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Abstract—We show that the well-known König’s Min-Max
Theorem (KMM), a fundamental result in combinatorial matrix
theory, can be proven in the first order theory LA with induction
restricted to ΣB

1 formulas. This is an improvement over the
standard textbook proof of KMM which requires ΠB

2 induction,
and hence does not yield feasible proofs — while our new
approach does. LA is a weak theory that essentially captures
the ring properties of matrices; however, equipped with ΣB

1

induction LA is capable of proving KMM, and a host of other
combinatorial properties such as Menger’s, Hall’s and Dilworth’s
Theorems. Therefore, our result formalizes Min-Max type of
reasoning within a feasible framework.

I. INTRODUCTION

In this paper we are concerned with the complexity of
formalizing reasoning about combinatorial matrix theory. We
are interested in the strength of the bounded arithmetic theories
necessary in order to prove the fundamental results of this
field. We show, by introducing new proof techniques, that
the logical theory LA with induction restricted to bounded
existential matrix quantification is sufficient to formalize a
large portion of combinatorial matrix theory.

Perhaps the most famous theorem in combinatorial matrix
theory is the König’s Mini-Max Theorem (KMM) which
arises naturally in all areas of combinatorial algorithms —
for example “network flows” with “min-cut max-flow” type
of reasoning. See [1] for recent work related to formalizing
proof of correctness of the Hungarian algorithm, which is an
algorithm based on KMM. As far as we know, we give the
first feasible proof of KMM.

As KMM is a cornerstone result, it has several counter-
parts in related areas of mathematics: Menger’s Theorem,
counting disjoint paths; Hall’s Theorem, giving necessary and
sufficient conditions for the existence of a “system of distinct
representatives” of a collection of sets; Dilworth’s Theorem,
counting the number of disjoint chains in a poset, etc. We
note that we actually show the equivalence of KMM with a
restricted version of Menger’s Theorem.

We show that KMM can be proven feasibly, and we do so
with a new proof of KMM that relies on introducing a new
notion (“diagonal property”). Furthermore, we show that the
theorems related to KMM, and listed in the above paragraph,
can also be proven feasibly; in fact, all these theorems are
equivalent to KMM, and the equivalence can be shown in

LA. We believe that this captures the proof complexity of
Min-Max reasoning.

Our results show that Min-Max reasoning can be formalized
with uniform Extended Frege. It would be very interesting to
know whether the techniques recently introduced by [2] could
bring the complexity further down to quasi-polynomial Frege.
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[1] D. T. M. Lê and S. A. Cook, “Formalizing randomized matching
algorithms,” Logical Methods in Computer Science, vol. 8, pp. 1–25,
2012.

[2] P. Hrubes and I. Tzameret, “Short proofs for the determinant identities,”
CoRR, vol. abs/1112.6265, December 2011.

[3] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory. Cam-
bridge University Press, 1991.

[4] M. Soltys and S. Cook, “The complexity of derivations of matrix
identities,” Annals of Pure and Applied Logic, vol. 130, no. 1–3, pp.
207–275, December 2004.
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