Filling out details in the proof of Claim 8 in

Feasible Combinatorial Matrix Theory by Fernandez \& Soltys

Michael Soltys

December 25, 2014

In this note we provide details for the proof of Claim 8 in the paper Feasible combinatorial matrix theory by Ariel German Fernandez and Michael Soltys, which is going to be presented at MFCS' 13 . The proof contained therein is correct, but, due to the conference proceedings space limitations, incomplete. In particular, in this note we expand on the last paragraph in that proof ${ }^{11}$ That paragraph is a very "bare-bones" outline of the proof of the inductive step part of the inductive proof employed to prove Claim 8.

The induction is on the number of rows, where A_{k} contains the first k rows of A (this is not crucial, but we count the rows from the bottom). We denote the first row of A (in the usual sense, the top row), as row $k+1$. If row $k+1$ is not covered by $C_{\mathcal{S}}$ (which consists of the vertical lines going through the points in \mathcal{S}), then we pick a 1 from row $k+1$ that is not covered and add it to our selection. This is the easy case; we now assume that C_{S} does cover row $k+1$.

We re-arrange A_{k+1} by permuting its rows and columns so that it is of the following form:

The re-arrangement of A_{k+1}, giving it the above form, is obtained as follows: first, we place the selected 1 s (the green 1 s) from A_{k} along the main diagonal of A_{k}. This permutation might rearrange the columns of row $k+1$, but row $k+1$ continues being in the same position - the first row from the top. We

[^0]then re-arrange the green 1 s so that areas B and D contain only zeros (note that these areas might be empty).

Suppose first that area A contains a 1 ; say that this 1 is in row i of the matrix. Then pick the green 1 along row i, remove it from the selection, and instead add to the selection the corresponding black 1 (i.e., the 1 in row $k+1$ that is in column $i-1$), and the 1 from area A. The diagram below represents the situation: the black 1 in row $k+1$ with the green circle around it is the selection from row $k+1$. The crossed-out green 1 has be de-selected, and replaced by the black 1 in area A.

Suppose that area A is all zeros. Suppose that areas G and F are also all zeros; then we can cover A_{k+1} with k lines as follows: horizontal lines covering C,B,D,E and vertical lines covering the green 1 s between G and F. But this contradicts the assumption that A_{k+1} requires $k+1$ lines to be covered.

Thus, under the assumption that area A is all zeros, we know that there must be 1 s in area G or area F. As G and F are symmetric cases, assume that the 1 is in F . Then we re-arrange the selection as in the following diagram.

Following the direction of the path, the black 1 from row $k+1$ is selected; the green 1 is deleted and replaced by the black 1 in area F; the second green 1 on the path is deleted, and replaced by the black 1 in area E. Also note that if E were empty, so would be F.

[^0]: ${ }^{1}$ See the last paragraph on page 5 of the final submission - http://bit.ly/1B6k3h9

