since S(M t)kR is a 1× 1
matrix, it follows that S(M t)kR = (S(M t)k)R)t = RMkS, so in fact C1 is
the same for A and At. This gives us the result. !

4.4 The axiomatic definition of determinant

We show that when the determinant is defined as in (18), the axiomatic
definition of the determinant follows from the C-H theorem, and that this
can be proven in LAP. The condition det(I) = 1 is easy, and multilinearity
in the first row (and column) is easy as well. Thus, the whole proof hinges
on an LAP proof of alternation from the C-H theorem.

It is in fact enough to prove alternation in the rows, as alternation in
the columns will follow from alternation in the rows by det(A) = det(At)
(Lemma 4.2).

Definition 4.1 Iij is the matrix obtained from the identity matrix by in-
terchanging the i-th and j-th rows. Ii is the same as Ii,i+1.

The effect of multiplying A on the left by Iij is that of interchanging the
i-th and j-th rows of A. On the other hand, AIij is A with the i-th and j-th
columns interchanged.

We show alternation in the rows by first showing that for any matrix A,
A and I1AI1 have the same characteristic polynomial (I1 = I1,2, so I1AI1 is
the matrix A with the first two rows interchanged, and the first two columns
interchanged). This is done in Lemma 4.3.

Then, we show that A and IiAIi have the same characteristic polynomial
for any i (Ii = Ii,i+1). This is done Lemma 4.5.

Finally, we obtain that A and IijAIij have the same char poly (as any
permutation is a product of transpositions).

We also show that det(A) = − det(I1A). From this it follows that
det(A) = − det(I1iA) for all i, since we can bring the i-th row to the second
position (via I2iAI2i), and reorder things (by applying I2iAI2i once more).
Since Iij = I1iI1jI1i, this gives us alternation in the rows.

Note that we prove that A and IijAIij have the same char poly, i.e.,
pIijAIij = pA, to be able to reorder the matrix and prove alternation.
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Lemma 4.3 Let A be an n × n matrix, and let M2 = (A[1|1])[1|1] be the
second principal submatrix of A. Then, LAP proves the following impli-
cation: pM2(M2) = 0 =⇒ p(I1AI1) = pA. That is, LAP proves that if the
C-H Theorem holds for M2, then I1AI1 and A have the same characteristic
polynomial.

Proof. Let A be of the following form:

A =




a b R
c d P
S Q M2





where M2 is an (n−2)× (n−2) matrix, a, b, c, d are entries, and R,P, St, Qt

are 1× (n− 2) matrices. We define σ to be the permutation that exchanges
the first two rows, and the first two columns of A. Formally:

a, b, c, d
σ1→ d, c, b, a

R, S, P,Q
σ1→ P,Q,R, S

M2
σ1→ M2

For the sake of readability, we let M = M2.
Recall that pA = C1C2C3 · · ·Cn. To show that pA = pI1AI1 , we first

show that all the entries of C1C2, except for those in the last row, remain
invariant under σ. Since C3 · · ·Cn are not affected by σ, this will give us
that, except for the last row, pA = pI1AI1 . Then, we show that the last
entries are also invariant under σ, that is, (pA)0 = (pI1AI1)0, but for this we
do need the C-H Theorem.

We start by showing that all the entries of C1C2, except for those in the
last row, are invariant under σ. Note that we do not need the C-H Theorem
for this.

Let C[i|j] denote the matrix C with row i and column j removed. Let
C[i|−] and C[−|j] denote the matrix C with row i removed (and no columns
removed) and column j removed (and no rows removed), respectively.

Note that (C1C2)[n + 1|−] is a lower-triangular Toeplitz matrix. We
consider the first column of (C1C2)[n + 1|−]. The top three entries of the
first column are:

1
−a− d

−
(
b R

)( c
S

)
+ ad− PQ = −bc−RS + ad− PQ
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By inspection, they are all invariant under σ.
The (k+1)-st entry in the first column, for k ≥ 3, is given by taking the

dot-product of the following two vectors:




1
−a

−
(
b R

)( c
S

)

−
(
b R

)( d P
Q M

)(
c
S

)

...

−
(
b R

)( d P
Q M

)k−2(
c
S

)





,





−PMk−2Q

−PMk−3Q
...

−PQ

−d

1





(24)

We are going to prove that this dot-product is invariant under σ. This
dot-product can be expressed as follows:

(
b R

)( wk Xk

Yk Zk

)(
c
S

)
+ aPMk−3Q− PMk−2Q (25)

where:
(

wk Xk

Yk Zk

)
= −

(
d P
Q M

)k−2

+d

(
d P
Q M

)k−3

+
k−4∑

i=0

PMk−4−iQ

(
d P
Q M

)i

(26)
We first show by induction on k ≥ 3 that the following holds:





wk = 0

Xk = −PMk−3

Yk = −Mk−3Q

Zk = −Mk−2 + dMk−3 +
∑k−4

i=0 ((PMk−4−iQ)M i −M iQPMk−4−i)
(27)

The basis case is k = 3:
(

w3 X3

Y3 Z3

)
= −

(
d P
Q M

)
+ dI

and indeed it holds. Now, to prove the induction step, assume that the
result holds for k, and show that it also holds for k + 1 (notice that clearly
the induction step can be formalized in LAP). Using (26) we have:

(
wk+1 Xk+1

Yk+1 Zk+1

)
=

(
d P
Q M

)(
wk Xk

Yk Zk

)
+ (PMk−3Q)I (28)
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Now, using the induction hypothesis (and note that the induction hypothesis
is all four properties):

1. Show that wk+1 = 0.

wk+1 = dwk+PYk+(PMk−3Q) = d·0+P (−Mk−3Q)+(PMk−3Q) = 0

2. Show that Xk+1 = −PMk−2.

Xk+1 = dXk + PZk

= d(−PMk−3) + P

(

−Mk−2 + dMk−3 +
k−4∑

i=0

((PMk−4−iQ)M i −M iQPMk−4−i)

)

= −PMk−2

since P (PMk−2−iQ)M i = (PMk−2−iQ)PM i.

3. Show that Yk+1 = −Mk−2Q.

Yk+1 = wkQ+MYk = 0 ·Q+M(−Mk−3Q) = −Mk−2Q

4. Show that Zk+1 = −Mk−1+dMk−2+
∑k−3

i=0 ((PMk−3−iQ)M i−M iQPMk−3−i).

Zk+1 = QXk +MZk + (PMk−3Q)I

= Q(−PMk−3) +M

(
−Mk−2 + dMk−3 +

k−4∑

i=0

((PMk−4−iQ)M i −M iQPMk−4−i)

)

+ (PMk−3Q)I

and grouping all the terms we get:

= −Mk−1 + dMk−2 +
k−3∑

i=0

((PMk−3−iQ)M i −M iQPMk−3−i)

We show in some detail this last step:

M
k−4∑

i=0

(PMk−4−iQ)M i −M iQPMk−4−i =
k−4∑

i=0

(PMk−4−iQ)M i+1 −M i+1QPMk−4−i

=
k−4∑

i=0

(PMk−3−(i+1)QM i+1 −M i+1QPMk−3−(i+1) =
k−3∑

i=1

(PMk−3−iQ)M i −M iQPMk−3−i

=− PMk−3Q+QPMk−3 +
k−3∑

i=0

(PMk−3−iQ)M i −M iQPMk−3−i
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This ends the proof of the induction step, and the proof of (27).
Using (27) we can prove that:

( b R )

(
wk Xk

Yk Zk

)(
c
S

)
+ aPMk−3Q− PMk−2Q (29)

is invariant under σ. We expand and obtain:

−bPMk−2S − cRMk−2Q−RMk−2S + dRMk−3S

+
k−4∑

i=0

R((PMk−4−iQ)M i −M iQPMk−4−i)S + aPMk−3Q− PMk−2Q

(30)

Now note that the following pairs of terms are invariant under σ:

{−bPMk−2S,−cRMk−2Q} {−RMk−2S,−PMk−2Q} {+dRMk−3S,+aPMk−3Q}

Therefore, to show that (29) is invariant under σ, it remains to show that
the summation is invariant under σ, and the summation is equal to:

k−4∑

i=0

(PMk−4−iQ)(RM iS)−
k−4∑

i=0

(RM iQ)(PMk−4−iS)

Note that:

(PMk−4−iQ)(RM iS)
σ1−→ (RMk−4−iS)(PM iQ)

(RM iQ)(PMk−4−iS)
σ1−→ (PM iS)(RMk−4−iQ)

So clearly each of the two summations is “closed” under σ, and hence in-
variant.

To finish the proof of Lemma 4.3, we show that the last row is also
invariant under σ, but this time we have to use the C-H Theorem on the
second principal submatrix of A, i.e., on M .

The bottom row of C1C2 is given by the dot product of the two vectors
in (24) without their top rows. Thus, in the bottom row of C1C2, we are
missing −PMk−2Q’s in the summations.

If we add these missing terms across the bottom row (starting with the
left-most), that is, if we add:

−PMn−2Q,−PMn−3Q, . . . ,−PMQ,−PQ (31)
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to the entries in the bottom row, respectively, we can conclude by the above
argument that the result is invariant under σ.

We have that pM (M) = 0, so −PpM(M)Q = 0, and since pM =
C3C4 . . . Cn, it follows that if we multiply the bottom row of C1C2, where
the terms listed in (31) have been added, by pM = C3C4 · · ·Cn, these terms
will disappear.

Hence, to prove the invariance under σ of the bottom entry of C1C2 · · ·Cn,
we first add the extra terms in (31) to the bottom row of C1C2, use the above
argument to conclude the invariance of the resulting bottom row of C1C2

under σ (which does not affect C3C4 · · ·Cn), and then show that the extra
terms disappear by pM(M) = 0 (that is, by the Cayley-Hamilton Theorem
applied to M).

It remains to point out how to formalize this proof in LAP, which means
how to express that (29) is invariant under σ. What we do is show that
(29) = (29′), where (29′) is σ(29). We show the equality by showing that
there is a correspondence of terms, where the correspondence is given by the
above pairing up, and by the fact that the summation in (29) and in (29′)
is the same. !

Lemma 4.4 Let A be an n×n matrix, and let M2 be the second principal
submatrix of A. Then LAP proves the following implication: pM2(M2) =
0 =⇒ det(I1A) = − det(A). That is, LAP proves that if the C-H Theorem
holds for M2, then the determinant of A is alternating in the first and second
rows.

Proof. To prove this Lemma, we use the machinery developed in the proof
of the previous Lemma. First of all, we already showed that LAP proves
that the entries in C1C2 are of the form given by (30) (C1C2 is a Toeplitz
matrix, and (30) gives the entries in the first column, for rows k ≥ 3; we are
interested in the last row). As before, we let M = M2 for readability.

Let τ be the transposition of the first two rows of A, so τ is given by:

a, b, c, d
τ1→ c, d, a, b

R, P
τ1→ P,R

S,Q,M2
τ1→ S,Q,M2
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and τ has the following effect on the term of (30):

−bPMk−2S 1−→ −dRMk−2S

−cRMk−2Q 1−→ −aPMk−2Q

+dRMk−3S 1−→ +bPMk−3S

+aPMk−3Q 1−→ +cRMk−3Q

+(PMk−4−iQ)(RM iS) 1−→ +(RMk−4−iQ)(PM iS)

−(RM iQ)(PMk−4−iS) 1−→ −(PM iQ)(RMk−4−iS)

−RMk−2S 1−→ −PMk−2S

−PMk−2Q 1−→ −RMk−2Q

Note that except for the last two rows, all the the other terms in (30) have a
corresponding term of opposite sign, under τ . The terms in the last two rows
disappear when they are multiplied by pM = C3C4 . . . Cn, since pM (M) = 0
by the C-H Theorem. !

Lemma 4.5 Let A be an n × n matrix, and let Mi+1 be the (i + 1)-
st principal submatrix of A. Then LAP proves the following implication:
pMi+1(Mi+1) = 0 =⇒ p(IiAIi) = pA. That is, LAP proves that if the C-H
Theorem holds for Mi+1, then pIiAIi and pA have the same char polynomial.

Proof. See Figure 1, and note that if i ≥ n − 1 then Mi+1 is not defined,
but this is not a problem, since we do not need the C-H Theorem to prove
pIn−1AIn−1 = pA.

The case i = 1 is Lemma 4.3, so we can assume that 1 < i < n− 1.
Using the fact that I2i = I, we have:

RM jS = R(IiIi)M
j(IiIi)S = (RIi)(IiM

jIi)(IiS) = (RIi)(IiMIi)
j(IiS)

(32)
Here we use induction on j in the last step. The Basis Case is j = 1, so
IiMIi = IiMIi just by equality axioms. For the Induction Step, note that:

IiM
j+1Ii = IiM

jMIi = IiM
j(IiIi)MIi = (IiM

jIi)(IiMIi)

and by the induction hypothesis, IiM jIi = (IiMIi)j , so we are done.
By Berkowitz’s algorithm we know that the characteristic polynomial of

A is given by the following product of matrices:

C1C2 · · ·Ci−1Ci · · ·Cn
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Let C ′
1C

′
2 · · ·C ′

n be the characteristic polynomial of IiAIi. There, we padded
the matrices C1, . . . , Cn with zeros to make them all of equal size, and we
put them in one big matrix C. Then, by computing the n-th power of C,
we obtain the iterated matrix product C1C2 · · ·Cn. Here, whenever we talk
of iterated matrix products, we have this construction in mind.

Using Lemma 4.3 and pMi+1(Mi+1) = 0, we know that if we interchange
the first two rows and the first two columns of Mi−1 (which are contained in
the i-th and (i+1)-st rows and columns of A), the characteristic polynomial
of Mi−1 remains invariant. This gives us:

CiCi+1 · · ·Cn = C ′
iC

′
i+1 · · ·C ′

n (33)

Now we are going to prove that for 1 ≤ k ≤ i− 1, Ck = C ′
k. To see this,

consider the first column of C ′
k (it is enough to consider the first column as

these are Toeplitz matrices). We are going to examine all the entries in this
columns:

• The first entry is 1, which is a constant.

• The second entry is akk, just as in Ck since k ≤ i− 1.

• RkM
j
kSk is replaced by (RkIi+1−k)(Ii+1−kMkIi+1−k)j(Ii+1−kSk), but

by (32) these two are equal. (Note that 0 ≤ j ≤ n− k − 1).

Thus, Ck = C ′
k, for 1 ≤ k ≤ i − 1 and so C1C2 · · ·Ci−1 = C ′

1C
′
2 · · ·C ′

i−1.
Combining this with (33) gives us:

C1C2 · · ·Cn = C ′
1C

′
2 · · ·C ′

n

and so A and IiAIi have the same characteristic polynomial, i.e., p(IiAIi) =
pA. !

Corollary 4.1 Let A be an n×nmatrix, and let 1 ≤ i < j ≤ n. LAP proves,
using the C-H Theorem on (n− 1)× (n− 1) matrices, that p(IijAIij) = pA.

Proof. First of all, to prove this Corollary to Lemma 4.5, we are going
to list explicitly the matrices for which we require the C-H Theorem: we
need the following principal submatrices of A: {Mi+1, . . . ,Mj} as well as
the matrices {M ′

j−1, . . . ,M
′
i+1} which are obtained from the corresponding

principal submatrices, by replacing, in A, the j-th row by the i-th row, and
the j-th column by the i-th column. The details are given in Figure 2.
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M

column i

i+1

row i+1
row i

column i+1

Figure 1: Matrix A: pMi+1(Mi+1) = 0 =⇒ p(IiAIi) = pA

To see why we require the C-H Theorem on precisely the matrices listed
above, we illustrate how we derive p(I13AI13) = pA (see Figure 3). Using
pM2(M2) = 0 and Lemma 4.5 we interchange the first two rows (and the
first two columns, but for clarity, we do not show the columns). Then,
using pM3(M3) = 0 and Lemma 4.5, we interchange rows two and three,
so at this point, the original row one is in position. We still need to take
the original row three from position two to position one. This requires the
use of pM ′

2
(M ′

2) = 0 and Lemma 4.5. The prime comes from the fact that
what used to be row three, has now been replaced by row one. So using
pM ′

2
(M ′

2) = 0, we exchange row two and one, and everything is in position.
Now the same argument, but in the general case, relies on the fact that:

Iij = Ii(i+1)I(i+1)(i+2) · · · I(j−1)jI(j−1)(j−2) · · · I(i+1)i (34)

i.e., any permutation can be written as a product of transpositions. Using
Lemma 4.5 at each step, we are done. Equation (34) can be proven in LAP
as follows: first note that Iij = I1iI1jI1i, so it is enough to prove that I1i is
equal to a product of transpositions, for any i.

We use induction on i. The Basis Case is i = 2, and I12 is a transpo-
sition, so there is nothing to prove. Now the Induction Step. Assume the
claim holds for I1i, and show that it holds for I1(i+1). This follows from the
fact that I1(i+1) = I1iIi(i+1)I1i. !

Corollary 4.2 LAP proves, using the C-H Theorem, that det is alternating
in the rows, i.e., det(A) = − det(IijA).
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jïth position

iïth col in jïth position

iïth row in
M jï2

M i+1

M j M j

M’jï2

M’i+1

Figure 2: {Mi+1, . . . ,Mj} and {M ′
j−1, . . . ,M

′
i+1}

Proof. Since Iij = I1iI1jI1i, it is enough to prove this for I1j . If j = 2 we
are done by Lemma 4.3. If j > 2, then use I2j to bring the j-th row to the
second position, and by Corollary 4.1, A and I2jAI2j have the same char
polynomials. Now apply I12 with Lemma 4.3, and use I2j once again to put
things back in order. !

Example 4.1 Suppose that we want to show that det(A) = − det(I15A).
Consider:

A
(1)−→ I25AI25

(2)−→ I12I25AI25
(3)−→ I25I12I25AI25I25 = I15A

By Corollary 4.1, (1) preserves the characteristic polynomial, and hence it
also preserves the determinant. By Lemma 4.3, (2) changes the sign of
the determinant. By Corollary 4.1 again, (3) preserves the determinant.
Therefore, det(A) = − det(I15A).

4.5 The cofactor expansion

We show that LAP proves that the cofactor expansion formula (22) follows
from the axiomatic definition of the determinant. We first show that the
cofactor expansion of A along the first row is equal to det(A). Define Aj ,
for 1 ≤ j ≤ n, to be A, with the first row replaced by zeros, except for the
(1, j)-th entry which remains unchanged. Then, using multilinearity along
the first row of A, we obtain:

det(A) = det(A1) + det(A2) + · · ·+ det(An) (35)
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Figure 3: Example of p(I13AI13) = pA

Consider Aj, for j > 1. If we interchange the first column and the j-th
column, and then, with (j − 2) transpositions we bring the first column
(which is now in the j-th position) to the second position, we obtain, by
alternation and (23), the following:

det(Aj) = (−1)j−1a1j det(A[1|j])
= (−1)1+ja1j det(A[1|j])

Using this, and from equation (35), we obtain the cofactor expansion along
the first row, that is, we obtain (22) for i = 1.

If we want to carry out the cofactor expansion along the i-th row (where
i > 1), we interchange the first and the i-th row, and then we bring the first
row (which is now in the i-th position) to the second row with (i−2) transpo-
sition. Denote this new matrix A′, and note that det(A′) = (−1)i−1 det(A).
Now, expanding along the first row of A′, we obtain (22) for i > 1.

4.6 The adjoint as a matrix of cofactors

We wish to show that LAP proves the C-H theorem from the cofactor expan-
sion formula (i.e., from (22)). To this end, we first show that (22) implies
(in LAP) the axiomatic definition of determinant.
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We want to show that we can get multilinearity, alternation and det(I) =
1 from (22). To show multilinearity along row (column) i, we just expand
along row (column) i. To show det(I) = 1 use induction on the size of I; in
fact, showing that det(I) = 1 can be done in LAP without any assumptions.

It is very easy to show that alternation follows from multilinearity and
from:

If two rows (columns) of A are equal =⇒ det(A) = 0

To show this in LAP (from the cofactor expansion formula), we expand along
row i first to obtain:

det(A) =
n∑

k=1

(−1)i+kaik det(A[i|k])

and then we expand each minor A[i|k] along the row that corresponds to
the j-th row of A. Note that we end up with n(n − 1) terms; polynomially
many in the size of A. Since row i is identical to the row j, we can pair each
term with its negation; hence the result is zero, so det(A) = 0.

Therefore, we have that the axiomatic definition of the determinant fol-
lows from the cofactor expansion formula, in LAP. We can now proceed,
and finish showing the equivalences in Theorem 4.2, by showing that the
cofactor expansion formula implies the C-H theorem, also in LAP.

Lemma 4.6 LAP proves that:

adj(A) = ((−1)i+j det(A[j|i]))ij

i.e., that adj(A) is the transpose of the matrix of cofactors of A, from the
axiomatic definition of det.

Consider the following matrix:

C =

(
0 eti
ej A

)

where ei is a column vector with zeros everywhere except in the i-th position
where it has a 1. By (23), we have that:

det(C) = −etiadj(A)ej = (i, j)-th entry of −adj(A)

On the other hand, from alternation on C, we have that det(C) = (−1)i+j+1 det(A[j|i]).
To see this, note that we need (j + 1) transpositions to bring the j-th row
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of A to the first row in the matrix C, to obtain the following matrix:

C ′ =




1 Aj

0 eti
0 A[j|−]





where Aj denotes the j-th row of A, and A[j|−] denotes A with the j-th
row deleted. Then, by (23), we have:

det(C ′) = det

(
eti

A[j|−]

)

and now with i transpositions, we bring the i-th column of

(
eti

A[j|−]

)
to the

first column, to obtain:

(
1 0
0 A[j|i]

)
. Therefore, det(C ′) = (−1)i det(A[j|i])

finishing the proof.
Therefore, LAP proves that the (i, j)-th entry of adj(A) is given by

(−1)i+j det(A[j|i]).
Note that pA(A) = 0 can also be stated as Aadj(A) = det(A)I, using our

definitions of the adjoint and the determinant. Thus, the following shows
that LAP proves the C-H theorem from the cofactor expansion formula: LAP
proves Aadj(A) = adj(A)A = det(A)I from the cofactor expansion formula.

We show first that Aadj(A) = det(A)I. The (i, j)-th entry of Aadj(A)
is equal to:

ai1(−1)j+1 det(A[j|1]) + · · ·+ ain(−1)j+n det(A[j|n]) (36)

If i = j, this is the cofactor expansion along the i-th row. Suppose now
that i .= j. Let A′ be the matrix A with the j-th row replaced by the
i-th row. Then, by alternation, det(A′) = 0. Now, (36) is the cofactor
expansion of A′ along the j-th row, and therefore, it is 0. This proves that
A adj(A) = det(A)I, and by definition of the adjoint, adj(A)A = A adj(A),
so we are done.

4.7 The multiplicativity of the determinant

The multiplicativity of the determinant is the property: det(AB) = det(A) det(B).
This turns out to be a very strong property, from which all other properties
follow readily in LAP.

Even the C-H theorem follows readily from the multiplicativity of det:
from the multiplicativity of the determinant we have that det(I12AI12) =
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det(I1) det(A) det(I1) = det(A) for any matrix A. Suppose we want to prove
the C-H theorem for some n× n matrix M . Define A as follows:

A =




a b R
c d P
S Q M



 =




0 0 eti
0 0 0
ej 0 M





Let C1C2C3 · · ·Cn+2 be the characteristic polynomial of A (and C3 · · ·Cn+2

the characteristic polynomial of M). From Berkowitz’s algorithm it is easy
to see that for A defined this way the bottom row of C1C2 is given by:

etiM
nej etiM

n−1ej . . . etiIej

so the bottom row of C1C2C3 · · ·Cn+2 is simply etip(M)ej where p is the
characteristic polynomial of M .

On the other hand, using det(A) = det(I12AI12) and Berkowitz’s algo-
rithm, we have that:

det(A) = det




0 0 0
0 0 eti
0 ej M



 = 0

so that etip(M)ej = 0, and since we can choose any i, j, we have that p(M) =
0.

What about the other direction? That is, can we prove the following
implication in LAP:

C-H theorem =⇒ Multiplicativity of the determinant?

The answer is “yes,” if LAP can prove the following:

det(A) = 0 → AB .= I (37)

That is, LAP can prove the multiplicativity of the determinant from the C-H
theorem and (37).

Theorem 4.3 LAP proves the multiplicativity of the determinant from the
C-H Theorem and the property given by (37).

Proof. We prove the Lemma by induction on the size of the matrices; so
assume that A,B are square n × n matrices. Since we assume the Cayley-
Hamilton Theorem, by the results in the previous sections we also have
at our disposal the cofactor expansion and the axiomatic definition of the
determinant.
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Suppose first that the determinants of all the minors of A (or B) are
zero. Then, using the cofactor expansion we obtain det(A) = 0. We now
want to show that det(AB) = 0 as well.

Suppose that det(AB) .= 0. Then, by the C-H Theorem, AB has an
inverse C, i.e., (AB)C = I. But then A(BC) = I, so A is invertible, contrary
to (37). Therefore, det(AB) = 0, so that in this case det(A) det(B) =
det(AB).

Suppose now that both A and B have a minor whose determinant is not
zero. We can assume that it is the principal submatrix whose determinant
is not zero (as A and I1iAI1j have the same determinant, so we can bring
any non-singular minor to be the principal minor). So assume that MA,MB

are non-singular, where:

A =

(
a RA

SA MA

)
B =

(
b RB

SB MB

)

By the Induction Hypothesis we know that det(MAMB) = det(MA) det(MB).
Also note that:

AB =

(
ab+RASB aRB +RAMB

bSA +MASB SARB +MAMB

)

Now using Berkowitz’s algorithm:

det(A) det(B) = (adet(MA)−RAadj(MA)SA)(bdet(MB)−RBadj(MB)SB)
(38)

We want to show that det(AB) is equal to (38). Again, using Berkowitz’s
algorithm:

det(AB) = (ab+RASB) det(SARB +MAMB)

− (aRB +RAMB)adj(SARB +MAMB)(bSA +MASB)
(39)

We now show that the right hand sides of (38) and (39) are equal.
By Lemma 4.7:

det(SARB +MAMB) = det(MAMB) +RBadj(MAMB)SA (40)

Using the IH, det(MAMB) = det(MA) det(MB), and using Lemma 4.6 and
det(MA) .= 0 and det(MB) .= 0 we obtain: adj(MAMB) = adj(MB)adj(MA).
To see this note that by the C-H Theorem (MAMB)adj(MAMB) = det(MAMB)I.
We now multiply both sides of this equation by adj(MA) to obtain, by the C-
H Theorem again, det(MA)MBadj(MAMB) = det(MAMB)adj(MA). Now
multiply both sides by adj(MB) to obtain:

det(MA) det(MB)adj(MAMB) = det(MAMB)adj(MB)adj(MA)
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Since det(MAMB) = det(MA) det(MB), and det(MA) det(MB) .= 0, we ob-
tain our result.

Therefore, from (40) we obtain:

det(SARB +MAMB) = det(MA) det(MB) +RBadj(MB)adj(MA)SA (40′)

Using Lemma 4.8 and adj(MAMB) = adj(MB)adj(MA), we obtain:

RBadj(SARB +MAMB) = RBadj(MB)adj(MA)

adj(SARB +MAMB)SA = adj(MB)adj(MA)SA
(41)

Finally, we have to prove the following identity:

RAMBadj(SARB+MAMB)MASB =

RASB det(MA) det(MB)−RBadj(MB)SBRAadj(MA)SA

+ (RASB)RBadj(MB)adj(MA)SA

(42)

First of all, by Lemma 4.6 we have:

(SARB +MAMB)adj(SARB +MAMB) = det(SARB +MAMB)

Using Lemmas 4.7 and 4.8, we get:

SARBadj(MAMB)+MAMBadj(SARB+MAMB) = (det(MAMB)+RBadj(MAMB)SA)I

We have already shown above that adj(MAMB) = adj(MB)adj(MA) using
our Induction Hypothesis: det(MAMB) = det(MA) det(MB). So, if we mul-
tiply both sides of the above equation by adj(MA) on the left, and by MA

on the right, we obtain:

adj(MA)SARBadj(MB) det(MA) + det(MA)MBadj(SARB +MAMB)MA =

det(MA)(det(MA) det(MB) +RBadj(MB)adj(MA)SA)I

Since by assumption det(MA) .= 0, we can divide both sides of the equation
by det(MA) to obtain:

adj(MA)SARBadj(MB) +MBadj(SARB +MAMB)MA =

(det(MA) det(MB) +RBadj(MB)adj(MA)SA)I

If we now multiply both sides of the above equation, by RA on the left, and
by SB on the right, we obtain (42) as desired.

We now substitute (40′), (41), and (42) into (39), and we obtain that
the right hand side of (39) is equal to the right hand side of (38), and we
are done. !

35



Lemma 4.7 LAP proves, from the axiomatic definition of det, that:

det(SR+M) = det(M) +R adj(M) S (43)

Proof. Consider the matrices C and C ′, where C ′ is obtained from C by
adding multiples of the first row of C to clear its first column:

C =





1 −R

S M



 and C ′ =





1 −R

0 SR+M





By Lemma 4.1, det(C) = det(M)+R adj(M) S. By the axiomatic definition
of det, we have that det(C ′) = det(C). Using Lemma 4.1 on C ′, we obtain:
det(C ′) = det(SR+M), and hence the result follows. !

Lemma 4.8 LAP proves, from the Cayley-Hamilton Theorem, that:

Radj(SR +M) = Radj(M)

adj(SR+M)S = adj(M)S

Proof. By Lemma 4.6 we know that adj(A) is the transpose of the matrix
of cofactors of A. From this we can deduce the following identity:

adj(A) =

(
det(M) −Radj(M)

−adj(M)S (1 + a11)adj(M)− adj(SR+M)

)
(44)

To see this we are going to consider the four standard submatrices. First of
all, the (1, 1) entry of adj(A) is the determinant of the principal minor of A
times (−1)1+1, i.e. det(M). The remaining entries along the first row are
given by (−1)1+i det(A[i|1]), for 2 ≤ i ≤ n. Note that for 2 ≤ i ≤ n, A[i|1]
is given by: (

R
M [i|−]

)
(45)

where M [i|−] denotes M without the i-th row. To compute the deter-
minant of the matrix given by (45) expand along the first row to obtain:∑n−1

j=1 rj(−1)i+j det(M [i|j]). This gives us −Radj(M) as desired. In the
same way we can show that the entries in the first column below (1, 1) are
given by −adj(M)S.

We now show that the principal submatrix is given by (1+a11)adj(M)−
adj(SR+M). To see this first note that (SR+M)[i|j] = S[i]R[j] +M [i|j],
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where S[i], R[j] denote S,R without the i-th row and j-th column, re-
spectively. Now using Lemma 4.7 we have that det((SR + M)[i|j]) =
det(M [i|j]) + R[j]adj(M [i|j])S[i]. The (i + 1, j + 1) entry of adj(A)t, 1 ≤
i, j < n, is given by:

(−1)i+j(a11 det(M [i|j]) −R[j]adj(M [i|j])S[i])

as can be seen from Figure 4.

a11 R

S M

column j+1

row i+1

Figure 4: Showing that adj(A)[1|1] = (1 + a11)adj(M)− adj(SR +M)

Therefore, the (i+ 1, j + 1) entry of adj(A)t is given by:

(−1)i+j(a11 det(M [i|j]) + det(M [i|j]) − det((SR +M)[i|j]))

and we are done.
By Lemma 4.6 we know that:

(
a11 R
S M

)(
det(M) −Radj(M)

−adj(M)S (1 + a11)adj(M)− adj(SR+M)

)
= det(A)I

In particular this means that:

−a11Radj(M) +R(1 + a11)adj(M)−Radj(SR+M) = 0

and from this it follows that Radj(SR +M) = Radj(M). Similarly, we can
prove the second identity. !
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5 The theory ∀LAP

We extend the theory LAP to ∀LAP, where we allow induction over formulas
with a bounded universal matrix quantifier. We show that ∀LAP proves the
C-H Theorem, and the multiplicativity of det. By Theorem 4.2, it follows
that ∀LAP also proves the axiomatic definition of det, and the cofactor
expansion formula. All of these results continue to hold when the underlying
field is replaced by an arbitrary commutative ring.

As discussed in section 6, proofs in ∀LAP are feasible, in the sense that
they require only polynomial time concepts. It follows that all the principles
of linear algebra listed in Theorem 4.2 have feasible proofs. We believe that
we give the first feasible proofs of these principles.

We define ΠM
0 to be the set of formulas over LLAP (“M” stands for

matrix). We define ΠM
1 to be the set of formulas in ΠM

0 together with
formulas of the form (∀A ≤ n)α, where α ∈ ΠM

0 , and where (∀A ≤ n)α
abbreviates:

(∀A)((r(A) ≤ n ∧ c(A) ≤ n) ⊃ α)

where A is a matrix variable, not contained in the index term n.
We define the system ∀LAP to be similar to LAP, but we allow ΠM

1
formulas. The underlying logic is again based on Gentzen’s sequent system
LK. Whereas LAP needs only the propositional rules of LK, we now need
the rules for introducing a universal quantifier on the left and on the right
of a sequent:

left
r(T ) ≤ n, c(T ) ≤ n,α(T ),Γ → ∆

(∀X ≤ n)α(X),Γ → ∆

right
r(A) ≤ n, c(A) ≤ n,Γ → ∆,α(A)

Γ → ∆, (∀X ≤ n)α(X)

where T is any term of type matrix, and n is any term of type index. Also,
in ∀-introduction-right, A is a variable of type matrix that does not occur
in the lower sequent, and in both rules α is a ΠM

0 formula, because we just
want (need) a single matrix quantifier.

The main observation is that in ∀LAP we can use the induction rule over
ΠM

1 formulas. It is this strengthening which finally allows us to prove all
the principles listed in Theorem 4.2.

None of the results in this section requires inverses of field elements, and
hence all results hold over any commutative ring.

38



5.1 ∀LAP proves the C-H Theorem

The basic idea behind the proof is the following: if pA(A) .= 0, that is, if the
C-H theorem fails for A, then we can find (in polytime) a sub-matrix B of A
for which pB(B) .= 0, i.e., for which the C-H theorem fails already. Since the
C-H Theorem does not fail for 1× 1 matrices, after at most n = (size of A)
steps we get a contradiction. This idea can be expressed with universal
quantifiers over variables of type matrix: if the C-H theorem holds for all
matrices smaller than A, then it also holds for A. The matrix B is obtained
from A by selecting an index i such that column i of pA(A) is nonzero, and
interchanging the first row and column of A with the i-th row and column,
respectively, and finally deleting the first row and column of the result.
Lemma 5.1 below guarantees that pB(B) .= 0.

Theorem 5.1 ∀LAP (over any commutative ring) proves the C-H theorem.

Proof. We prove that for all n × n matrices A, pA(A) = 0, by induction
on n. The Basis Case is trivial: if A = (a11), then the characteristic
polynomial of A is x−a11. We use the following strong induction hypothesis:
(∀A ≤ n)pA(A) = 0. Thus, in our Induction Step we prove:

(∀M ≤ n)pM(M) = 0 → (∀A ≤ n+ 1)pA(A) = 0 (46)

Let A be an (n+ 1)× (n+ 1) matrix, and assume that we have (∀M ≤
n)pM (M) = 0. By Corollary 4.1 we have that for all 1 ≤ i < j ≤ n + 1,
p(IijAIij) = pA. Suppose, for the sake of contradiction, that the i-th column
of pA(A) is not zero. Then, the first column of I1ipA(A)I1i is not zero. But:

I1ipA(A)I1i = pA(I1iAI1i) = p(I1iAI1i)(I1iAI1i)

Let C = I1iAI1i. By the induction hypothesis, pC[1|1](C[1|1]) = 0. By
Lemma 5.1 below, the first column of pC(C) is zero; therefore, the first
column of p(I1iAI1i)(I1iAI1i) is zero. Contradiction. !

Lemma 5.1 LAP proves that if pC[1|1](C[1|1]) = 0, then the first column of
pC(C) is zero.

Proof. We restate the Lemma using the usual notation of A and M = A[1|1],
where A is an n×n matrix, n > 1. Thus, we want to show that LAP proves
the following: if pM (M) = 0, then the first column of pA(A) is zero. We
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let p = pA and q = pM , that is, p, q are the characteristic polynomials of
A,M = A[1|1], respectively. Define wk,Xk, Yk, Zk as follows:

A =

(
w1 X1

Y1 Z1

)
=

(
a11 R
S M

)

Ak+1 =

(
wk+1 Xk+1

Yk+1 Zk+1

)
=

(
wk Xk

Yk Zk

)(
a11 R
S M

)
for k ≥ 1

It is easy to see that LAP proves the following equations:

wk+1 = a11wk +XkS
Xk+1 = wkR+XkM
Yk+1 = a11Yk + ZkS
Zk+1 = YkR+ ZkM

(47)

Using Berkowitz’s algorithm (14,15), it is not hard to show in LAP that:

p(A) = (A− a11I)q(A) −
n−1∑

k=1

qk

k−1∑

i=0

(RM iS)Ak−1−i (48)

and thus, to show that the first column of p(A) is zero, it is enough to show
that the first columns of (A− a11I)q(A) and

∑n−1
k=1 qk

∑k−1
i=0 (RM iS)Ak−1−i

are the same. This is the strategy for proving Claims 5.1 and 5.2, which will
establish the Lemma.

Claim 5.1 The upper-left entry of p(A) is zero.

Proof. If we make the convention w0 = 1, then using the second line of (47)
we can prove by induction on k:

Xk =
k−1∑

i=0

wk−1−iRM i, for k ≥ 1

Using this and the first line of (47) we obtain





w0 = 1

w1 = a11

wk+1 = a11wk +
∑k−1

i=0 (RM iS)wk−1−i, for k ≥ 1

(49)

The top left entry of (A− a11I)q(A) is given by

n−1∑

k=1

qk(wk+1 − a11wk) (50)
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(notice that we can ignore the term k = 0 since the top left entry of A is the
same as the top left entry of a11I). We can compute (wk+1 − a11wk) using
the recursive definitions of wk (given by (49) above):

wk+1 − a11wk = a11wk +
k−1∑

i=0

(RM iS)wk−1−i − a11wk =
k−1∑

i=0

(RM iS)wk−1−i

Thus, (50) is equal to

n−1∑

k=1

qk

k−1∑

i=0

(RM iS)wk−1−i

This proves that the top left entry of p(A) is zero (see equation (48) and the
explanation below it). !

Claim 5.2 The (n− 1)× 1 lower-left submatrix of p(A) is zero.

Proof. Using the last line of (47) we can prove by induction on k

Zk = Mk +
k−2∑

i=0

Yk−1−iRM i, for k ≥ 2

Using this and the second last line of (47), if we make the convention Y0 = 0
then 





Y0 = 0

Y1 = S

Yk+1=a11Yk+MkS+
∑k−2

i=0 (RM iS)Yk−1−i, for k ≥ 1

(51)

(Note that RM iS is a scalar.) The lower-left (n − 1) × 1 submatrix of
(A− a11I)q(A) is given by

n−1∑

k=0

qk(Yk+1 − a11Yk)

and by (51) we have that for k ≥ 2, Yk+1 − a11Yk is given by:

(

a11Yk +MkS +
k−2∑

i=0

(RM iS)Yk−1−i

)

− a11Yk = MkS +
k−2∑

i=0

(RM iS)Yk−1−i
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ans, therefore,
∑n−1

k=0 qk(Yk+1 − a11Yk) is given by:

q0(Y1 − a11Y0) + q1(Y2 − a11Y1) +
n−1∑

k=2

qk

(
MkS +

k−2∑

i=0

(RM iS)Yk−1−i

)

= q(M)S +
n−1∑

k=2

qk

k−2∑

i=0

(RM iS)Yk−1−i

where we have used the facts Y0 = 0, Y1 = S, and Y2 = a11S +MS. Now
by assumption q(M) = 0, so we can conclude that:

n−1∑

k=0

qk(Yk+1 − a11Yk) =
n−1∑

k=1

qk

k−1∑

i=0

(RM iS)Yk−1−i (52)

The RHS of (52) is equal to the (n−1)×1 lower-left submatrix of
∑n−1

k=1 qk
∑k−1

i=0 (RM iS)Ak−1−i,
and hence the claim follows (once again, see equation (48) and the explana-
tion below it). !

This ends the proof of the Lemma 5.1. !

Corollary 5.1 ∀LAP (over any commutative ring) proves the axiomatic
definition of det, and the cofactor expansion formula.

Proof. By Theorem 4.2, the C-H Theorem is equivalent to the axiomatic
definition of det, and the cofactor expansion formula, and furthermore, this
equivalence can be proven in LAP. !

5.2 ∀LAP proves the multiplicativity of det

Theorem 5.2 ∀LAP (over any commutative ring) proves the multiplicativ-
ity of det.

Proof. To show the multiplicativity of det in ∀LAP, we use two principles
which can be proven in ∀LAP by the results of the previous section:

• The cofactor expansion formula for det (along rows and columns),

• and the axiomatic definition of det, from which it follows (easily) that if
we add a multiple of one row to another row, the determinant remains
invariant.
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Our proof is by induction on the size of matrices, and the Basis Case, 1× 1
matrices, is trivial. Next, we show the Induction Step, where we prove,
using the cofactor expansion formula along rows and columns, and using the
axiomatic definition of det, that if multiplicativity holds for (n−1)× (n−1)
matrices, it also holds for n× n matrices.

So suppose that A,B are n× n matrices, and so is C = AB. Using the
multilinearity of det along the first column of C, ∀LAP proves

det(C) = det(C1, C2, . . . , Cn)

= det(b11A1 + b21A2 + · · ·+ bn1An, C2, . . . , Cn)

=
n∑

k=1

det(bk1Ak, C2, . . . , Cn)

where Ci denotes the i-th column of C, and Ai denotes the i-th column of
A.

Since adding a multiple of one row to another row does not change det,
∀LAP proves for 1 ≤ k ≤ n

det(Ak, C2, . . . , Cn) = det(Ak, C2 − bk2Ak, . . . , Cn − bknAk)

and hence by linearity ∀LAP proves

det(bk1Ak, C2, . . . , Cn) = det(bk1Ak, C2 − bk2Ak, . . . , Cn − bknAk) (53)

Notice, that the matrix given by (C2 − bk2Ak, . . . , Cn − bknAk) with the
l-th row removed is just A[l|k]B[k|1]. Thus, using the cofactor expansion
along the first column of (53), we obtain for 1 ≤ k ≤ n

(53) =
n∑

l=1

(−1)1+lbk1alk det(A[l|k]B[k|1]) (54)

We can now apply the induction hypothesis to (54) to conclude that for
all l,

det(A[l|k]B[k|1]) = det(A[l|k]) det(B[k|1])

Notice that it is here where we see that we need ∀-induction (and hence
∀LAP, not just LAP), because we have to apply the induction hypothesis to
n different matrices, of size (n − 1)× (n − 1).

Thus, putting everything together we get:

det(AB) = det(C) =
n∑

k=1

n∑

l=1

(−1)1+lbk1alk det(A[l|k]) det(B[k|1])
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note that (−1)1+l = (−1)1+l+2k = (−1)l+k(−1)1+k, so:

=
n∑

k=1

(
(−1)1+kbk1 det(B[k|1])

(
n∑

l=1

(−1)l+kalk det(A[l|k])
))

where
∑n

l=1(−1)l+kalk det(A[l|k]) is the cofactor expansion of det(A) on the
k-th column of A,

= det(A)
n∑

k=1

(−1)1+kbk1 det(B[k|1])

where
∑n

k=1(−1)1+kbk1 det(B[k|1]) is the cofactor expansion of det(B) along
the first column of B, so:

= det(A) det(B)

and we are done. !

Corollary 5.2 ∀LAP (over any commutative ring) proves the hard matrix
identities of section 3.1.

Proof. By using the multiplicativity of the determinant we can eliminate
the use of field inverses in the proof of Theorem 4.1. Again, it suffices to
consider the identity III:

AB = I → BA = I

Assuming AB = I, we have by multiplicativity

det(A) det(B) = det(I) = 1

and therefore d = det(A) is a unit in the underlying ring. By Theorem 5.1
we may assume the C-H theorem, and hence from (20) we have

adj(A)A = d I

Using the assumption AB = I we have adj(A)AB = adj(A) and hence
B = d−1adj(A). Thus BA = d−1adj(A)A = I as required. !
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6 Propositional Translations and Feasible Proofs

The hard matrix identities (section 3.1) such as

AB = I → BA = I (55)

over the field of two elements translate naturally into a polynomial size fam-
ily 〈INVn〉 of propositional tautologies. For each n ≥ 1, the tautology INVn

expresses (55) when A and B are n×nmatrices over Z2. In fact, INVn is eas-
ily constructed from the 2n2 propositional variables aij and bij , 1 ≤ i, j ≤ n
representing the entries of A and B, respectively. This idea generalizes to
all formulas α of LA, and the underlying field (or commutative ring) K does
not have to be Z2, as long as it can be feasibly represented. It turns out
(Theorem 6.3) that if α is a theorem of LA, then the corresponding tautol-
ogy family has polynomial size proofs in an appropriate propositional proof
system, depending on the underlying field. Similar results hold for LAP and
∀LAP.

6.1 Complexity classes and their associated proof systems

Before giving details of the translation we give a brief review of propositional
proof complexity (see [Kra95, Urq95]).

In the general sense, a propositional proof system can be regarded as
a polynomial time map F from the set {0, 1}∗ of strings onto the set of
propositional tautologies. The idea here is that if π is an F -proof of a
tautology A then F (π) = A.

Consider for example the system PK (which is Gentzen’s sequent system
LK restricted to propositional formulas). We can think of a PK proof of A
as a sequence of sequents, each of which is either an axiom of the form
B → B or follows from earlier sequents by a rule of inference, ending in the
sequent → A. The corresponding polynomial time function FPK satisfies
FPK(π) = A, where π is a string coding such a PK proof.

A Frege system is a propositional proof system P such that a P -proof of a
propositional formula A is (or codes) a finite sequence of formulas ending in
A, each formula of which either is an axiom or follows from earlier formulas
by a rule of inference. Further, axioms and rules are defined as substitution
instances of finitely many schemes, and the system is required to be sound
and implicationally complete. Most specific propositional proof systems
described in logic texts are Frege systems, or are equivalent to Frege systems.

We say that a system S2 p-simulates a system S1 (written S1 ≤p S2)
if there is a polynomial time transformation which takes every S1 proof
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to a S2 proof of the same tautology. (In case the proof systems apply to
tautologies with different connective sets, the tautologies must be translated
in an appropriate way.) Two systems are p-equivalent if each p-simulates the
other. It can be shown that any two Frege systems are p-equivalent to each
other and to the system PK.

We say that a propositional proof system F is polynomially bounded if
there is polynomial p(n) such that every tautology A has an F -proof π of A
(so F (π) = A) and |π| ≤ p(|A|), where |x| indicates the length of a string x.
It is not hard to show that a polynomially-bounded proof system exists iff
NP = coNP (i.e. iff the complement of every problem in NP is again in
NP). Because of this, a common conjecture is that no propositional proof
system is polynomially-bounded.

Despite this conjecture, no one has even been able to prove that Frege
systems are not polynomially bounded.

Many propositional proof systems are naturally associated with com-
plexity classes. In particular, Frege systems are associated with the class
NC1. Here a language L ⊆ {0, 1}∗ in NC1 is specified by a polynomial
size family 〈Bn〉 of propositional formulas, where Bn has variables x1, ..., xn,
and a string of length n is in L iff it is the characteristic vector of a truth
assignment satisfying Bn. The reason for associating Frege systems with
NC1 is that the formulas in a polynomial size family of Frege proofs of a
tautology family 〈An〉 can express concepts in NC1. For example, PHPn is
a well-studied propositional tautology expressing the fact that n+1 pigeons
cannot fit in n holes unless at least one hole has two or more pigeons (the
pigeonhole principle). Buss [Bus87] showed that 〈PHPn〉 has polynomial
size Frege proofs, using the fact that counting the number of ones in an
input string x1...xn is an NC1 concept.

The complexity classes of interest in this paper form the chain

AC0 ⊆ AC0(2) ⊆ TC0 ⊆ NC1 ⊆ NC2 ⊆ P/poly (56)

A language in AC0 is specified by a polynomial size family of propositional
formulas as for NC1, except now the alternation depth of ∧ and ∨ in the
family must be bounded by a constant. The class AC0(2) is defined simi-
larly, except now we allow parity subformulas (x1 ⊕ x2 ⊕ ...⊕ xn) asserting
that the number of ones in x1, ..., xn is odd, and again require that the depth
of the formulas (with unbounded fanin ∧,∨, and ⊕) is bounded. The class
TC0 is defined similarly except now we allow threshold gates Tk(x1, ..., xn)
asserting that at least k of x1, ..., xn are ones. A language in NC2 is spec-
ified by a polynomial size family of Boolean circuits of depth bounded by
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O((log n)2). A language in P/poly is specified by a polynomial size family
of Boolean circuits (with no depth restriction). This is a nonuniform version
of the class P of polynomial time languages. One can show that a language
L is in P/poly iff there is a polynomial time Turing machine M and a poly-
nomial size sequence 〈vn〉 of “advice” strings such that a string w of length
n is in L iff M accepts the input pair 〈w, vn〉.

The corresponding propositional proof systems form a sequence

AC0-Frege ≤p AC0(2)-Frege ≤p TC0-Frege ≤p Frege ≤p NC2-Frege ≤p eFrege
(57)

Here an AC0-Frege system is the same as a Frege system, except the (∧,∨)
alternation depth of all formulas in a proof must be bounded by some fixed
constant. The systems AC0(2)-Frege and TC0-Frege have a similar relation
to the complexity classes AC0(2) and TC0. An eFrege (extended Frege)
proof is the same as a Frege proof, except a line p ↔ B (defining the variable
p) is allowed to appear in the proof for any formula B not containing p,
provided that p does not occur earlier in the proof and does not occur in
the conclusion. The idea is that each variable p corresponds to a gate in
a Boolean circuit, and hence eFrege systems correspond to the complexity
class P/poly. The system NC2-Frege can be defined similarly by limiting
the nesting depth of variable definitions p ↔ B to O(log n).

Ajtai [Ajt88] proved that the pigeonhole tautologies 〈PHPn〉 do not have
polynomial size AC0-Frege proofs, and hence no AC0-Frege system is poly-
nomially bounded. However it is not known whether any proof system in
the other classes described above is polynomially bounded.

One way to prove that Frege systems are not super might be to show
that some specific tautology family, such at the translations 〈INVn〉 of the
hard matrix identity (55), does not have polynomial size Frege proofs. This
example is motivated by the intuition that proofs of these tautologies seem
to require concepts (such as matrix inverse) that are not in NC1.

6.2 The systems PK(2) and PKBD(2)

Formulas in the propositional sequent system PK(2) are built from propo-
sitional variables p, q, r, ... using the logical constants F and T (for false and
true), the unary connective ¬, and the binary connectives ∧,∨,⊕ (as well
as parentheses). Here ⊕ represents exclusive or. An axiom is the sequent
F →, or → T, or any sequent of the form A → A, where A is a formula.
The rules include the usual structural rules for LK, namely Exchange, Con-
traction, and Weakening (left and right), as well as the Cut rule and rules
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for introducing each of the connectives ¬,∧,∨,⊕ on the left and right (see
[Bus98]). In particular, the rules for introducing ⊕ are

left
Γ,α → β,∆ Γ,β → α,∆

Γ, (α⊕ β) → ∆
right

Γ,α,β → ∆ Γ → α,β,∆

Γ → (α⊕ β),∆

Here Γ and ∆ are finite sequences of zero or more formulas. Each rule allows
the sequent under the line to be derived from the sequent(s) above the line.

A PK(2) proof of a sequent Γ → ∆ is a finite sequence of sequents ending
in Γ → ∆, such that each sequent is either an axiom or follows from earlier
sequents by a rule.

Note that if π is a PK(2) proof, α is a formula, and p is a propositional
variable, then the result of substituting α for p throughout π is again a
PK(2) proof.

A sequent Γ → ∆ is valid iff the conjunction of the formulas in Γ implies
the disjunction of the formulas in ∆. The system PK(2) is sound and com-
plete; that is, a sequent has a PK(2)-proof iff it is valid. Soundness follows
from the facts that axioms are valid, and the rules preserve validity. For
completeness, that every valid sequent Γ → ∆ has a (Cut-free) PK(2)-proof
is proved by induction on the total number of connectives in Γ and ∆, using
the facts that for each introduction rule, (i) the number of connectives in
the sequent below the line is more than the number of connectives in each
sequent above the line, and (ii) if the sequent below the line is valid, then
each sequent above the line is valid.

The depth of a PK(2) formula is defined by thinking of the connectives
∧,∨, and ⊕ as having unlimited fanin. If we think of a formula as a binary
tree, then the depth of each branch is defined by counting any consecutive
run of any of these connectives as a single connective. In particular, if
p1, ..., pn are atoms, then the formula (p1⊕ ...⊕pn) has depth one, no matter
how parentheses are inserted to make it a proper formula (with ⊕ a binary
operator).

The depth of a sequent is the maximum of the depths of the formulas in
the sequent.

The systems PKBD(2) are bounded-depth restrictions of PK(2). For
each d ≥ 1 the system PKBD[d](2) is the restriction of PK(2) obtained by
requiring that each formula in a proof has depth at most d. We refer to
the systems PKBD[d](2) collectively as PKBD(2). The systems PKBD(2) are

p-equivalent to the systems AC0(2) in the sequence (57).
If Γ is a finite sequence α1, ...,αn of formulas, then

∧
Γ = (α1 ∧α2 ∧ ...∧

αn) is the conjunction of the formulas, with parentheses inserted (say, with
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association to the right). Similarly for
∨

Γ and
⊕

Γ. For the case that Γ is
empty, we define

∧
∅ = T,

∨
∅ = F, and

⊕
∅ = F.

In describing PKBD(2) proofs it does not much matter how parentheses
are inserted in the formulas

∧
Γ,
∨

Γ, and
⊕

Γ. This is because the associa-
tive laws are valid, so that for example the sequent α⊕(β⊕γ) → (α⊕β)⊕γ
is valid and has a Cut-free PK(2) proof with a constant number of sequents
whose depths are bounded by the depth of the conclusion. From this it is
easy to see that if A and A′ are formulas resulting from inserting parentheses
in (α1 ⊕ ... ⊕ αn) in different ways, then the sequent A → A′ has a PK(2)
proof (using the Cut rule) with O(n) sequents whose depths are bounded
by the depth of the conclusion. Similarly for ∧ and ∨.

6.3 Translations of LA over Z2

Suppose that the underlying field for LA is Z2. Let α be a formula of LA, and
let σ be an object assignment which assigns a natural number σ(i) to each
free index variable i in α, and assigns natural numbers σ(r(A)),σ(c(A)) to
each of the terms r(A), c(A) respectively, where A is any matrix variable in
α. Let |σ| be the largest value assigned by σ. To each variable of type field
in α we assign a propositional variable asserting that the field variable is 1
(as opposed to 0). To each matrix variable A we assign enough propositional
variables to determine all entries in A (where the size of A is determined
by σ). Now α and σ translate into a propositional formula ‖α‖σ of size
polynomial in |σ| which is valid iff α is valid in the standard model under σ
over the field Z2. The method of translation is similar to those described in
Chapter 9 of [Kra95].

As an example, let α be the formula A+B = B+A, and let σ determine
that A and B are 3 × 3, so σ(r(A)) = σ(c(A)) = σ(r(B)) = σ(c(B)) = 3.
Then the propositional formula ‖α‖σ involves the propositional variables
Apq, Bpq, 1 ≤ p, q ≤ 3 expressing the entries of A and B. In fact ‖α‖σ is

∧

1≤p≤3
1≤q≤3

((Apq ⊕Bpq) ↔ (Bpq ⊕Apq))

We now describe the translation in more detail. Each term m of type
index is translated into a natural number ‖m‖σ ∈ N using σ and the intended
interpretations of the function and predicate symbols (2). This is possible
because the value of every index term is independent of the field values
given field variables and the field entries of matrix variables. In particular,
an index term of the form cond(α, t1, t2) can be evaluated explicitly because
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of our stated restriction that all atomic subformulas of α must have the form
m1 ≤ m2 or m1 = m2, and these formulas can be evaluated explicitly.

Each term t of type field is translated into a propositional formula ‖t‖σ
whose variables are those associated with the field variables in t, and the
variables Apq associated with the matrix variables A in t, where 1 ≤ p ≤
σ(r(A)) and 1 ≤ q ≤ σ(c(A)). Here ‖t‖σ is defined by structural induction
on t. The base cases are ‖0field‖σ = F, ‖1field‖σ = T, ‖a‖σ = a, and

‖e(A,m, n)‖σ =

{
A‖m‖σ‖n‖σ if 1 ≤ ‖m‖σ ≤ σ(r(A)) and 1 ≤ ‖n‖σ ≤ σ(c(A))

F otherwise

The inductive cases are as follows. First the field operations are handled by
‖t +field u‖σ = (‖t‖σ ⊕ ‖u‖σ), ‖t ∗field u‖σ = (‖t‖σ ∧ ‖u‖σ), ‖ − t‖σ = ‖t‖σ ,
and ‖t−1‖σ = ‖t‖σ . The conditional is handled by

‖cond(β, t, u)‖σ =

{
‖t‖σ if ‖β‖σ = T

‖u‖σ otherwise

where ‖β‖σ is either T or F because of our syntactic restriction on the atomic
subformulas of β.

The constructed terms are handled by

‖e(λij〈m′, n′, t〉,m, n)‖σ =

{
‖t‖σ′ if 1 ≤ ‖m‖σ ≤ ‖m′‖σ and 1 ≤ ‖n‖σ ≤ ‖n′‖σ
F otherwise

where σ′ is the same as σ except σ′(i) = ‖m‖σ and σ′(j) = ‖n‖σ.
Finally, we deal with Σ(T ) as follows:

‖Σ(A)‖σ =
⊕

(A11, A12, . . . , Aσ(r(A))σ(c(A)))

‖Σ(λij〈m,n, t〉)‖σ =
⊕

({‖t‖σpq} 1≤p≤‖m‖σ
1≤q≤‖n‖σ

)

where σpq is the same as σ except σpq(i) = p and σpq(j) = q.
This completes the definition of ‖t‖σ for terms t of type field. Note that

the only cases for which ⊕ is really necessary to achieve a bounded depth
polynomial size translation are those involving Σ terms.

It remains to define the translation ‖α‖σ of a formula α. If m and n
are terms of type index, then the atomic formulas m ≤ n and m = n are
translated to either T or F, using the natural number values of ‖m‖σ and
‖n‖σ . If t and u are terms of type field, then t = u is translated to the
propositional formula (‖t‖σ ↔ ‖u‖σ).
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If T and U are terms of type matrix, the the case ‖T = U‖σ is more
complicated. If T and U do not have compatible sizes, that is, if ‖r(T )‖σ .=
‖r(U)‖σ or ‖c(T )‖σ .= ‖c(U)‖σ , then ‖T = U‖σ = F. Suppose now that T
and U have compatible sizes, and let r, c be defined as follows:

r := ‖r(T )‖σ = ‖r(U)‖σ
c := ‖c(T )‖σ = ‖c(U)‖σ

Assume that i, j are index variables that do not occur free in T or U . Then:

‖T = U‖σ =
∧

1≤p≤r,1≤q≤c

(‖e(T, i, j)‖σpq ↔ ‖e(U, i, j)‖σpq )

where (as before) σpq is the same as σ except σpq(i) = p and σpq(j) = q.
This completes the definitions of ‖α‖σ when α is an atomic formula. In

general, formulas of LA are built from atomic formulas using the connectives
∧,∨,¬. We define ‖α ∧ β‖σ , ‖α ∨ β‖σ , ‖¬α‖σ respectively by ‖α‖σ ∧ ‖β‖σ ,
‖α‖σ ∨ ‖β‖σ , and ¬‖α‖σ .

Theorem 6.1 For every formula α of LA there exists a polynomial pα and
a constant dα such that for every object assignment σ to α, the length of
‖α‖σ is bounded by pα(|σ|) and the depth of α is bounded by dα. Further,
α is valid under σ in the standard model over the field Z2 iff ‖α‖σ is a
tautology.

Proof. The length and depth bounds are proved by structural induction on
α, while simultaneously proving polynomial bounds pm(|σ|) on the numer-
ical value ‖m‖σ, for each index term m, and pt(|σ|) on the length of the
formula ‖t‖σ for each field term t (as well as depth bounds on ‖t‖σ). The
validity claim is also proved by structural induction on α, while simultane-
ously noting that ‖m‖σ and ‖t‖σ correctly evaluate index and field terms.
!

Any theorem of LA is valid in the standard model for any object assign-
ment σ over any field, including Z2. Thus if α is a theorem of LA, then
by Theorem 6.1 the family 〈‖α‖σ : σ is an object assignment〉 is a family of
tautologies of size bounded by a polynomial in |σ|. The next theorem states
that this family has polynomial size PKBD(2)-proofs.

Theorem 6.2 For every theorem α of LA there exists a polynomial qα and
a constant dα such that for every object assignment σ to the variables of α
there exists a PK(2) proof of ‖α‖σ of size at most qα(|σ|) and depth at most
dα.
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The proof is by induction on the number of sequents in the LA proof of
α. See [Sol01] for details.

It is tempting to conjecture that the translations of the matrix identity
(55) into a family of PK(2) formulas do not have polynomial size bounded
depth PK(2) proofs. By Theorem 6.2 this would imply that (55) is not a
theorem of LA. Unfortunately, as mentioned before, it is an open question
even whether PKBD(2) is a polynomially bounded proof system.

6.4 Translations of LA over Zp

If the characteristic of the underlying field is p > 2, then the corresponding
propositional proof system should have connectives that count mod p. This
can be done by introducing a propositional connective MODp,i of unbounded
arity for each i such that 0 ≤ i < p. More generally, for every pair a, i
with a ≥ 2 and 0 ≤ i < a we introduce a connective MODa,i of unbounded
arity (see [Kra95, Chapter 12.6]) defined by the condition that if k ≥ 0 and
Γ = α1, ...,αk is a finite sequence of formulas, then

MODa,i(Γ) is true iff |{j : αj is true}| (mod a) = i

For a ≥ 2, the propositional proof system PK(a) allows formulas built from
the connectives MODa,i for 0 ≤ i < a in addition to the usual connectives of
PK. In addition to the axiom schemes and rules of PK, the system PK(a)
allows the axioms

→ MODa,0(∅)
→ ¬MODa,i(∅), for 1 ≤ i < a
→ (MODa,i(Γ,α) ↔ [MODa,i(Γ)∧¬α)∨(MODa,i−1(Γ)∧α)]), for 0 ≤ i < a, where i− 1 is taken mod a

We denote the bounded depth versions of PK(p) by PKBD(p).
For a = 2 it is not hard to see that the systems PK(2) and PKBD(2)

just defined are equivalent to the systems PK(2) and PKBD(2) defined in
section 6.2 using the ⊕ connective. A formula MOD2,1(Γ) can be translated
to
⊕

(Γ), and MOD2,0(Γ) can be translated to ¬
⊕

(Γ).
When the underlying field is Zp, for p a prime, formulas of LA trans-

late into families of propositional formulas of PKBD(p). The translation is
similar to that described in section 6.3 for p = 2. The main difference for
p > 2 is that now field elements must be encoded by a string of propositional
variables instead of a single propositional variable.

The element i in Zp = {0, 1, ..., p − 1} is represented by the string
TiFp−1−i. For example, the elements 0, 1, 2, 3, 4 of Z5 are represented by
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FFFF, TFFF, TTFF, TTTF, TTTT, respectively. Each term t of type field trans-
lates into p − 1 propositional formulas ‖t‖1σ , ..., ‖t‖

p−1
σ for the p − 1 bits

representing the value of t. (Properly we should use the notation ‖t‖jσ,p to
indicate the dependence of the formula on p. However we mostly omit p to
avoid subscript clutter.) These formulas are defined by structural induction
on t, as for the case p = 2. The propositional variables in ‖t‖jσ consist of a
tuple a1, ..., ap−1 for each field variable a in t, and an array of variables Ak

ij
for each matrix variable A in t.

For convenience, we define ‖t‖jσ = F, for j ≥ p.
The base cases are given by

‖0field‖jσ = F, 1 ≤ j < p
‖1field‖1σ = T, ‖1field‖jσ = F, 2 ≤ j < p
‖a‖jσ = aj , 1 ≤ j < p
‖e(A,m, n)‖kσ = Ak

‖m‖σ‖n‖σ (or F), 1 ≤ k < p
The induction step is given by

‖t+ u‖jσ =
∨

j≤i<p

MODp,i({‖t‖kσ}1≤k<p, {‖u‖kσ}1≤k<p)

‖t ∗ u‖jσ =
∨

1≤i,k<p
j≤(ik mod p)

(‖t‖iσ ∧ ¬‖t‖i+1
σ ) ∧ (‖u‖kσ ∧ ¬‖u‖k+1

σ )

‖ − t‖jσ =
∨

1≤i<p
j≤p−i

(‖t‖iσ ∧ ¬‖t‖i+1
σ )

‖t−1‖jσ =
∨

1≤i,k<p
j≤k∧ik≡1 mod p

(‖t‖iσ ∧ ¬‖t‖i+1
σ )

‖Σ(A)‖jσ =
∨

j≤i<p

MODp,i({Ak
xy}1≤x≤σ(r(A)),1≤y≤σ(c(A)),1≤k<p)

(We omit the cases ‖cond(β, t, u)‖jσ , ‖e(λij〈m′, n′, t〉,m, n)‖kσ and ‖Σ(λij〈m,n, t〉)‖kσ .)
Now formulas α of LA are translated to formulas ‖α‖σ,p as in section 6.3

except that if t, u are terms of type field, then

‖t = u‖σ,p =
∧

1≤j<p

(‖t‖jσ,p ↔ ‖u‖jσ,p)

and similarly for ‖T = U‖σ,p for terms T,U of type matrix.
Finally, in order to ensure that the string a1 . . . ap−1 of propositional

variables properly codes a value in Zp for the field variable a we need the
assumptions

ai+1 ⊃ ai, 1 ≤ i < p− 1 (58)
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and similarly for each matrix variable A we need the assumptions

Ak+1
ij ⊃ Ak

ij, 1 ≤ i ≤ σ(r(A)), 1 ≤ j ≤ σ(c(A)), 1 ≤ k < p− 1 (59)

Let Γα,p be the sequence of all such assumption formulas for all field variables
a in α and all matrix variables A in α. Then the analogs of Theorems
6.1 and 6.2 hold over the field Zp where we replace ‖α‖σ by the sequent
Γα,p → ‖α‖σ,p and PK(2) by PK(p).

6.5 Translation of LA over arbitrary finite fields and Q
Every finite field K of characteristic p is a d-dimensional vector space over
Zp for some d ≥ 1 in N. Hence each element of K is naturally represented
by a d-tuple of elements of Zp, where addition is defined componentwise.
Therefore the translation of LA formulas α to propositional formulas ‖α‖σ,p
of PK(p) giving the meaning of α over the field Zp easily extends to a
translation ‖α‖σ,K (also a PK(p) formula) giving the meaning of α over the
fieldK. The analogs of the assumptions (58) and (59) for all field and matrix
variables in a formula α over the field K are expressed by the sequence Γα,K .

An element r ∈ Q can be represented by a pair of integers (x, y), y .= 0,
where r = x/y and each of x, y is represented in binary notation. Using
this notation, all of the field operations +,−, ∗,−1 can be carried out in the
complexity class TC0 (56), as well as the computation Σ(A) for a rational
matrix A. Thus each LA formula α translates into a family 〈‖α‖σ,Q〉 of TC0

formulas of size polynomial in |σ|, expressing the meaning of α under σ over
Q. The analogs of assumptions (58) and (59) when K = Q simply assert
that y .= 0 in the pair (x, y). Let Γα,Q be the sequence of all such assumption
formulas for field and matrix variables occurring in α.

The corresponding propositional proof system is TC0-Frege (57). Many
properties of integer arithmetic have been formalized as efficient TC0-Frege
proofs in [BPR00]. From this it is clear that if α is a theorem of LA, then
the family 〈Γα,Q → ‖α‖σ,Q〉 has polynomial size TC0-Frege proofs.

Now Theorems 6.1 and 6.2 can be generalized as follows.

Theorem 6.3 LetK be either a finite field of characteristic p, or letK = Q.
Let S(K) be the collection of propositional proof systems PKBD(p) if K is
finite, or TC0-Frege if K = Q. Let α be a formula of LA. Then

〈Γα,K → ‖α‖σ,K : σ is an object assignment〉 (60)

is a family of propositional sequents in the notation of S(K) of size poly-
nomial in |σ| such that Γα,K → ‖α‖σ,K is valid iff α is valid under σ in the
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standard model over K. Further, if α is a theorem of LA, then (60) has
polynomial size proofs in one of the S(K) systems.

6.6 Translations of LAP and ∀LAP

Matrix powering can be efficiently computed using the recursion

A0 = I (61)

Am =

{
(Am div 2)2 if m is even

(Am div 2)2 ∗A otherwise
(62)

If the underlying field K is finite or Q, and (in the case of Q) the entries
of A are represented by strings of length O(n), then using the notation for
field elements discussed above, for an n×n matrix A, each bit of each entry
of Am, m ≤ n, can be expressed using this recursion by a propositional
formula of size 2O(log2 n) (“quasi-polynomial size”). It is well-known that
this recursion also places matrix powering in the complexity class NC2.

Since the language of LAP is obtained from that for LA by adding matrix
terms of the form P(m,T ), this tells us how to extend the translations of
LA formulas to obtain propositional translations Γα,K → ‖α‖σ,K of a LAP
formula α of quasi-polynomial size in |σ|.

Now we claim that if α is a theorem of LAP, then the translations have
quasi-polynomial size PK proofs (and hence quasi-polynomial size Frege
proofs). The extra work (over the proof of Theorem 6.3) in proving this is
showing that the translations of the two new axioms

A35 → P(0, A) = I
A36 → P(m+ 1, A) = P(m,A) ∗ A.

have quasi-polynomial size PK proofs. This is not immediate, because the
recursion (61,62) used to construct the formulas translating P(m,A) is not
the same as the recursion expressed by these axioms. However, it can be
shown by induction on log2m that the translations of both A36 and the
equation P(m+ 1, A) = A ∗ P(m,A) have PK proofs of size 2O((logm)(log n)),
for an n × n matrix A with entries of size O(n). Here we use the fact that
LA proves the associative law A(BC) = (AB)C (T13), so by Theorem 6.3
the translation of (T13) has polynomial size Frege proofs.

It is an open questions whether the translations (over any field) of the
hard matrix identities such as (55) have quasi-polynomial size Frege proofs.
This would follow if LAP proves these identities.
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Presumably if α is a theorem of LAP, then suitable propositional trans-
lations can be defined which have polynomial size NC2-Frege proofs, but
we have not worked this out in detail.

The theory ∀LAP can be interpreted in the second order theory V1
1 of

bounded arithmetic. The latter is isomorphic to Buss’s first order theory S12
[Bus86], one of the standard theories formalizing polynomial time (feasible)
reasoning. The images of the quantifier-free theorems of ∀LAP in V1

1 (or in
S12) translate into tautology families with polynomial size eFrege (Extended
Frege) proofs (see (57)). Thus by the results in section 5, the propositional
translations of the hard matrix identities and the Cayley-Hamilton theorem
have polynomial size eFrege proofs.

The theories V1
1 and S12, and their propositional translations, are treated

extensively in [Kra95].

7 Conclusion and Open Problems

A major result in this paper is a (perhaps the first) feasible proof of the
Cayley-Hamilton theorem. This is the contents of Theorem 5.1, which states
that the theory ∀LAP proves the C-H theorem. Intuitively, proofs in ∀LAP
are restricted to polynomial time concepts, as evidenced by the translations
of ∀LAP into the theories V1

1 and S12 discussed in section 6.
We also show that most basic results in linear algebra, including hard

matrix identities such as AB = I → BA = I, have feasible proofs (proofs in
∀LAP).

On the other hand we formalize Berkowitz’s algorithm in the weaker
theory LAP, but we leave open whether that theory proves the C-H theorem.
Since the most complex operation in LAP is matrix powering, and since
matrix powering (over finite fields and Q) is in the complexity class NC2,
this question can be restated to ask whether C-H can be proved using only
concepts in NC2. We also leave open whether the hard matrix identities
have such proofs.

The hard matrix identities have natural translations into families of
propositional tautologies. Since the identities can be proved in the the-
ory ∀LAP, it follows by a general result that their propositional translations
have polynomial size eFrege proofs. If LAP could prove the C-H theorem,
then the results of section 4 show that LAP proves the hard matrix iden-
tities, and hence by the results in section 6 the translated identities would
have quasi-polynomial size Frege proofs. At present it is open whether these
tautologies have sub-exponential size Frege proofs.
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Here are some other open questions. More details can be found in Chap-
ter 9 of [Sol01].

1. Show that LA cannot prove AB = I → BA = I. The most obvious
approach is to construct a model M of LA such that M .|= AB = I →
BA = I. An alternative approach is given in [SU03] where it is shown
that if LA 7 AB = I → BA = I, then the Propositional Pigeonhole
Principal has polynomial size bounded-depth Frege proofs with mod
2 gates. The latter is believed to be unlikely.

2. Is AB = I → BA = I “Complete”? Theorem 4.1 states that LAP
proves that the C-H theorem implies AB = I → BA = I. Could it be
that LAP+ C-H is a conservative extension of LA + AB = I → BA =
I?

3. Does LAP prove det(A) = 0 → AB .= I? If so, then LAP proves the
equivalence of the multiplicativity of the determinant with the other
three principles of section 4.

Acknowledgments: Our thanks to Sam Buss for fruitful comments result-
ing from the careful reading of the source of this paper: the first author’s
PhD thesis [Sol01].
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