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restricted to the class DET, and we make this question pre-
cise by defining a quantifier-free theory PAormalizing

We introduce three formal theories of increasing strength reasoning about matrix algebra based on matrix powering.

for linear algebra in order to study the complexity of the

We use LAP to present Berkowitz’s algorithm. Since this

concepts needed to prove the basic theorems of the subjecalgorithm computes not only the determinant of a given
We give what is apparently the first feasible proofs of the square matrix4, but also the coefficients of the character-
Cayley-Hamilton theorem and other properties of the de- istic polynomialpa(z) = def{xzl — A), it is natural to ask
terminant, and study the propositional proof complexity of whether LAP proves the Cayley-Hamilton (C-H) theorem,

matrix identities.

1 Introduction

which assertg4(A) = 0. We leave this question open, but
we demonstrate its importance by showing thaFLgxoves
the equivalence of the C-H theorem with two other basic
results: the cofactor expansion of the determinant and the
axiomatic definition of the determinant.

If we cannot prove the C-H theorem in [PAcan we at

The complexity of the basic operations of linear algebra least find a feasible proof; i.e., one using only polynomial

such as the determinant and matrix inverse have been welltime concepts? This question (over finite fields and over the
studied. Over the field of rationals they lie within the com- rationals) has a natural precise formalization, sinceiliéas
plexity class N€, and are complete for the class DET [6]. reasoning has been well-studied usihigquivalent theories
Here we are concerned with tipgoof complexityof linear such as Cook’s PV [5] or Buss$} [4]. A study of the lin-
algebra, which roughly speaking is the complexity of the ear algebra literature has turned up no such feasible proof,
concepts needed to prove the basic properties of these opand in fact most proofs of the C-H theorem are based di-
erations. In general proof complexity has two aspects: uni-rectly or indirectly on the Lagrange expansion of the deter-
form and nonuniform (see [7] for a treatise on the subject). minant, which represents an exponential time algorithm.
The uniform aspect concerns the power of logical theories  Thus a major contribution of this paper is our success
required to prove a given assertion, while the nonuniform in finding a feasible proof of the C-H theorem. We for-
aspect concerns the power of propositional proof systemsmalize this proof in the field-independent thecri AP,
required to yield polynomial size proofs of a tautology fam- which extends LA by allowing induction over formulas
ily representing the assertion. with bounded universal matrix quantifiers. We justify the
The method of Gaussian elimination can be used to givelabel “feasible” for the proof in several ways, including an
polynomial time algorithms for the determinant, matrix in- interpretation of/LAP (when the underlying field is finite
verse, etc., but it does not yield the fast parallel algangh  or the rationals) into the feasible theory Yequivalent to
which place these operations in RKCWe base our treat- Buss’s §). Our feasible proof yields feasible proofs of
ment of linear algebra on Berkowitz’s elegant algorithm [2] many basic matrix properties, including the multiplicégiv
which gives field-independent reductions of these opera-of the determinant, and the correctness of algorithms based
tions to matrix powering (the complexity class DET) (see on Gaussian elimination.
[10] for alternative algorithms). One specific motivation for this research is to find natu-
We are interested in the question of whether the basicral tautology families which may distinguish the power of
properties of the determinant can be proved using conceptd-rege and Extended Frege (eFrege) propositional proof sys-



tems. (A line in a Frege proof is a propositional formula (AB)C and A + B = B + A but weak enough so that
which is an immediate logical consequence of earlier lines, all the theorems of LA (over finite fields or the field of ra-
whereas a line in an eFrege proof may also introduce a newtionals) translate into propositional tautologies withoth
propositional variable by definition, allowing for concise Frege proofs.

abbreviations of exponentially long formulas). The prin- Our theory has three sorts of objeatdices(i.e., natu-
ciple ral numbers)field elementsandmatrices where the cor-
AB=1— BA=1 (1) responding variables are denoted, k, ...; a, b, ¢, ...; and

A, B, C, ..., respectively. The semantics assumes that ob-
jects of type field are from a fixed but arbitrary field, and
objects of type matrix have entries from that field.

Terms and formulas are built from the function and pred-
icate symbols:

where A and B aren x n matrices, may provide such an
example. This principle (oveéf, or Z) is readily translated
into a tautology INV, of size polynomial inn. We con-
jecture that the familyINV,,) does not have polynomial
size Frege proofs, since the proof of (1) seems to require
concepts such as Gaussian elimination or matrix powering

: Oindex, lindex; +index *index, —index; di V, T €M Ofield, 1field,
whose complexity apparently cannot be expressed by poly-

e S,
nomial size propositional formulas (i.e., is notin NCOn Hield; *field; —fietd, I, C, €, X, Sindex; Zindex; =field;
the other hand, we show that (1) can be proved using poly- =matrix; CONGndex, CONGeid
nomial time concepts, and hen@dlV ,,) does have polyno- (2)

mial size eFrege proofs.
Altogether we introduce three logical theories of increas-
ing power

The intended meanings should be clear, except for the fol-
lowing operations on a matrid: r (4),c(A) are the num-
bers of rows and columns id, e(4,1,j) is the field el-
LA Cc LAP C VLAP ) ’ T i
ementA;;, £(A) is the sum of the elements iA. Also
to formalize linear algebra reasoning. Each theory hagthre conda, t1,t,) is interpretedf « thent, elset,, wherea is
sorts: indices (i.e., natural numbers), field elements, anda formula all of whose atomic sub-formulas have the form
matrices, and all theorems hold for any choice of the un-m; < n or m = n, wherem, n are terms of type index,
derlying field. The base theory LA allows the basic ring andt,, t, are terms either both of type index or both of type
properties of matrices to be formulated and proved. Thefield. The subscriptsgex andsielq are usually omitted, since
principle (1) can be formulated in LA but (we conjecture) they are clear from the context.
not proved. We show that LA proves the equivalence of  Atomic formulas and formulas are built in the usual man-
(1) with other “hard” matrix identities. Theorems of LA ner, except no quantifiers are allowed.

translate into tautology families with polynomial size §ee We use Gentzen's sequent calculus LK (with quantifier

proofs. rules omitted) for the underlying logic. We include 34 non-
We extend LA to LA by adding a new functionp, logical axioms in four groups: Axioms for equality, indiges

which is intended to denote matrix powering, iR(n, A) field elements, and matrices (all quantifier-free). These

meansA”. LAP is well suited for formalizing Berkowitz's  specify the basic properties of the function and predicate

algorithm, and it is strong enough to prove the equiva- symbols (2). By convention each instance of an axiom re-

lence of some fundamental principles of linear algebra. Thesulting from substituting terms for variables is also an ax-

theorems of LA translate into quasi-poly-bounded Frege iom, so the axioms are really axiom schemes.

proofs. We need just two non-logical rules: an equality rule for
We finally extend LA° to VLAP by allowing induction  terms of type matrix, and the induction rule:

on formulas with bounded universal matrix quantifiers. This

new theory is strong enough to prove the C-H theorem, and L a@) 2 a(i+1),A 3)

hence (by our equivalence) all the major principles of Lin- L, a(0) = a(n), A

ear Algebra. The theorems SLAP translate into poly- In addition to the usual rules for constructing terms we

bounded Extended Frege proofs. . . )
. . : ' also allow the term&ij(m,n, t) of type matrix. Here and
This paper is based on the PhD thesis [8] of the first au- . : :
thor. which is available on the Web j are variables of type index bound by theoperator, in-
' ' tended to range over the rows and columns of the matrix.
Here alsom, n are terms of type inderot containingi, j
2 The Theory LA (representing the numbers of rows and columns of the ma-
trix) and ¢ is a term of type field (representing the matrix
We define a quantifier-free theory of Linear Algebra elementin positiori, j)).
(matrix algebra), and call it LA. Our theory is strongenough ~ The X terms allow us to construct the sum, product,

to prove the ring properties of matrices such48C) = transpose, etc., of matrices. For example, suppose fittst tha




A andB arem x n matrices. Thend + B can be defined  define a new (constructed) matdiX(i, A), and we leti(A)
as\ij(m,n,e(A,i,j) + e(B,i,j)). Now suppose thatt be defined as:
andB arem x p andp x n matrices, respectively. Then:

d(A) :=condr(4) < c(4),r(4),c(4))

A * B = A7:.7'<T’7/7 n7 EDA]€l<p7 ]'7 e(A7 i7 k) * e(B7 k)j)>>

thatis,d(A) = min{r (A),c(A)}. Now let:

H_qwever, even if mgtrices are.ofincqmpatible“size, th?irad M, A) == Apg(r (A) — d(A) +i,c(A) — d(A) +1,

dition and product is well defined, since the “smaller” ma- . )

trix is implicitly padded with zeros (as(A, i, j) = 0 for i e(A,d(A) —i+p.dA) —i+aq)

or j outside the range). Thus, all terms are well defined.  that is, M (i, A) is thei-th principal sub-matrix of4. For
example, ifA is a3 x 5 matrix, thenM (1, A) isal x 3

3 The Theorems of LA matrix, with the entries from the lower-right corner 4f

To prove that a propert® holds for A, we prove tha??

We show that all matrix identities which state that the set holds fora (1, A) (the Basis Case), and then we prove that
of n x n matrices form a ring, and all identities that state if 7> holds forA(i, 4), then? also holds forM (i + 1, A)
that the set ofrn x n matrices form a module over the under- (the Induction Step). From this we conclude, by the induc-
lying field, are theorems of LA. However, LA is apparently tion rule, that? holds forM (d(4), 4), andM (d(4), A) is
not strong enough to prove matrix identities which require JustA. Note that in the Basis Case we might have to prove
arguing about inverses. Here are four examples (stated a§1@t? holds for a row vector or a column vector, which is a

Gentzen sequents), which we refer tdhasd matrix identi- k x 1oral x k matrix, and this in turn can also be done by
ties: induction (onk).

AB=1,AC=1-B=C | 4 Berkowitz's Algorithm and LA P

AB=1— AC #0,C =0 Il

AB=1 - BA=1 Ml Berkowitz’s algorithm allows us to reduce the computa-

tion of the characteristic polynomigl (z) = defzI — A)
of ann x n matrix A to the operation of matrix powering.
Suppose

AB=1— A'B' =1 v

(whereA' is the transpose of.). We show that LA proves
them all equivalent, but conjecture that none is provable in A= ( an R ) 4)
LA. In section 6 we show that these are theorems of the 5 M
stronger theory)'LAP. We speculate thatLAP might be whereR is anl x (n— 1) row matrixandSisa(n—1) x 1
conservative over LA +, wherea is any of I-IV. column matrixand/ is (n—1) x (n—1). Letp(x) andg(x)
In sections 5 we show that the theorems of LA translate be the characteristic polynomials dfand M respectively.
into tautology families with polynomial size Frege proofs, Suppose that the coefficientspform the column vector
and later we argue that theoremsWfAP translate into ‘
tautology families with polynomial size eFrege proofs. We p=(Pn Po1 - D0 ) (5)
conjecture that the translations of -1V do not have polyno-
mial size Frege proofs. This conjecture is partly inspired b
the paper [3] in which the “Odd Town Theorem” was pre-
sented as a candidate combinatorial principle for sepayati p = Ciq (6)
Frege and eFrege systems, since its proof seems to require . . ) ]
an independence argument from linear algebra. We show/VhereCi is an(n + 1) x n Toeplitz lower triangular matrix

that the “Odd Town Theorem” can be formulated in LA and (To€plitz means that the values on each diagonal are the
follows in LA from any of the principles I-1V, and hence same) and where the entries in the first column are defined

wherep; is the coefficient ofi? in det(zI — A), and simi-
larly for q. Then Berkowitz showed

its propositional translations have polynomial size eEreg &S follows:

proofs. We are unable to show in LA that conversely these 1 ifi=1

hard matrix identities follow from the “Odd Town Theo- _ if 7

rem.” =y hi=2 0
Throughout this paper we prove properties of matrices —(RM'2S) ifi>3

by induction on their size. We outline briefly this technique  gaikowitz's algorithm consists in repeating this fgrand

The size of a matrix has two parameters: the number of oo 4ining so thap is expressed as a product of matrices:
rows, and the number of columns. Suppose that we want

to prove that some property holds for all matricés We p=CCy---C, (8)



whereC; isan(n + 2 — i) x (n + 1 — i) Toeplitz matrix
defined as in (7) except is replaced by itg-th principal
sub-matrix.

Since each element af; can be explicitly defined in
terms of A using matrix powering, and since the iterated
matrix product can be reduced to matrix powering by a

standard method, the entire product (8) can be expresse&

in terms of A using matrix powering.

To formalize Berkowitz's algorithm we extend the theory
LA to the theory LAP by adding a new function symb#&}
whereP(n, A) meansA™. We also add two new axioms,
which give a recursive definition &, namely,P(0, A) = I
andP(n + 1, A) = P(n, A) x A.

of A. Sincep is not the zero polynomial (it has leading co-
efficient 1), there must bk > 0 and a polynomial such
that

0 = p(4) = g(A4) A" (12)

whereq has a nonzero constant term. Froh®® = I we
an show in L/ by induction oni that A’B? = I. Thus
multiplying (12) on the right byB* we obtaing(4) = 0,
which we can write as

G(A)A = —qol

whereq is the constant coefficient @gf Dividing by —¢q
we obtain the required left inverge = (—1/qo)g(A). O

Thus the right-hand side of (8) can be expressed as a

term in LAP. We use this term as the definition in P2of
the characteristic polynomial given in (5), of the matrix
A. (Ifn=1andA = (a), thenp= (1 —a)t.)

Also in LAP we define

de(A) := (=1)"po 9)

wherepy is as in (5), and we define

adj(4) := (=1)" M (pa A" + pu 1 AV 44 i)
(10)

Recall that in the usual definition, tt{é j)-th entry of the
adjoint of 4 is (—1)*+7/det( A[i|j]), whereA[i|j] is the mi-
nor obtained by deleting thieth row and;-th column ofA.
The equivalence of this and (10) can be proved irPLus-
ing the Cayley-Hamilton (C-H) Theorem as an assumption.

Recall that the C-H theorem states tpéatl) = 0. From
(10) we have that:

Aadj(4) = (-1)""(p(4) - pol)
Assumingp(A) = 0 we have by (9) that:
AadjA) = adj(A)A = det(A)I (11)

In fact LAP easily proves the equivalence of (11) with the
C-H theorem. We also have

Theorem 4.1 LAP proves that the C-H theorem implies the
hard matrix identities I-1V of section 3.

Proof(Outline) It suffices to consider the identity 111
AB=1—-BA=1

From the assumptiod B = [ it suffices to show that there
is someleft inverseC of A, since using simple ring prop-
erties of matrices (formalizable in LA) it is easy to show
AB =TandCA =1 impliesBA = 1.

To show that a left invers€' exists, we use the C-H the-
oremp(A) = 0, wherep is the characteristic polynomial

It is an open question whether IPYproves the C-H the-
orem in general, although we show that it proves the C-H
theorem for triangular matrices.

By the axiomatic definition of the determinawe mean
that the determinant function det) satisfies the three con-
ditions

e det is multi-linear in the rows and columns df
e det is alternating in the rows and columns 4f
e if A=1,thendet(A) =1

It is well-known that these conditions completely characte
ize the determinant.
By the cofactor expansiomwe mean

1<i<mn,det(Ad) = Zn:(*l)iﬂflij det(Afil5]) (13)

Jj=1

whereA[i|j] denotes the matrix obtained framby remov-
ing thei-th row and thegj-th column. For each the RHS of
the equation is called ttepfactor expansion of along the
i-th row, and (13) states that we obtaiat(A) expanding
along any row of4. Applying this recursively results in an
exponential time algorithm for computing d4t), showing
that the expansion completely defines the determinant.
By themultiplicativity of the determinantwe mean

de AB) = def( A)det B)

whereA, B aren x n matrices.
The following is the major result of this section.

Theorem 4.2 LAP proves the equivalence of each of the
following:

1. C-H theorem
2. Axiomatic definition of det

3. Cofactor Expansion



and LAP also proves the following implications:
1. Multiplicativity of det—> C-H theorem

2. C-H Theorem H{det(A) =0 — AB # I}
= Multiplicativity of det.

The rest of section 4 will consist of an outline of the

proof of this theorem, given in sections 4.1, 4.2, 4.3, and

4.4 (all the details can be found in [8, Chapter 6]). Later, in
section 6, we will give feasible proofs (i.e. proofs invailgi
only polynomial time concepts) of the C-H theorem and of
det(A) = 0 - AB # I. From this it will follow that all

the results mentioned in Theorem 4.2 have feasible proofs,

and from other results mentioned in section 6 it will fol-
low that the propositional translations of these resuliseha
polynomial size Extended Frege proofs.
The following result is used frequently in the proof: PA
proves
detA) = a;;def{ M) — Radj(M)S (14)

whereA is given by (4). The proof is straightforward from
the definitions involved.

4.1 The axiomatic definition of determinant

We show that when the determinant is defined as in (9),

the axiomatic definition of the determinant follows from the
C-H theorem, and that this can be proven inR.A'he con-
dition det(I) = 1 is easy, and multilinearity in the first row

(and column) is easy as well. Thus the whole proof hinges

on an LAP proof of alternation from the C-H theorem.

It is in fact enough to prove alternation in the rows, as
alternation in the columns will follow from alternation in
the rows bydet(A) = det(A?)—which can be derived in
LAP by induction on the size ofl (see [8, Lemma 5.1.7]).

In order to show alternation, we defiig to be the ma-
trix obtained from the identity matrix by interchanging the
i-th andj-th rows. The effect of multiplyingd on the left
by I;; is that of interchanging theth andj-th rows of A.

On the other handi/;; is A with thei-th andj-th columns
interchanged. We sometimes abbreviatg ; by I;.

We show alternation in the rows by first showing that
for any matrixA, A and I; AI, have the same char poly
(Ih L », soI, AL is the matrixA with the first two

rows interchanged, and the first two columns interchanged).

Then, we show thatl andi; AI; have the same char poly for
anyi (I; = 1;;4+1). Finally, we obtain thatd and/;; Al;;

Note that we prove tha#l andI;; Al;; have the same
char poly, i.e.ps,; a1,; = pa, to be able to reorder the ma-
trix and prove alternation.

4.2 The cofactor expansion

We show that LA proves that the cofactor expansion
formula (13) follows from the axiomatic definition of the
determinant. We first show that the cofactor expansion of
A along the first row is equal tdet(A). Define A;, for
1 < j < n,tobeA, with the first row replaced by zeros, ex-
cept for the(1, j)-th entry which remains unchanged. Then,
using multilinearity along the first row of, we obtain:

det(A) = det(A41) + det(As) + -+ - + det(4,) (15)
Consider4;, for j > 1. If we interchange the first column
and thej-th column, and then, witlij — 2) transpositions
we bring the first column (which is now in thjeth position)
to the second position, we obtain, by alternation and (14),
the following:

det(A]‘)

(=1)"""ar; det(A[1]5])
= (=1)"*ay; det(A[1]])

From this, and from equation (15), we obtain the cofactor
expansion along the first row, that is, we obtain (13) for
1= 1.

If we want to carry out the cofactor expansion along
the i-th row (wherei > 1), we interchange the first and
the i-th row, and then we bring the first row (which is
now in thei-th position) to the second row withi — 2)
transposition. Denote this new matrik, and note that
det(A’') = (1)t det(A). Now, expanding along the first
row of A’, we obtain (13) fos > 1.

4.3 The adjoint as a matrix of cofactors

We wish to show that LR proves the C-H theorem from
the cofactor expansion formula (i.e., from (13)). To this
end, we first show that (13) implies (in LR the axiomatic
definition of determinant.

We want to show that we can get multilinearity, alter-
nation anddet(7) = 1 from (13). To show multilinearity
along row (column), we just expand along row (column)

have the same char poly (as any permutation is a product ofi. To showdet(I) = 1 use induction on the size df in

transpositions).
We also show thaflet(A) = —det(I; A). From this
it follows thatdet(A) = — det(l;;A) for all i, since we

can bring the-th row to the second position (vig; Als;),
and reorder things (by applyinfy; AI,; once more). Since
I;; = I; 11114, this gives us alternation in the rows.

fact, showing thatlet(I) = 1 can be done in LR without
any assumptions.

Itis very easy to show that alternation follows from mul-
tilinearity and from:

If two rows (columns) ofd are equal—> det(A) =0



To show this in LAP (from the cofactor expansion formula), Note thatpa(A) = 0 can also be stated atadj(A) =
we expand along rowfirst to obtain: det(A)I, using our definitions of the adjoint and the de-
terminant. Thus, the following shows that PAoroves the
C-H theorem from the cofactor expansion formula: RA
provesAadj(A) = adj(A)A = det(A)I from the cofactor
expansion formula.
and then we expand each mindfi|k] along the row that We show first thatdadj(A) = det(A)I. The (i,j)-th
corresponds to thgth row of A. Note that we end up with ~ entry of Aadj(4) is equal to:
n(n — 1) terms; polynomially many in the size af. Since , j+1 ) , j4n )
row i is identical to the rowj, we can pair each term with ain (—1)77 det (A[j[1]) + -+ + ain (=1)"7" det(A[j]n])
; o : (16)
its negation; hence the result is zerodso(A4) = 0. C .
) \ " If i = j, this is the cofactor expansion along thth row.
Therefore, we have that the axiomatic definition of the ) ) . .
. . Suppose now that # j. Let A’ be the matrixA with
determinant follows from the cofactor expansion formula, . .
the j-th row replaced by theé-th row. Then, by alterna-

InLAP. We can now proceed, am.j finish showing the equiv- tion, det(A') = 0. Now, (16) is the cofactor expansion of
alences in Theorem 4.2, by showing that the cofactor expan-; . . )
along thej-th row, and therefore, it i§. This proves

sion formula implies the C-H theorem, also in PA g U -
) L that Aadj(A) = det(A)I, and by definition of the adjoint,
We start by showing that LR proves that: adi(A) A = Aadj(4), so we are done.

det(A) = (~1)"Fay det(A[i|k])

k=1

dj(A) = ((—=1)" det(A[j]i])); T .
adf4) = ((=1) et(ALlD):s 4.4 The multiplicativity of the determinant

i.e., that adjA) is the transpose of the matrix of cofactors

of A, from the axiomatic definition of det. The multiplicativity of the determinant is the property:
Consider the f0||owing matrix: det(AB) = det(A) det(B). This turns out to be a very
strong property, from which all other properties followdea
O—( 0 e§> ily in LA P.
e A Even the C-H theorem follows readily from the

multiplicativity of det: from the multiplicativity
wheree; is a column vector with zeros everywhere except of the determinant we have thafet(l15Al,) =

in thei-th position where it has a 1. By (14), we have that: det(Iy)det(A)det(I;) = det(A) for any matrix A.

Suppose we want to prove the C-H theorem for samen
matrix M . Define A as follows:

On the other hand, from alternation @n we have that a b R 0 0 €
e; 0 M

det(C) = —eladj(A)e; = (i, j)-th entry of—adj(A)

det(C) = (—1)"*tdet(A[j]i]). To see this, note that c d P
we needj + 1) transpositions to bring thgth row of A to

the first inth trixCC, to obtain the followi trix:
e first row in the matrixC, to obtain the following matrix Let C,CyCs---Criy be the char poly of 4 (and

1 Aj Cs5 - - - Cp4o the char poly ofdl). From Berkowitz’s algo-
c'=10
0 A

el rithm it is easy to see that fot defined this way the bottom

row of C1Cs is given by:

711
tasn, . tasn—1, . t .
whereA; denotes thg-th row of 4, andA[j|—] denotes4 e;MTe; M Te; ... ele; 0
with the j-th row deleted. Then, by (14), we have: s0 the bottom row of; C5Cs - - - Cypo is Simplyelp(M )e;
: wherep is the char poly of\/.
det(C") = det < 4 € ) On the other hand, usinget(A) = det(I12Al2) and
1] Berkowitz’s algorithm, we have that:
and now withi transpositions, we bring théth col- 00 0
t
umn of ( € ) to the first column, to obtain: det(4) =det | 0 0 e | =0
Aljl-] 0 e M
1 0 no_ i s
< 0 Afjli] ) Thereforedet(C") = (—1)" det(A[j]i]) so thate!p(M )e; = 0, and since we can choose any, we
finishing the proof. have thap(M) = 0.
Therefore, LA? proves that théi, j)-th entry of ad{A) What about the other direction? That is, can we prove

is given by(—1)"+7 det (A[j]i]). the following implication in LAP:



C-H theorem= Multiplicativity of the determinant? 6 Proofs of the C-H theorem

The answer is “yes|f LAP can prove the following: The main result of this paper is a feasible proof of the
Cayley-Hamilton (C-H) theorem. This result is impor-
det(4) =0—> AB #1 (17)  tant because it gives us a feasible proof of correctness of

Berkowitz’s algorithm, feasible proofs of hard matrix iden
That is, LAP can prove the multiplicativity of the determi- tities, and feasible proofs of the main principles of Matrix
nant from the C-H theorem and (17). The proof of this is Algebra (specifically: axiomatic definition of the determi-
quite long, however, and the reader is once more directednant, cofactor expansion formula, and multiplicativitylué

to [8, Chapter 6]. determinant).

We suspect, however, that [P’can prove (17) from the We believe that ours is the first feasible proof of the C-
C-H theorem, so that the C-H Theorem is enough to proveH theorem. The traditional proofs of the C-H theorem are
multiplicativity. At this point, we danothave a LAP proof infeasible, as they rely on the Lagrange expansion of the
of (17) from the C-H theorem. determinant, which for matrices of size hasn! terms of

sizen.

5 p . 1T lati Our proof is formalized in the theoryLAP, which is
ropositional Translations obtained from LA by introducingll¥ formulas.

For a fixed effectively-presented underlying fididwe Definition 6.1 We defindl}’ to be the set of formulas over
can translate the theorems of LA and RAnto families of Liap (“M” stands for matrix). We defin€lM to be the
tautologies with short propositional proofs. These transl set of formulas inl1}! together with formulas of the form
tions are a potential tool for proving independence results (VA < n)a, wherea € 11}, and whergVA < n)a abbre-
For example, if we can prove that féf = Z, the trans-  viates:
lation of AB = I — BA = I does not have polynomial
size proofs in bounded-depth Frege with mod 2 gates, then (VA)((r (A) <nAc(A) <n)Da)
it will follow that AB = I — BA = I is not a theorem ] ] ) ] ] )
of LA (over any field, since the theory LA is field indepen- whereA is a matrix variablenotcontained in the index term
dent). n.

Leta be a formula of LA or LA, and lets be an object To form YLAP from LAP we add two LK-style rules
assignment of natural numbers to all free index variables iny «_|eft andv <-right to VLAP, and augment the induc-

a, and to all terms of the form(A), c(4). Let|o| bethe  tion ryle to allow induction ovefl formulas. When the
largest value assigned by To each variable of type field in - nderlying field is finite or the rationals, this thecryAP

a we assign one or more (depending on the underlying field) can be interpreted in the feasible thed?y. (See Section
propositional variables (whose values determine a field el-5 5 of [7] for a definition ofvl)

ement), and to each matrix variablewe assign enough The basic idea behind the proof is the following: if
propositional variables to determine all entriesdifwhere pa(A) # 0, that is, if the C-H theorem fails fod, then
the size ofA is determined by). Now a ando translate e can findin polytimea sub-matrixB of A for which
into a propositional formulf«||,, of size polynomial ino| ps(B) # 0, i.e., for which the C-H theorem fails already.

which is valid whenevet is true in the standard model un-  gince the C-H Theorem doastfail for 1 x 1 matrices. after
dero over the fieldk'. The method of translation is similar  5; mostn, = (size ofA) steps we get a contradiction. This

to those described in Chapter 9 of [7]. idea can be expressed with universal quantifiers over vari-
If « is a theorem of LA then we show thit|[, has a  ables of type matrix: if the C-H theorem holds for all ma-
Frege proof of size bounded by a polynomialdn. Infact,  trices smaller thant, then it also holds fort. The matrix

we prove an even tighter result. When the underlying field 3 is obtained fromd, by transposing the first row and col-
is Zy, p a prime, the theorems of LA translate into proposi- ymn with thek-th row and column, respectively, and then

tional tautologies with short bounded-depth™@ proofs,  deleting the first rows and columns; finding andi can be
where AC[p] allows MOD, ; gates (i.e., modular gates, for done in polytime.

counting modulo the primg). We also show that the the- It turns out that we do not need multiplicative inverses
orems of LAP have quasi-poly-bounde@(2'°¢” ")) Frege  for field elements to prove the C-H theorem; that is, we do
proofs. not need the function!. Berkowitz’s algorithm does not

We point out in section 6.2 that the theorems of RA  compute inverses of field elements, and we do not need to
have polynomial size Extended Frege proofs. For all the reason with inverses in our proof of the C-H theorem. Thus,
details see Chapter 7 of [8]. the C-H Theorem holds for commutative rings. On the other



hand, wedo use inverses in our proof of the multiplicativity

and the first row and column @f;,, 41,,)(I1; Al ;) are zero

of the determinant. It is an interesting question whether it by Lemma 6.1 below (letting’ = I,; AI;). Thus, contra-

is possible to give a feasible proof of the multiplicativitfy
the determinant for commutative rings.

Since LAP proves the equivalence of the C-H theorem,
the axiomatic definition of the determinant, and the cofacto

expansion (see Theorem 4.2), we conclude that these prin
ciples have feasible proofs as well. Using Gaussian Elimi-

diction; it follows thatp4(A) = 0. This argument can be
clearly formalized invLAP. O

Lemma 6.1 LAP proves that ifpc(;1)(C[1[1]) = 0, then

the first row and the first column @ (C) are zero.

nation, and the feasible proof of the C-H theorem, we also Proof. We restate the Lemma using the usual notatioA of

give a feasible proof of the multiplicativity of the determi
nant.

6.1 A feasible proof of the C-H theorem

andM = A[1]1]. Thus, we want to show that LAproves
the following: if pa (M) = 0, then the first row and the
first column ofp4(A) are zero. For clarity we lgt = p4
andg = py.

The proof is by induction on the size dff. The Ba-

In this section we give some more details of the feasible sis Caseis whenM is a1l x 1 matrix. Letp,,pi,po be

proof of the C-H theorem. A complete exposition is given
in [8, Chapter 8].

We define the systeiLAP to be similar to LA, but we
allow I formulas. The underlying logic is again based
on Gentzen’s sequent system LK. Wherea$lreeds only
the propositional rules of LK, we now need the rules for
introducing a universal quantifier on the left and on thetrigh
of a sequent:

r(T)<n,c(T)<n,a(T),I' - A
(VX <n)a(X), T - A
r(A) <mn,c(4) <n,I - A a(4)
' A, (VX <n)a(X)

left

right

whereT is any term of type matrix, and is any term of
type index. Also, irv-introduction-right,A is a variable of
type matrix that does not occur in the lower sequant in
both rulesy is all}! formula, because we just want a single
matrix quantifier.

Note thatvLAP still has the induction rule (3), and hence
allows induction ovefl¥ formulas.

Theorem 6.1 VLAP proves the C-H theorem.

Proof. We prove that for alh x n matricesA, pa(A) = 0,
by induction om:. TheBasis Cases trivial: if A = (a11),
then the char poly ofd is z — a1,. We use the following
strong induction hypothesigvA < n)pa(A) = 0. Thus,
in our Induction Step we prove:

(VM < n)par (M) =0 — (VA < n+1)pa(A) = 0 (18)

So letA be an(n + 1) x (n + 1) matrix, and assume
that we haveVM < n)py (M) = 0. Then, by the results
in Section 4, we have thatforall < ¢ < j < n —1,
P(1;;AL;) = PA-

Suppose now that thieth row (column) ofp4 (A) is not
zero. Then, the first row (column) df;pa(A)I;; is not
zero. But:

Lipa(A) L1 = pa(liiAL) = piry, an,) (hiAly)

the coefficients of the char poly of, and letq,, ¢y be
the coefficients of the char poly af/. By assumption
g M + qoI = 0. Note thatl is also al x 1 matrix. From
Berkowitz’s algorithm we know that:

P2 1 0
D1 —a 1 (
Do —RS —an

q1
—a11q1 + qo
—RSq1 — a11qo

Note that:
Ag_ a%—l—RS (l]]R‘FRM
B (1115+MS SR+M2

We must now show that the first row and column of
pa(A) = py A% +py A+ pol are zero. We just show that the
(1,2) entry is zero; the rest follow just as easily. From (19)
we see that thél, 2) entry ofp4 (A) is given by:

(a1 R+RM)q: + R(—a11q1+qo) + 0(—RSq1 —a11qo)
=R(Mq +q)=0

Note that it is actually possible, in the Basis Case, to show
thatpa(A) = 0 (as this istrue), not just the first row and
column ofpa(A). However, this seems infeasible to carry
out in the Induction Step.

We prove thdnduction Step with three claims. We as-
sume thaf\/ is an(n—1) x (n—1) matrix, wheren —1 > 1.
We letp = ps andq = pyy, thatis,p, ¢ are the char polys
of A, M = A[1]1], respectively. Definev;, X, Y, Z; as

follows:
A [ wm X1\ (a1 R
S\ 4 o S M
Ak = [ Wk X
Yir1r Zipta
_ Wk Xk ail R
_<Yk Zk><S M) fork > 1



Note thatwy, X, Y%, Z, cannot be defined in LR as we
cannot define new matrices recursively. However, all that
we need in the following proof are entries of powers of

Thus, (23) is equal to

A, which can be expressed in [PA The entrywy, and
the submatricesXy, Yy, Z; are there to make the proof
more human readable; for example, instead pfve could
write e(P(k, A),1,1), or instead ofX; we could write
Xij{l,n—1,e(P(k, A),1,j+1)), but then the proof would
be difficult to read.

Itis easy to see that LA proves the following equations:

Wit = aj1wy + XiS
Xpt1 =wp R+ Xy M
Yigr1 = an Yy + ZiS
=YyR+ ZiyM

(20)

Zgt1

As was mentioned above, we are going to prove that
the first row and column consist of zeros with Claims 6.1,

6.2, and 6.3. Claim 6.3 follows from Claim 6.2 using the
fact that A and A* have the same char poly (the details
are provided in the proof of Claim 6.3). For the other two
claims we are going to puyts (A) in a special form. Using
Berkowitz’s algorithm, it is easy to show in [RAthat:

n—1 k—1

p(4) = (A —anl)q qu Z (RM'S)A  (21)

and thus, to show that the first columnygfd) is zero, it is
enough to show that the first columns(©f — a;11)q(A)

and Zh 1 Gk Z (RM 'S)A are the same. This is the
strategy for provmg Claims 6.1 and 6.2.

Claim 6.1 The upper-left entry of(A) is zero.
Proof. Using (20) we obtain:

woy =1
w1 = any
k—1
Wr4+1 = Q11 Wk + Z (RMZS)’IU]C,1,Z'

(22)

Fork > 1. The top leftentry of A — ay1I)q(A) is given by

n—1

Z qr (W41 — a11wy)

k=1

(23)

(notice that we can ignore the terim= 0 since the top left
entry of A is the same as the top left entryaf, I). We can
compute(wg11 — ai1wyg) using the recursive definitions of
wy, (given by (22) above):

k1
Wil — A1 WE = A1 WE + Z(RMiS)wkflfi — a1 Wk
i=0
k1
= Z(RMlS)wk,],i

i=0

n—1 k—1
Z q Z(RMiS)11)k,1,i
k=1 =0

This proves that the top left entry pfA) is zero (see equa-
tion (21) and the explanation below it). O

Claim 6.2 The(n — 1) x 1 lower-left submatrix op(A) is
zero.

Proof. Using (20) we obtaink > 1):

Yy, =0
Yi=S8 (24)
Vi1 =an Vik (MES) 45212 (RMS) Vi1

The lower-left(n — 1) x 1 submatrix of(4 — a111)q(A) is

given by

n—1

> gk (Yigr — anYs)
k=0

and by (24) we have that fér > 2, Y;, 11 — a11 Y% is given
by:
k—2 )
= ((],11Yk + MkS + Z(RMZS)Yk11> — (111Yk
i=0
k—2 )
=M"S+ ) (RM'S)Yy 1

i=0
ans, thereforeZZ;é qr (Ye+1 — a11Yy) is given by:

qo(Y1 — a1 Yp) +Q1(Y2 —anyl)

n—1
+> (M S+ZRMSYk . )
k=2 i=0

n—1 k—2

=q(M)S+> aqx > (RM'S)Yy 1

k=2 i=0

and by the IHY 7~ M*S = ¢(M)S = 0, and by defini-
tionYy = 0, thus We can conclude that:

n—1 n—1 k—1
S a (Vg —anYe) =D a Y (RM'S)Yi 1,
k=0 k=1 =0

But the RHS of the above equation is equal to(the- 1) x
1 lower-left submatrix ofy 7~ gx S2F ) (RM1S) Ak—1 4,
and hence the claim follows (once again, see equation (21)
and the explanation below it). O



Claim 6.3 Thel x (n — 1) upper-right submatrix of(A) known if they have poly-bounded N&rege proofs, for any
is zero. i. Since Berkowitz’s algorithm is an NCalgorithm, it is
tempting to conjecture that they all have NErege proofs.

Proof. To prove this claim we use the fact that = pa: Here are some other open questions. More details can be
and Claim 6.2. The crucial observationis thatthe 1) x 1 found in Chapter 9 of [8].

lower-left submatrix of A")* is X}. Now, we know thap
is also the char polynomial oft, so by Claim 6.2, we know 1. Show that LA cannot provdlB = I — BA = I.

that the(n — 1) x 1 lower-left submatrix ofp(A?) is zero. The most obvious approach is to construct a model
Thus the(n —1) x 1 lower-left submatrix of p(A4))* is zero, M of LA such thatM %= AB =1 — BA = 1.

and therefore thé x (n — 1) upper-right submatrix g( A) Alasdair Urquhart (private communication) suggested
is zero, and hence the claim follows. O O another approach as follows: He showed that if LA

F AB = I — BA = I then the Propositional Pi-

geonhole Principal has polynomial size bounded-depth

Frege proofs with mod 2 gates. The latter is believed
6.2 Other propositional proofs to be unlikely.

. 2. IsAB = I - BA = I “Complete” Theorem 4.1
We also show how to translate feasible proofs of the C- states that LA proves that the C-H theorem implies

H theorem ovef, into families of NG-Frege (quasi-poly AB = I — BA = I. Could it be that L&+ C-H is a

bounded Frege) proofs with the permutation rule, and also conservative extension of LA#B — I —s BA — I?
into poly bounded Frege with propositional quantifiers.-Per

mutation Frege [1, 9] is a fragment of Substitution Frege, 3. Does LAP prove detd) = 0 — AB # I? If so, then

which corresponds to reasoning with poly-time concepts. LAP proves the equivalence of the multiplicativity of
The fragment of Quantified Frege that we use is tree-like the determinant with the other three principles of Sec-
and all formulas only need one block of universal quanti- tion 4.

fiers, and this can be-simulated by Extended Frege. Acknowledgments: Our thanks to Sam Buss for fruitful

comments resulting from the careful reading of the source

6.3 Gaussian Elimination of this paper: the first author’s PhD thesis [8].

The correctness condition of Gaussian Elimination states
that after performing the algorithm, the resulting matex i
in row-echelon form. This condition of correctness can be
expressed with a family of tautologies (depending on the
underlying field, as usual), of size polynomial in the size 2]

References

[1] N. H. Arai. Tractability of cut-free Gentzen type propos
tional calculus with permutation inference. 1995.
S. J. Berkowitz. On computing the determinant in smaitt pa

of the matrix. We outline how to prove these tautologies allel time using a small number of processohsformation

with uniform polysize eFrege proofs. This gives us feasible Processing Lettersl8(3):147—150, 1984.

proofs of correctness of Gaussian Elimination. [3] M. Bonet, S. Buss, and T. Pitassi. Are there hard examples
This result is interesting because we do not know how to for frege systemsFeasible Mathematicsl:30-56, 1994.

give a proof of correctness of Berkowitz's algorithm in its  [4] S- R. Buss. Bounded Arithmetic Studies in proof theory.

own complexity class. In other words, we do not know if Napoli, 1986.

L [5] S. A. Cook. Feasibly constructive proofs and the proposi
we can pr?"e the C-H theorem using Nf‘bncepts, rather tional calculusProc. 7th ACM Symposium on the Theory of
than (feasible) polynomial-time concepts.

) o Computationpages 83-97, 1975.
We use the proof of correctness of Gaussian Elimination [6] S.A. Cook. Ataxonomy of problems with fast parallel algo
to give a direct feasible proof (as opposed to a proof via the rithms. Information and Computatiqré4(13):2—22, 1985.
feasible proof of the C-H theorem) &fB = I — BA = I. [7] J. Krajicek. Bounded Arithmetic, Propositional Logic, and
Complexity TheoryCambridge, 1995.
[8] M. Soltys. The Complexity of Derivations of Matrix Iden-

7 Conclusion and Open Problems tittes. PhD thesis, University of Toronto, Department of
Mathematics, 2001. Available from the ECCC server (un-
At this point, it is not known if there are poly-bounded der Theses).

[9] A.Urquhart. The symmetry rule in propositional logRis-

Frege proofs, or even quasi-poly-bounded Frege proofs of ; :
crete Applied Mathematic96-97:177-193, 1998.

hard matrix identities or of the Cayley-Hamilton (C-H) the- [10] J. von zur Gathen. Parallel linear algebra. In J. H. Reif

orem. To repeat using the language of circuit complexity: itor, Synthesis of Parallel Algorithmgages 574-617. Mor-
we know that hard matrix identities, as well as the C-H the- gan and Kaufman, 1993.

orem, have poly-bounded P/poly-Frege proofs, but it is not



