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Abstract

We introduce three formal theories of increasing strength
for linear algebra in order to study the complexity of the
concepts needed to prove the basic theorems of the subject.
We give what is apparently the first feasible proofs of the
Cayley-Hamilton theorem and other properties of the de-
terminant, and study the propositional proof complexity of
matrix identities.

1 Introduction

The complexity of the basic operations of linear algebra
such as the determinant and matrix inverse have been well-
studied. Over the field of rationals they lie within the com-
plexity class NC2, and are complete for the class DET [6].
Here we are concerned with theproof complexityof linear
algebra, which roughly speaking is the complexity of the
concepts needed to prove the basic properties of these op-
erations. In general proof complexity has two aspects: uni-
form and nonuniform (see [7] for a treatise on the subject).
The uniform aspect concerns the power of logical theories
required to prove a given assertion, while the nonuniform
aspect concerns the power of propositional proof systems
required to yield polynomial size proofs of a tautology fam-
ily representing the assertion.

The method of Gaussian elimination can be used to give
polynomial time algorithms for the determinant, matrix in-
verse, etc., but it does not yield the fast parallel algorithms
which place these operations in NC2. We base our treat-
ment of linear algebra on Berkowitz’s elegant algorithm [2],
which gives field-independent reductions of these opera-
tions to matrix powering (the complexity class DET) (see
[10] for alternative algorithms).

We are interested in the question of whether the basic
properties of the determinant can be proved using concepts

restricted to the class DET, and we make this question pre-
cise by defining a quantifier-free theory LAP formalizing
reasoning about matrix algebra based on matrix powering.
We use LAP to present Berkowitz’s algorithm. Since this
algorithm computes not only the determinant of a given
square matrixA, but also the coefficients of the character-
istic polynomialpA(x) = det(xI � A), it is natural to ask
whether LAP proves the Cayley-Hamilton (C-H) theorem,
which assertspA(A) = 0. We leave this question open, but
we demonstrate its importance by showing that LAP proves
the equivalence of the C-H theorem with two other basic
results: the cofactor expansion of the determinant and the
axiomatic definition of the determinant.

If we cannot prove the C-H theorem in LAP, can we at
least find a feasible proof; i.e., one using only polynomial
time concepts? This question (over finite fields and over the
rationals) has a natural precise formalization, since feasible
reasoning has been well-studied using8-equivalent theories
such as Cook’s PV [5] or Buss’sS12 [4]. A study of the lin-
ear algebra literature has turned up no such feasible proof,
and in fact most proofs of the C-H theorem are based di-
rectly or indirectly on the Lagrange expansion of the deter-
minant, which represents an exponential time algorithm.

Thus a major contribution of this paper is our success
in finding a feasible proof of the C-H theorem. We for-
malize this proof in the field-independent theory8LAP,
which extends LAP by allowing induction over formulas
with bounded universal matrix quantifiers. We justify the
label “feasible” for the proof in several ways, including an
interpretation of8LAP (when the underlying field is finite
or the rationals) into the feasible theory V11 (equivalent to
Buss’s S12). Our feasible proof yields feasible proofs of
many basic matrix properties, including the multiplicativity
of the determinant, and the correctness of algorithms based
on Gaussian elimination.

One specific motivation for this research is to find natu-
ral tautology families which may distinguish the power of
Frege and Extended Frege (eFrege) propositional proof sys-



tems. (A line in a Frege proof is a propositional formula
which is an immediate logical consequence of earlier lines,
whereas a line in an eFrege proof may also introduce a new
propositional variable by definition, allowing for concise
abbreviations of exponentially long formulas). The prin-
ciple AB = I =) BA = I (1)

whereA andB aren � n matrices, may provide such an
example. This principle (overZ2 orZ) is readily translated
into a tautology INVn of size polynomial inn. We con-
jecture that the familyhINVni does not have polynomial
size Frege proofs, since the proof of (1) seems to require
concepts such as Gaussian elimination or matrix powering
whose complexity apparently cannot be expressed by poly-
nomial size propositional formulas (i.e., is not in NC1). On
the other hand, we show that (1) can be proved using poly-
nomial time concepts, and hencehINVni does have polyno-
mial size eFrege proofs.

Altogether we introduce three logical theories of increas-
ing power

LA � LAP � 8LAP

to formalize linear algebra reasoning. Each theory has three
sorts: indices (i.e., natural numbers), field elements, and
matrices, and all theorems hold for any choice of the un-
derlying field. The base theory LA allows the basic ring
properties of matrices to be formulated and proved. The
principle (1) can be formulated in LA but (we conjecture)
not proved. We show that LA proves the equivalence of
(1) with other “hard” matrix identities. Theorems of LA
translate into tautology families with polynomial size Frege
proofs.

We extend LA to LAP by adding a new function,P,
which is intended to denote matrix powering, i.e.,P(n;A)
meansAn. LAP is well suited for formalizing Berkowitz’s
algorithm, and it is strong enough to prove the equiva-
lence of some fundamental principles of linear algebra. The
theorems of LAP translate into quasi-poly-bounded Frege
proofs.

We finally extend LAP to 8LAP by allowing induction
on formulas with bounded universal matrix quantifiers. This
new theory is strong enough to prove the C-H theorem, and
hence (by our equivalence) all the major principles of Lin-
ear Algebra. The theorems of8LAP translate into poly-
bounded Extended Frege proofs.

This paper is based on the PhD thesis [8] of the first au-
thor, which is available on the Web.

2 The Theory LA

We define a quantifier-free theory of Linear Algebra
(matrix algebra), and call it LA. Our theory is strong enough
to prove the ring properties of matrices such asA(BC) =

(AB)C andA + B = B + A but weak enough so that
all the theorems of LA (over finite fields or the field of ra-
tionals) translate into propositional tautologies with short
Frege proofs.

Our theory has three sorts of object:indices(i.e., natu-
ral numbers),field elements, andmatrices, where the cor-
responding variables are denotedi; j; k; :::; a; b; 
; :::; andA;B;C; :::, respectively. The semantics assumes that ob-
jects of type field are from a fixed but arbitrary field, and
objects of type matrix have entries from that field.

Terms and formulas are built from the function and pred-
icate symbols:0index; 1index;+index; �index;�index;div;rem; 0field; 1field;+field; �field;�field;�1r;c;e;�;�index;=index;=field;=matrix; condindex; condfield

(2)

The intended meanings should be clear, except for the fol-
lowing operations on a matrixA: r(A);c(A) are the num-
bers of rows and columns inA, e(A; i; j) is the field el-
ementAij , �(A) is the sum of the elements inA. Also
cond(�; t1; t2) is interpretedif � then t1 elset2, where� is
a formula all of whose atomic sub-formulas have the formm � n or m = n, wherem;n are terms of type index,
andt1; t2 are terms either both of type index or both of type
field. The subscriptsindex andfield are usually omitted, since
they are clear from the context.

Atomic formulas and formulas are built in the usual man-
ner, except no quantifiers are allowed.

We use Gentzen’s sequent calculus LK (with quantifier
rules omitted) for the underlying logic. We include 34 non-
logical axioms in four groups: Axioms for equality, indices,
field elements, and matrices (all quantifier-free). These
specify the basic properties of the function and predicate
symbols (2). By convention each instance of an axiom re-
sulting from substituting terms for variables is also an ax-
iom, so the axioms are really axiom schemes.

We need just two non-logical rules: an equality rule for
terms of type matrix, and the induction rule:�; �(i)! �(i+ 1);��; �(0)! �(n);� (3)

In addition to the usual rules for constructing terms we
also allow the terms�ijhm;n; ti of type matrix. Herei andj are variables of type index bound by the� operator, in-
tended to range over the rows and columns of the matrix.
Here alsom;n are terms of type indexnot containingi; j
(representing the numbers of rows and columns of the ma-
trix) and t is a term of type field (representing the matrix
element in position(i; j)).

The � terms allow us to construct the sum, product,
transpose, etc., of matrices. For example, suppose first that



A andB arem � n matrices. Then,A+ B can be defined
as�ijhm;n;e(A; i; j) + e(B; i; j)i. Now suppose thatA
andB arem� p andp� n matrices, respectively. Then:A �B := �ijhm;n;��klhp; 1;e(A; i; k) � e(B; k; j)ii
However, even if matrices are of incompatible size, their ad-
dition and product is well defined, since the “smaller” ma-
trix is implicitly padded with zeros (ase(A; i; j) = 0 for i
or j outside the range). Thus, all terms are well defined.

3 The Theorems of LA

We show that all matrix identities which state that the set
of n � n matrices form a ring, and all identities that state
that the set ofm�nmatrices form a module over the under-
lying field, are theorems of LA. However, LA is apparently
not strong enough to prove matrix identities which require
arguing about inverses. Here are four examples (stated as
Gentzen sequents), which we refer to ashardmatrix identi-
ties: AB = I; AC = I ! B = C IAB = I ! AC 6= 0; C = 0 IIAB = I ! BA = I IIIAB = I ! AtBt = I IV

(whereAt is the transpose ofA.). We show that LA proves
them all equivalent, but conjecture that none is provable in
LA. In section 6 we show that these are theorems of the
stronger theory8LAP. We speculate that8LAP might be
conservative over LA +�, where� is any of I–IV.

In sections 5 we show that the theorems of LA translate
into tautology families with polynomial size Frege proofs,
and later we argue that theorems of8LAP translate into
tautology families with polynomial size eFrege proofs. We
conjecture that the translations of I–IV do not have polyno-
mial size Frege proofs. This conjecture is partly inspired by
the paper [3] in which the “Odd Town Theorem” was pre-
sented as a candidate combinatorial principle for separating
Frege and eFrege systems, since its proof seems to require
an independence argument from linear algebra. We show
that the “Odd Town Theorem” can be formulated in LA and
follows in LA from any of the principles I–IV, and hence
its propositional translations have polynomial size eFrege
proofs. We are unable to show in LA that conversely these
hard matrix identities follow from the “Odd Town Theo-
rem.”

Throughout this paper we prove properties of matrices
by induction on their size. We outline briefly this technique.
The size of a matrix has two parameters: the number of
rows, and the number of columns. Suppose that we want
to prove that some property holds for all matricesA. We

define a new (constructed) matrixM(i; A), and we letd(A)
be defined as:d(A) := cond(r(A) � c(A);r(A);c(A))
that is,d(A) = minfr(A);c(A)g. Now let:M(i; A) := �pqhr(A)� d(A) + i;c(A)� d(A) + i;

e(A; d(A) � i+ p; d(A)� i+ q)i
that is,M(i; A) is thei-th principal sub-matrix ofA. For
example, ifA is a 3 � 5 matrix, thenM(1; A) is a 1 � 3
matrix, with the entries from the lower-right corner ofA.

To prove that a propertyP holds forA, we prove thatP
holds forM(1; A) (the Basis Case), and then we prove that
if P holds forM(i; A), thenP also holds forM(i+ 1; A)
(the Induction Step). From this we conclude, by the induc-
tion rule, thatP holds forM(d(A); A), andM(d(A); A) is
justA. Note that in the Basis Case we might have to prove
thatP holds for a row vector or a column vector, which is ak� 1 or a1� k matrix, and this in turn can also be done by
induction (onk).

4 Berkowitz’s Algorithm and LA P

Berkowitz’s algorithm allows us to reduce the computa-
tion of the characteristic polynomialpA(x) = det(xI �A)
of ann � n matrixA to the operation of matrix powering.
Suppose A = � a11 RS M �

(4)

whereR is an1� (n�1) row matrix andS is a(n�1)�1
column matrix andM is (n�1)�(n�1). Letp(x) andq(x)
be the characteristic polynomials ofA andM respectively.
Suppose that the coefficients ofp form the column vectorp = � pn pn�1 : : : p0 �t (5)

wherepi is the coefficient ofxi in det(xI � A), and simi-
larly for q. Then Berkowitz showedp = C1q (6)

whereC1 is an(n+1)�n Toeplitz lower triangular matrix
(Toeplitz means that the values on each diagonal are the
same) and where the entries in the first column are defined
as follows: 
i1 = 8><>:1 if i = 1�a11 if i = 2�(RM i�3S) if i � 3 (7)

Berkowitz’s algorithm consists in repeating this forq, and
continuing so thatp is expressed as a product of matrices:p = C1C2 � � �Cn (8)



whereCi is an(n + 2 � i) � (n + 1 � i) Toeplitz matrix
defined as in (7) exceptA is replaced by itsi-th principal
sub-matrix.

Since each element ofCi can be explicitly defined in
terms ofA using matrix powering, and since the iterated
matrix product can be reduced to matrix powering by a
standard method, the entire product (8) can be expressed
in terms ofA using matrix powering.

To formalize Berkowitz’s algorithm we extend the theory
LA to the theory LAP by adding a new function symbolP,
whereP(n;A) meansAn. We also add two new axioms,
which give a recursive definition ofP; namely,P(0; A) = I
andP(n+ 1; A) = P(n;A) �A.

Thus the right-hand side of (8) can be expressed as a
term in LAP. We use this term as the definition in LAP of
the characteristic polynomialp, given in (5), of the matrixA. (If n = 1 andA = (a), thenp = (1 � a)t.)

Also in LAP we define

det(A) := (�1)np0 (9)

wherep0 is as in (5), and we define

adj(A) := (�1)n�1(pnAn�1 + pn�1An�2 + : : :+ p1I)
(10)

Recall that in the usual definition, the(i; j)-th entry of the
adjoint ofA is (�1)i+jdet(A[ijj℄), whereA[ijj℄ is the mi-
nor obtained by deleting thei-th row andj-th column ofA.
The equivalence of this and (10) can be proved in LAP us-
ing the Cayley-Hamilton (C-H) Theorem as an assumption.

Recall that the C-H theorem states thatp(A) = 0. From
(10) we have that:A adj(A) = (�1)n�1(p(A)� p0I)
Assumingp(A) = 0 we have by (9) that:A adj(A) = adj(A)A = det(A)I (11)

In fact LAP easily proves the equivalence of (11) with the
C-H theorem. We also have

Theorem 4.1 LAP proves that the C-H theorem implies the
hard matrix identities I–IV of section 3.

Proof.(Outline) It suffices to consider the identity III:AB = I ! BA = I
From the assumptionAB = I it suffices to show that there
is someleft inverseC of A, since using simple ring prop-
erties of matrices (formalizable in LA) it is easy to showAB = I andCA = I impliesBA = I .

To show that a left inverseC exists, we use the C-H the-
oremp(A) = 0, wherep is the characteristic polynomial

of A. Sincep is not the zero polynomial (it has leading co-
efficient 1), there must bek � 0 and a polynomialq such
that 0 = p(A) = q(A)Ak (12)

whereq has a nonzero constant term. FromAB = I we
can show in LAP by induction oni thatAiBi = I . Thus
multiplying (12) on the right byBk we obtainq(A) = 0,
which we can write asq̂(A)A = �q0I
whereq0 is the constant coefficient ofq. Dividing by�q0
we obtain the required left inverseC = (�1=q0)q̂(A). �

It is an open question whether LAP proves the C-H the-
orem in general, although we show that it proves the C-H
theorem for triangular matrices.

By theaxiomatic definition of the determinantwe mean
that the determinant function det(A) satisfies the three con-
ditions� det is multi-linear in the rows and columns ofA� det is alternating in the rows and columns ofA� if A = I , thendet(A) = 1
It is well-known that these conditions completely character-
ize the determinant.

By thecofactor expansionwe mean1 � i � n, det(A) = nXj=1(�1)i+jaij det(A[ijj℄) (13)

whereA[ijj℄ denotes the matrix obtained fromA by remov-
ing thei-th row and thej-th column. For eachi, the RHS of
the equation is called thecofactor expansion ofA along thei-th row, and (13) states that we obtaindet(A) expanding
along any row ofA. Applying this recursively results in an
exponential time algorithm for computing det(A), showing
that the expansion completely defines the determinant.

By themultiplicativity of the determinantwe mean

det(AB) = det(A)det(B)
whereA;B aren� n matrices.

The following is the major result of this section.

Theorem 4.2 LAP proves the equivalence of each of the
following:

1. C-H theorem

2. Axiomatic definition of det

3. Cofactor Expansion



and LAP also proves the following implications:

1. Multiplicativity of det=) C-H theorem

2. C-H Theorem +fdet(A) = 0! AB 6= Ig=) Multiplicativity of det.

The rest of section 4 will consist of an outline of the
proof of this theorem, given in sections 4.1, 4.2, 4.3, and
4.4 (all the details can be found in [8, Chapter 6]). Later, in
section 6, we will give feasible proofs (i.e. proofs involving
only polynomial time concepts) of the C-H theorem and ofdet(A) = 0 ! AB 6= I . From this it will follow that all
the results mentioned in Theorem 4.2 have feasible proofs,
and from other results mentioned in section 6 it will fol-
low that the propositional translations of these results have
polynomial size Extended Frege proofs.

The following result is used frequently in the proof: LAP
proves

det(A) = a11det(M)�Radj(M)S (14)

whereA is given by (4). The proof is straightforward from
the definitions involved.

4.1 The axiomatic definition of determinant

We show that when the determinant is defined as in (9),
the axiomatic definition of the determinant follows from the
C-H theorem, and that this can be proven in LAP. The con-
dition det(I) = 1 is easy, and multilinearity in the first row
(and column) is easy as well. Thus the whole proof hinges
on an LAP proof of alternation from the C-H theorem.

It is in fact enough to prove alternation in the rows, as
alternation in the columns will follow from alternation in
the rows bydet(A) = det(At)—which can be derived in
LAP by induction on the size ofA (see [8, Lemma 5.1.7]).

In order to show alternation, we defineIij to be the ma-
trix obtained from the identity matrix by interchanging thei-th andj-th rows. The effect of multiplyingA on the left
by Iij is that of interchanging thei-th andj-th rows ofA.
On the other hand,AIij isA with thei-th andj-th columns
interchanged. We sometimes abbreviateIi;i+1 by Ii.

We show alternation in the rows by first showing that
for any matrixA, A and I1AI1 have the same char poly
(I1 = I1;2, so I1AI1 is the matrixA with the first two
rows interchanged, and the first two columns interchanged).
Then, we show thatA andIiAIi have the same char poly for
any i (Ii = Ii;i+1). Finally, we obtain thatA andIijAIij
have the same char poly (as any permutation is a product of
transpositions).

We also show thatdet(A) = � det(I1A). From this
it follows that det(A) = � det(I1iA) for all i, since we
can bring thei-th row to the second position (viaI2iAI2i),
and reorder things (by applyingI2iAI2i once more). SinceIij = I1iI1jI1i, this gives us alternation in the rows.

Note that we prove thatA and IijAIij have the same
char poly, i.e.,pIijAIij = pA, to be able to reorder the ma-
trix and prove alternation.

4.2 The cofactor expansion

We show that LAP proves that the cofactor expansion
formula (13) follows from the axiomatic definition of the
determinant. We first show that the cofactor expansion ofA along the first row is equal todet(A). DefineAj , for1 � j � n, to beA, with the first row replaced by zeros, ex-
cept for the(1; j)-th entry which remains unchanged. Then,
using multilinearity along the first row ofA, we obtain:det(A) = det(A1) + det(A2) + � � �+ det(An) (15)

ConsiderAj , for j > 1. If we interchange the first column
and thej-th column, and then, with(j � 2) transpositions
we bring the first column (which is now in thej-th position)
to the second position, we obtain, by alternation and (14),
the following:det(Aj) = (�1)j�1a1j det(A[1jj℄)= (�1)1+ja1j det(A[1jj℄)
From this, and from equation (15), we obtain the cofactor
expansion along the first row, that is, we obtain (13) fori = 1.

If we want to carry out the cofactor expansion along
the i-th row (wherei > 1), we interchange the first and
the i-th row, and then we bring the first row (which is
now in thei-th position) to the second row with(i � 2)
transposition. Denote this new matrixA0, and note thatdet(A0) = (�1)i�1 det(A). Now, expanding along the first
row ofA0, we obtain (13) fori > 1.

4.3 The adjoint as a matrix of cofactors

We wish to show that LAP proves the C-H theorem from
the cofactor expansion formula (i.e., from (13)). To this
end, we first show that (13) implies (in LAP) the axiomatic
definition of determinant.

We want to show that we can get multilinearity, alter-
nation anddet(I) = 1 from (13). To show multilinearity
along row (column)i, we just expand along row (column)i. To showdet(I) = 1 use induction on the size ofI ; in
fact, showing thatdet(I) = 1 can be done in LAP without
any assumptions.

It is very easy to show that alternation follows from mul-
tilinearity and from:

If two rows (columns) ofA are equal=) det(A) = 0



To show this in LAP (from the cofactor expansion formula),
we expand along rowi first to obtain:det(A) = nXk=1(�1)i+kaik det(A[ijk℄)
and then we expand each minorA[ijk℄ along the row that
corresponds to thej-th row ofA. Note that we end up withn(n� 1) terms; polynomially many in the size ofA. Since
row i is identical to the rowj, we can pair each term with
its negation; hence the result is zero, sodet(A) = 0.

Therefore, we have that the axiomatic definition of the
determinant follows from the cofactor expansion formula,
in LAP. We can now proceed, and finish showing the equiv-
alences in Theorem 4.2, by showing that the cofactor expan-
sion formula implies the C-H theorem, also in LAP.

We start by showing that LAP proves that:

adj(A) = ((�1)i+j det(A[jji℄))ij
i.e., that adj(A) is the transpose of the matrix of cofactors
of A, from the axiomatic definition of det.

Consider the following matrix:C = � 0 etiej A �
whereei is a column vector with zeros everywhere except
in thei-th position where it has a 1. By (14), we have that:det(C) = �etiadj(A)ej = (i; j)-th entry of�adj(A)
On the other hand, from alternation onC, we have thatdet(C) = (�1)i+j+1 det(A[jji℄). To see this, note that
we need(j +1) transpositions to bring thej-th row ofA to
the first row in the matrixC, to obtain the following matrix:C 0 = 0� 1 Aj0 eti0 A[jj�℄ 1A
whereAj denotes thej-th row ofA, andA[jj�℄ denotesA
with thej-th row deleted. Then, by (14), we have:det(C 0) = det� etiA[jj�℄ �
and now with i transpositions, we bring thei-th col-

umn of

� etiA[jj�℄ � to the first column, to obtain:� 1 00 A[jji℄ �. Therefore,det(C 0) = (�1)i det(A[jji℄)
finishing the proof.

Therefore, LAP proves that the(i; j)-th entry of adj(A)
is given by(�1)i+j det(A[jji℄).

Note thatpA(A) = 0 can also be stated asAadj(A) =det(A)I , using our definitions of the adjoint and the de-
terminant. Thus, the following shows that LAP proves the
C-H theorem from the cofactor expansion formula: LAP
provesAadj(A) = adj(A)A = det(A)I from the cofactor
expansion formula.

We show first thatAadj(A) = det(A)I . The (i; j)-th
entry ofAadj(A) is equal to:ai1(�1)j+1 det(A[jj1℄) + � � �+ ain(�1)j+n det(A[jjn℄)

(16)
If i = j, this is the cofactor expansion along thei-th row.
Suppose now thati 6= j. Let A0 be the matrixA with
the j-th row replaced by thei-th row. Then, by alterna-
tion, det(A0) = 0. Now, (16) is the cofactor expansion ofA0 along thej-th row, and therefore, it is0. This proves
thatAadj(A) = det(A)I , and by definition of the adjoint,
adj(A)A = Aadj(A), so we are done.

4.4 The multiplicativity of the determinant

The multiplicativity of the determinant is the property:det(AB) = det(A) det(B). This turns out to be a very
strong property, from which all other properties follow read-
ily in LA P.

Even the C-H theorem follows readily from the
multiplicativity of det: from the multiplicativity
of the determinant we have thatdet(I12AI12) =det(I1) det(A) det(I1) = det(A) for any matrix A.
Suppose we want to prove the C-H theorem for somen�n
matrixM . DefineA as follows:A = 0� a b R
 d PS Q M 1A = 0� 0 0 eti0 0 0ej 0 M 1A
Let C1C2C3 � � �Cn+2 be the char poly ofA (andC3 � � �Cn+2 the char poly ofM ). From Berkowitz’s algo-
rithm it is easy to see that forA defined this way the bottom
row ofC1C2 is given by:etiMnej etiMn�1ej : : : etiIej 0
so the bottom row ofC1C2C3 � � �Cn+2 is simplyetip(M)ej
wherep is the char poly ofM .

On the other hand, usingdet(A) = det(I12AI12) and
Berkowitz’s algorithm, we have that:det(A) = det0� 0 0 00 0 eti0 ej M 1A = 0
so thatetip(M)ej = 0, and since we can choose anyi; j, we
have thatp(M) = 0.

What about the other direction? That is, can we prove
the following implication in LAP:



C-H theorem=) Multiplicativity of the determinant?

The answer is “yes,”if LAP can prove the following:det(A) = 0! AB 6= I (17)

That is, LAP can prove the multiplicativity of the determi-
nant from the C-H theorem and (17). The proof of this is
quite long, however, and the reader is once more directed
to [8, Chapter 6].

We suspect, however, that LAP can prove (17) from the
C-H theorem, so that the C-H Theorem is enough to prove
multiplicativity. At this point, we donot have a LAP proof
of (17) from the C-H theorem.

5 Propositional Translations

For a fixed effectively-presented underlying fieldK we
can translate the theorems of LA and LAP into families of
tautologies with short propositional proofs. These transla-
tions are a potential tool for proving independence results.
For example, if we can prove that forK = Z2 the trans-
lation ofAB = I ! BA = I does not have polynomial
size proofs in bounded-depth Frege with mod 2 gates, then
it will follow that AB = I ! BA = I is not a theorem
of LA (over any field, since the theory LA is field indepen-
dent).

Let� be a formula of LA or LAP, and let� be an object
assignment of natural numbers to all free index variables in�, and to all terms of the formr(A);c(A). Let j�j be the
largest value assigned by�. To each variable of type field in�we assign one or more (depending on the underlying field)
propositional variables (whose values determine a field el-
ement), and to each matrix variableA we assign enough
propositional variables to determine all entries inA (where
the size ofA is determined by�). Now � and� translate
into a propositional formulak�k� of size polynomial inj�j
which is valid whenever� is true in the standard model un-
der� over the fieldK. The method of translation is similar
to those described in Chapter 9 of [7].

If � is a theorem of LA then we show thatk�k� has a
Frege proof of size bounded by a polynomial inj�j. In fact,
we prove an even tighter result. When the underlying field
isZp, p a prime, the theorems of LA translate into proposi-
tional tautologies with short bounded-depth AC0[p℄ proofs,
where AC0[p℄ allowsMODp;i gates (i.e., modular gates, for
counting modulo the primep). We also show that the the-
orems of LAP have quasi-poly-bounded (O(2log2 n)) Frege
proofs.

We point out in section 6.2 that the theorems of LAP
have polynomial size Extended Frege proofs. For all the
details see Chapter 7 of [8].

6 Proofs of the C-H theorem

The main result of this paper is a feasible proof of the
Cayley-Hamilton (C-H) theorem. This result is impor-
tant because it gives us a feasible proof of correctness of
Berkowitz’s algorithm, feasible proofs of hard matrix iden-
tities, and feasible proofs of the main principles of Matrix
Algebra (specifically: axiomatic definition of the determi-
nant, cofactor expansion formula, and multiplicativity ofthe
determinant).

We believe that ours is the first feasible proof of the C-
H theorem. The traditional proofs of the C-H theorem are
infeasible, as they rely on the Lagrange expansion of the
determinant, which for matrices of sizen, hasn! terms of
sizen.

Our proof is formalized in the theory8LAP, which is
obtained from LAP by introducing�M1 formulas.

Definition 6.1 We define�M0 to be the set of formulas overLLAP (“M ” stands for matrix). We define�M1 to be the
set of formulas in�M0 together with formulas of the form(8A � n)�, where� 2 �M0 , and where(8A � n)� abbre-
viates: (8A)((r(A) � n ^ c(A) � n) � �)
whereA is a matrix variable,notcontained in the index termn.

To form 8LAP from LAP we add two LK-style rules8 �-left and8 �-right to 8LAP, and augment the induc-
tion rule to allow induction over�M1 formulas. When the
underlying field is finite or the rationals, this theory8LAP
can be interpreted in the feasible theoryV11. (See Section
5.5 of [7] for a definition ofV11.)

The basic idea behind the proof is the following: ifpA(A) 6= 0, that is, if the C-H theorem fails forA, then
we can findin polytimea sub-matrixB of A for whichpB(B) 6= 0, i.e., for which the C-H theorem fails already.
Since the C-H Theorem doesnotfail for 1�1matrices, after
at mostn = (size ofA) steps we get a contradiction. This
idea can be expressed with universal quantifiers over vari-
ables of type matrix: if the C-H theorem holds for all ma-
trices smaller thanA, then it also holds forA. The matrixB is obtained fromA, by transposing the first row and col-
umn with thek-th row and column, respectively, and then
deleting the firsti rows and columns; findingk andi can be
done in polytime.

It turns out that we do not need multiplicative inverses
for field elements to prove the C-H theorem; that is, we do
not need the function�1. Berkowitz’s algorithm does not
compute inverses of field elements, and we do not need to
reason with inverses in our proof of the C-H theorem. Thus,
the C-H Theorem holds for commutative rings. On the other



hand, wedouse inverses in our proof of the multiplicativity
of the determinant. It is an interesting question whether it
is possible to give a feasible proof of the multiplicativityof
the determinant for commutative rings.

Since LAP proves the equivalence of the C-H theorem,
the axiomatic definition of the determinant, and the cofactor
expansion (see Theorem 4.2), we conclude that these prin-
ciples have feasible proofs as well. Using Gaussian Elimi-
nation, and the feasible proof of the C-H theorem, we also
give a feasible proof of the multiplicativity of the determi-
nant.

6.1 A feasible proof of the C-H theorem

In this section we give some more details of the feasible
proof of the C-H theorem. A complete exposition is given
in [8, Chapter 8].

We define the system8LAP to be similar to LAP, but we
allow �M1 formulas. The underlying logic is again based
on Gentzen’s sequent system LK. Whereas LAP needs only
the propositional rules of LK, we now need the rules for
introducing a universal quantifier on the left and on the right
of a sequent:

left
r(T ) � n;c(T ) � n; �(T );�! �(8X � n)�(X);�! �

right
r(A) � n;c(A) � n;�! �; �(A)�! �; (8X � n)�(X)

whereT is any term of type matrix, andn is any term of
type index. Also, in8-introduction-right,A is a variable of
type matrix that does not occur in the lower sequent,and in
both rules� is a�M0 formula, because we just want a single
matrix quantifier.

Note that8LAP still has the induction rule (3), and hence
allows induction over�M1 formulas.

Theorem 6.1 8LAP proves the C-H theorem.

Proof. We prove that for alln� n matricesA, pA(A) = 0,
by induction onn. TheBasis Caseis trivial: if A = (a11),
then the char poly ofA is x � a11. We use the following
strong induction hypothesis:(8A � n)pA(A) = 0. Thus,
in our Induction Step we prove:(8M � n)pM (M) = 0! (8A � n+1)pA(A) = 0 (18)

So letA be an(n + 1) � (n + 1) matrix, and assume
that we have(8M � n)pM (M) = 0. Then, by the results
in Section 4, we have that for all1 � i < j � n � 1,p(IijAIij) = pA.

Suppose now that thei-th row (column) ofpA(A) is not
zero. Then, the first row (column) ofI1ipA(A)I1i is not
zero. But:I1ipA(A)I1i = pA(I1iAI1i) = p(I1iAI1i)(I1iAI1i)

and the first row and column ofp(I1iAI1i)(I1iAI1i) are zero
by Lemma 6.1 below (lettingC = I1iAI1i). Thus, contra-
diction; it follows thatpA(A) = 0. This argument can be
clearly formalized in8LAP. �
Lemma 6.1 LAP proves that ifpC[1j1℄(C[1j1℄) = 0, then
the first row and the first column ofpC(C) are zero.

Proof. We restate the Lemma using the usual notation ofA
andM = A[1j1℄. Thus, we want to show that LAP proves
the following: if pM (M) = 0, then the first row and the
first column ofpA(A) are zero. For clarity we letp = pA
andq = pM .

The proof is by induction on the size ofM . The Ba-
sis Caseis whenM is a 1 � 1 matrix. Let p2; p1; p0 be
the coefficients of the char poly ofA, and let q1; q0 be
the coefficients of the char poly ofM . By assumptionq1M + q0I = 0. Note thatI is also a1 � 1 matrix. From
Berkowitz’s algorithm we know that:0� p2p1p0 1A = 0� 1 0�a11 1�RS �a11 1A� q1q0 �= 0� q1�a11q1 + q0�RSq1 � a11q0 1A (19)

Note that:A2 = � a211 +RS a11R+RMa11S +MS SR+M2 �
We must now show that the first row and column ofpA(A) = p2A2+p1A+p0I are zero. We just show that the(1; 2) entry is zero; the rest follow just as easily. From (19)
we see that the(1; 2) entry ofpA(A) is given by:(a11R+RM)q1 +R(�a11q1+q0) + 0(�RSq1�a11q0)= R(Mq1 + q0) = 0
Note that it is actually possible, in the Basis Case, to show
thatpA(A) = 0 (as this istrue), not just the first row and
column ofpA(A). However, this seems infeasible to carry
out in the Induction Step.

We prove theInduction Step with three claims. We as-
sume thatM is an(n�1)�(n�1) matrix, wheren�1 � 1.
We letp = pA andq = pM , that is,p; q are the char polys
of A;M = A[1j1℄, respectively. Definewk ; Xk; Yk; Zk as
follows:A = � w1 X1Y1 Z1 � = � a11 RS M �Ak+1 = � wk+1 Xk+1Yk+1 Zk+1 �= � wk XkYk Zk �� a11 RS M �

for k � 1



Note thatwk; Xk; Yk; Zk cannot be defined in LAP as we
cannot define new matrices recursively. However, all that
we need in the following proof are entries of powers ofA, which can be expressed in LAP. The entrywk, and
the submatricesXk; Yk; Zk are there to make the proof
more human readable; for example, instead ofwk we could
write e(P(k;A); 1; 1), or instead ofXk we could write�ijh1; n�1;e(P(k;A); 1; j+1)i, but then the proof would
be difficult to read.

It is easy to see that LAP proves the following equations:wk+1 = a11wk +XkSXk+1 = wkR +XkMYk+1 = a11Yk + ZkSZk+1 = YkR+ ZkM (20)

As was mentioned above, we are going to prove that
the first row and column consist of zeros with Claims 6.1,
6.2, and 6.3. Claim 6.3 follows from Claim 6.2 using the
fact thatA andAt have the same char poly (the details
are provided in the proof of Claim 6.3). For the other two
claims we are going to putpA(A) in a special form. Using
Berkowitz’s algorithm, it is easy to show in LAP that:p(A) = (A� a11I)q(A) � n�1Xk=1 qk k�1Xi=0(RM iS)A (21)

and thus, to show that the first column ofp(A) is zero, it is
enough to show that the first columns of(A � a11I)q(A)
and

Pn�1k=1 qkPk�1i=0 (RM iS)A are the same. This is the
strategy for proving Claims 6.1 and 6.2.

Claim 6.1 The upper-left entry ofp(A) is zero.

Proof. Using (20) we obtain:8><>:w0 = 1w1 = a11wk+1 = a11wk +Pk�1i=0 (RM iS)wk�1�i (22)

Fork � 1. The top left entry of(A�a11I)q(A) is given byn�1Xk=1 qk(wk+1 � a11wk) (23)

(notice that we can ignore the termk = 0 since the top left
entry ofA is the same as the top left entry ofa11I). We can
compute(wk+1 � a11wk) using the recursive definitions ofwk (given by (22) above):wk+1 � a11wk = a11wk + k�1Xi=0(RM iS)wk�1�i � a11wk= k�1Xi=0(RM iS)wk�1�i

Thus, (23) is equal ton�1Xk=1 qk k�1Xi=0(RM iS)wk�1�i
This proves that the top left entry ofp(A) is zero (see equa-
tion (21) and the explanation below it). �
Claim 6.2 The(n� 1)� 1 lower-left submatrix ofp(A) is
zero.

Proof. Using (20) we obtain (k � 1):8><>:Y0 = 0Y1 = SYk+1=a11Yk+(MkS)+Pk�2i=0 (RM iS)Yk�1�i (24)

The lower-left(n� 1)� 1 submatrix of(A� a11I)q(A) is
given by n�1Xk=0 qk(Yk+1 � a11Yk)
and by (24) we have that fork � 2, Yk+1 � a11Yk is given
by:=  a11Yk +MkS + k�2Xi=0(RM iS)Yk�1�i!� a11Yk=MkS + k�2Xi=0(RM iS)Yk�1�i
ans, therefore,

Pn�1k=0 qk(Yk+1 � a11Yk) is given by:= q0(Y1 � a11Y0) + q1(Y2 � a11Y1)+ n�1Xk=2 qk  MkS + k�2Xi=0(RM iS)Yk�1�i!= q(M)S + n�1Xk=2 qk k�2Xi=0(RM iS)Yk�1�i
and by the IH,

Pn�1k=0 MkS = q(M)S = 0, and by defini-
tion Y0 = 0, thus we can conclude that:n�1Xk=0 qk(Yk+1 � a11Yk) = n�1Xk=1 qk k�1Xi=0(RM iS)Yk�1�i
But the RHS of the above equation is equal to the(n�1)�1 lower-left submatrix of

Pn�1k=1 qkPk�1i=0 (RM iS)Ak�1�i,
and hence the claim follows (once again, see equation (21)
and the explanation below it). �



Claim 6.3 The1� (n� 1) upper-right submatrix ofp(A)
is zero.

Proof. To prove this claim we use the fact thatpA = pAt
and Claim 6.2. The crucial observation is that the(n�1)�1
lower-left submatrix of(At)k is Xtk. Now, we know thatp
is also the char polynomial ofAt, so by Claim 6.2, we know
that the(n � 1) � 1 lower-left submatrix ofp(At) is zero.
Thus the(n�1)�1 lower-left submatrix of(p(A))t is zero,
and therefore the1� (n�1) upper-right submatrix ofp(A)
is zero, and hence the claim follows. � �
6.2 Other propositional proofs

We also show how to translate feasible proofs of the C-
H theorem overZ2 into families of NC2-Frege (quasi-poly
bounded Frege) proofs with the permutation rule, and also
into poly bounded Frege with propositional quantifiers. Per-
mutation Frege [1, 9] is a fragment of Substitution Frege,
which corresponds to reasoning with poly-time concepts.
The fragment of Quantified Frege that we use is tree-like
and all formulas only need one block of universal quanti-
fiers, and this can bep-simulated by Extended Frege.

6.3 Gaussian Elimination

The correctness condition of Gaussian Elimination states
that after performing the algorithm, the resulting matrix is
in row-echelon form. This condition of correctness can be
expressed with a family of tautologies (depending on the
underlying field, as usual), of size polynomial in the size
of the matrix. We outline how to prove these tautologies
with uniform polysize eFrege proofs. This gives us feasible
proofs of correctness of Gaussian Elimination.

This result is interesting because we do not know how to
give a proof of correctness of Berkowitz’s algorithm in its
own complexity class. In other words, we do not know if
we can prove the C-H theorem using NC2 concepts, rather
than (feasible) polynomial-time concepts.

We use the proof of correctness of Gaussian Elimination
to give a direct feasible proof (as opposed to a proof via the
feasible proof of the C-H theorem) ofAB = I!BA = I .

7 Conclusion and Open Problems

At this point, it is not known if there are poly-bounded
Frege proofs, or even quasi-poly-bounded Frege proofs of
hard matrix identities or of the Cayley-Hamilton (C-H) the-
orem. To repeat using the language of circuit complexity:
we know that hard matrix identities, as well as the C-H the-
orem, have poly-bounded P/poly-Frege proofs, but it is not

known if they have poly-boundedNCi-Frege proofs, for anyi. Since Berkowitz’s algorithm is an NC2 algorithm, it is
tempting to conjecture that they all have NC2-Frege proofs.

Here are some other open questions. More details can be
found in Chapter 9 of [8].

1. Show that LA cannot proveAB = I ! BA = I .
The most obvious approach is to construct a modelM of LA such thatM 6j= AB = I ! BA = I .
Alasdair Urquhart (private communication) suggested
another approach as follows: He showed that if LA` AB = I ! BA = I then the Propositional Pi-
geonhole Principal has polynomial size bounded-depth
Frege proofs with mod 2 gates. The latter is believed
to be unlikely.

2. IsAB = I ! BA = I “Complete”? Theorem 4.1
states that LAP proves that the C-H theorem impliesAB = I ! BA = I . Could it be that LAP+ C-H is a
conservative extension of LA +AB = I ! BA = I?

3. Does LAP prove det(A) = 0 ! AB 6= I? If so, then
LAP proves the equivalence of the multiplicativity of
the determinant with the other three principles of Sec-
tion 4.

Acknowledgments: Our thanks to Sam Buss for fruitful
comments resulting from the careful reading of the source
of this paper: the first author’s PhD thesis [8].
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