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Abstract. We give the first, as far as we know, feasible proof of König’s
Min-Max Theorem (KMM), a fundamental result in combinatorial ma-
trix theory, and we show the equivalence of KMM to various Min-Max
principles, with proofs of low complexity.
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1 Introduction

König’s Mini-Max Theorem (KMM) is a cornerstone result in Combinatorial
Matrix Theory. We give the first, as far as we know, feasible proof of KMM, and
we show that it is equivalent to a host of other theorems: Menger’s, Hall’s, and
Dilworth’s, with the equivalence provable in low complexity.

The standard textbook proof of KMM given in [BR91], can be formalized
with ΠB

2 reasoning. On the other hand, our approach yields a ΣB
1 proof. We use

the theory of Bounded Arithmetic LA, introduced by [SC04].
Let A be an n×m 0-1 matrix, i.e., a matrix with entries in {0, 1}. A line is a

row or column of A; given an entry Aij of A, we say that a line covers that entry
if this line is either row i or column j. KMM states that the minimum number
of lines that cover all of the 1s in A is equal to the maximum number of 1s in A
with no two of the 1s on the same line.

LA is a first-order theory, of three sorts: indices, ring elements, and matrices.
It formalizes basic index manipulations, as well as ring properties, and has a
matrix constructor. The details can be found in [SC04]. While LA allows for
bounded index quantification and arbitrary matrix quantification, its induction
is restricted to be over formulas without matrix quantifiers, i.e., over ΣB

0 = ΠB
0

formulas. On the other hand, ∃LA allows ΣB
1 induction. When the underlying

ring is Z, the theorems of LA translate into TC0-Frege while the theorems of
∃LA translate into extended Frege, [SC04, §6.5].

It follows more or less directly that our LA results can also be formalized
in the theory VTC0 (and vice versa), defined in [CN10, pg. 283]. The reason is
that the function ΣA is exactly Buss’ function Numones(A) ([Bus86] and [Bus90,
pg. 6]), i.e., the function that counts the number of 1s in A, and TC0 is the AC0

closure of Numones, [CN10, Proposition IX.3.1]. On the other hand, our ∃LA
results can also be formalized in V1, defined in [CN10, pg. 133].
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Recently [LC12] formalized the proof of correctness of the Hungarian algo-
rithm, which is an algorithm based on KMM.

The language of LA is well suited to express concepts in combinatorial matrix
theory. For example, we say that the matrix α is a cover of a matrix A with the
predicate:

Cover(A,α) := ∀i, j ≤ r(A)(A(i, j) = 1→ α(1, i) = 1 ∨ α(2, j) = 1) (1)

We use r(A) and c(A) to denote the rows and columns of a matrix A. We
abbreviate r(A) ≤ n ∧ c(A) ≤ n with |A| ≤ n. The matrix α keeps track of
the lines that cover A; it does so with two rows: the top row keeps track of
the horizontal lines, and the bottom row keeps track of the vertical line. The
condition ensures that any 1 in A is covered by some line stipulated in α.

We say that β is a selection of A with the predicate Select(A, β) defined as
the conjunction of

∀i, j ≤ r(A)(β(i, j) = 1→ A(i, j) = 1),

which asserts that β is a selection of 1s from A, and

∀k ≤ r(A)(β(i, j) = 1→ β(i, k) = 0 ∧ β(k, j) = 0)),

which asserts that no two of those 1s are in the same row or column.
We are interested in a minimum cover (as few 1s in α as possible) and a

maximum selection (as many 1s in β as possible). The following two predicates
express that α is a minimum cover and β a maximum selection.

MinCover(A,α) := Cover(A,α) ∧ ∀α′ ≤ c(α)(Cover(A,α′)→ Σα′ ≥ Σα)

MaxSelect(A, β) := Select(A, β) ∧ ∀β′ ≤ r(β)(Select(A, β′)→ Σβ′ ≤ Σβ)

Clearly MinCover and MaxSelect are ΠB
1 formulas. We can now state KMM:

MinCover(A,α) ∧MaxSelect(A, β)→ Σα = Σβ (2)

Note that (2) is a ΣB
1 formula. The reason is that in prenex form, the universal

matrix quantifiers in MinCover and MaxSelect become existential as we pull
them out of the implication; they are also bounded.

Given a matrix A, its n-th principal minor consists of A with the first r(A)−n
rows deleted, and the first c(A)− n columns deleted. For instance, for a square
matrix A, when n = |A|, the n-th submatrix is just A, and when n = 1, then n-th
submatrix is just [A|A|,|A|], i.e., the matrix consisting of just the lower-right entry.
Let A[n] denote the n-th principal minor, and note that A[n] can be expressed
as follows in the language of LA: λij〈n, n, e(A, r(A)− n+ i, c(A)− n+ j)〉.

Let KMM(A,n) assert that formula (2) holds for the n-th submatrix of A.
More precisely, KMM(A,n) is the prenex form of (2) with A replaced by A[n].
Thus, KMM(A,n) is a ΣB

1 formula. Let lA = Σα where MinCover(A,α), and
oA = Σβ where MaxSelect(A, β). It can be stated with a ΣB

0 predicate that a
matrix P is a permutation matrix. That is,

Perm(P ) := (∀i ≤ |P |∃j ≤ |P |Pij = 1) ∧ (∀i, j 6= k ≤ |P |(Pij = 0 ∨ Pik = 0)).
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2 Feasible proof of KMM

We prove the main theorem with a sequence of Lemmas.

Theorem 1 ∃LA proves König’s Min-Max (KMM) Theorem.

We prove KMM for any matrix A by induction on the principal minors of A.

Lemma 2 ∃LA ` ∀nKMM(A,n).

Recall that the predicate KMM(A,n) has been defined in the last paragraph
of the previous section. Showing ∀nKMM(A,n) is enough to prove KMM for A
since letting n = |A| we obtain A[n] = A.

We start by showing the following technical Lemma which states that lA and
oA are invariant under permutations of rows and columns.

Lemma 3 Given a matrix A, and given any permutation matrix P , we have
that LA ` lPA = lAP = lA and LA ` oPA = oAP = oA.

Proof. LA shows that if we reorder the rows or columns (or both) of a given
matrix A, then the new matrix, call it A′, where A′ = PA or A′ = AP , has the
same size minimum cover and the same size maximum selection. Of course, we
can reorder both rows and columns by applying the statement twice: A′ = PA
and A′′ = A′Q = PAQ.

LA proves Cover(A,α) → Cover(A′, α′) and Select(A, β) → Select(A′, β′),
where A′ is defined as in the above paragraph, and α′ is the same as α, except
the first row of α is now reordered by the same permutation P that multiplied A
on the left (and the second row of α is reordered if P multiplied A on the right).
The matrix β is even easier to compute, as β′ = Pβ if A′ = PA, and β′ = βP
if A′ = AP . It follows from P being a permutation matrix that Σα = Σα′ and
Σβ = Σβ′: we can show by LA induction on the size of matrices that if X ′

is the result of rearranging X (i.e., X ′ = PXQ, where P,Q are permutation
matrices), then ΣX = ΣX ′. We do so first on X consisting of a single row, by
induction on the length of the row. Then we take the single row as the basis case
for induction over the number of rows of a general X.

It is clear that given A′, the cover α′ has been adjusted appropriately; same
for the selection β′. We can prove it formally in LA by contradiction: suppose
some 1 in A′ is not covered in α′; then the same 1 in A would not be covered
by α. For the selections, note that reordering rows and/or columns we maintain
the property of being a selection: we can again prove this formally in LA by
contradiction: if β′ has two 1s on the same line, then so would β.

The last thing to show is that LA proves MinCover(A,α)→ MinCover(A′, α′)
MaxSelect(A, β) → MaxSelect(A′, β′). If the right-hand side does not hold, we
would get that the left-hand side does not hold by applying the inverse of the
permutation matrix. ut

We are going to prove Lemma 2 by induction on n, breaking it down into
Claims 4 and 7.



4 Ariel Fernández and Michael Soltys

Claim 4 LA ` oA ≤ lA.

Proof. Given a covering of A consisting of lA lines, we know that every 1 we pick
for a maximal selection of 1s has to be on one of the lines of the covering. We also
know that we cannot pick more than one 1 from each line. Thus, the number of
lines in the covering provide an upper bound on the size of such selection, giving
us oA ≤ lA.

We can formalize this argument in LA as follows: let A be an lA×oA matrix
whose rows represent the lines of the covering, and whose columns represent the
1s no two on the same line. Let A(i, j) = 1 ⇐⇒ the line labeled with i covers
the 1 labeled with j. Then,

oA = c(A) ≤ ΣA (a)

= Σi(Σλpq〈1, c(A),A(i, q)〉) (b)

≤ Σi1 = r(A) = lA, (c)

where (a) can be shown by induction on the number of columns of A which has
the condition that each column contains at least one 1 (i.e., each 1 from the
selection must be covered by some line); (b) follows from the fact that we can
add all the entries in a matrix by rows; and (c) can be shown by induction on
the number of rows of A which has the condition that each row contains at most
one 1 (i.e., no two 1s from the selection can be on the same line). ut

Note that in the proof of Claim 4 we implicitly show the Pigeonhole Principle
(PHP). We showed that if we have a set of n items {i1, i2, . . . , in} and a second
set of m items {j1, j2, . . . , jm}, and we represent the matching by A as follows:
A(p, q) = 1 ⇐⇒ ip 7→ jq, then injectivity means that each column of A has at
most one 1. Thus:

n ≤ ΣA = Σi(col i of A) ≤ Σi1 ≤ m.

This is to be expected as we already mentioned that LA over Z corresponds to
VTC0, which proves PHP.

Bondy’s Theorem states that for any n×n 0-1 matrix whose rows are distinct,
we can always delete a column so that the remaining n × (n − 1) matrix still
has n distinct rows. [CN10, §IX.3.8] investigate the connection between Bondy’s
Theorem (BONDY) and PHP, and they show that V0 ` BONDY ↔ PHP. It
would be interesting to know if V0 ` KMM↔ PHP.

As Claim 4 shows, LA is sufficient to prove oA ≤ lA; on the other hand, we
seem to require the stronger theory ∃LA (which is LA with induction over ΣB

1

formulas) in order to prove the other direction of the inequality. We start with
the following definition.

Definition 5 We say that an n× n 0-1 matrix has the diagonal property if for
each diagonal entry (i, i) of A, either Aii = 1, or ∀j ≥ i[Aij = 0 ∧Aji = 0].

Claim 6 Given any matrix A, LA proves that there exist permutation matrices
P,Q such that PAQ has the diagonal property.
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Proof. We construct P,Q inductively on n = |A|. Let the i-th layer of A consist
of the following entries of A: Aij , for j = i, . . . , n and Aji for j = i + 1, . . . , n.
Thus, the first layer consists of the first row and column of A, and the n-th layer
(also the last layer), is just Ann. We transform A by layers, i = 1, 2, 3, . . .. At
step i, let A′ be the result of having dealt already with the first i − 1 layers. If
A′ii = 1 move to the next layer, i+1. Otherwise, find a 1 in layer i of A′. If there
is no 1, also move on to the next layer, i + 1. If there is a 1, permute it from
position Aij′ , j

′ ∈ {i, . . . , n} to A′ii, or from position Aj′i, j
′ ∈ {i + 1, . . . , n}.

Note that such a permutation does not disturb the work done in the previous
layers; that is, if A′kk, k < i, was a 1, it continues being a 1, and if it was not
a 1, then there are no 1s in layer k of A′. Note that each layer can be computed
independently of the others. ut

Claim 7 ∃LA ` oA ≥ lA.

Proof. Let

A =

[
a R
S M

]
, (3)

where a is the top-left entry, and M the principal sub-matrix of A, and R
(resp. S) is 1× (n− 1) (resp. (n− 1)× 1).

By Claim 6 we can ensure that A has the diagonal property, which simplifies
the analysis of the cases. Indeed, from the diagonal property we know that one
of the following two cases is true:

Case 1. a = 1
Case 2. a,R, S consist entirely of zeros
In the second case, oA ≥ lA follows directly from the induction hypothesis,

oM ≥ lM , as oA = oM ≥ lM = lA. Thus, it is the first case, a = 1, that is
interesting. The first case, in turn, can be broken up into two subcases: lM = n−1
and lM < n− 1.

Subcase (1-a) lM = n− 1
By induction hypothesis, oM ≥ lM = n− 1. We also have that a = 1, and a

is in position (1, 1), and hence no matter what subset of 1s is selected from M ,
none of them lie on the same line as a. Therefore, oA ≥ oM +1. Since oM ≥ n−1,
oA ≥ n, and since we can always cover A with n lines, we have that n ≥ lA, and
so oA ≥ lA.

Subcase (1-b) lM < n− 1
Let A and M be as in (3), and let αM be a set of lines of M , i.e., αM

consists of rows i1, i2, . . . , ik, and columns j1, j2, . . . , j`. The extension of αM to
A, denoted α̂M , is simply the set of rows i1 + 1, i2 + 1, . . . , ik + 1, and the set of
columns j1 + 1, j2 + 1, . . . , j` + 1.

We say that a minimal cover αA is proper if it does not consists entirely of
all the rows or of all the columns of A; that is, αA is proper if it is minimal, i.e.,
|αA| = lA, and each row of αA has at least one zero. If lM < n − 1, then we
know that αA has a proper cover, as we can always cover A with α̂M plus the
first row and column of A.
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Let αA be a proper minimal cover of A, and let P,Q be two permutations
that place all the rows of the cover in the initial position, and place all the
columns of the cover in the initial position—Figure 1 illustrates this.

0

Fig. 1. Permuting the rows and columns of the cover to be in initial positions.

Now suppose that αA consists of e rows and f columns (in the diagram, e
horizontal lines and f vertical lines). Clearly lA = e + f . The rearranging of A
produces four quadrants; the lower-right quadrant, of size (|A| − f)× (|A| − e),
consists entirely of zeros (since no lines cross it), and since αA is proper, we
know that it is not empty. The upper-right quadrant is of size e × (|A| − f),
and it cannot be covered by fewer than e lines. The lower-left quadrant is of size
(|A| − e)× f and cannot be covered by fewer than f lines.

Claim 8 ∃LA shows that if X is an e× h matrix, and lX = e, then oX ≥ e.

Proof. We state the claim formally as follows:

[∀α ≤ r(A)Cover(A,α)→ Σα ≥ r(A)]→ [∃β ≤ r(A)Select(A, β) ∧Σβ ≥ r(A)]

and we prove it by induction on the number of rows of A. To this end, let An

denote the first n rows of A, so that Ar(A) = A. We now prove the ΣB
1 formula:

∃α, β ≤ n [(Cover(An, α) ∧Σα < n) ∨ (Select(An, β) ∧Σβ ≥ n)] ,

which is equivalent to the formula above it for n = r(A). The claim holds for
n = 1, as in that case we have a single row, which is either zero and hence has
a cover of size 0, or the row has a 1, in which case we can select it. For the
induction step, suppose the claim holds for n = k. Suppose that any cover for
Ak+1 requires k + 1 rows. Then, Ak requires k rows (for otherwise, a cover of
Ak of size < k plus row k + 1 would give a cover of size ≤ k of Ak+1, which is a
contradiction). By IH, Ak has a selection of size at least k.

Let S = {(1, `1), (2, `2), . . . , (k, `k)} be a selection from Ak. Let CS be the set
of k vertical lines going through S. Consider row k + 1; we know that this row
cannot be empty. If there is a 1 in row k+1 not covered by CS, then select that 1.
Otherwise, suppose that there are p > 0 1s in row k + 1; label their columns as
c1, c2, . . . , cp. Let ri be the row with the unique 1 in S such that `ri = ci.

Let ρi = {(k+ 1, ci), (ri, ci), (ri, x1), (y1, x1), (y1, x2), . . . , (a, b)}, so that each
position has a 1 in Ak+1, and in particular (a, b) corresponds to a 1 not covered
by CS. Then, ρi describes a re-arrangement of the selection. A ρi with (a, b) not
covered by CS must exist. See Figure 2 for an illustration. ut
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1

1 1 1

1

1 1

Fig. 2. ρ1 consisting of five positions.

Since the size of selections is invariant under permutations, it follows that
oA ≥ e+ f = lA. ut

As an aside, we present a recursive algorithm for computing minimal covers.
It would be interesting to know if it has a polytime proof of correctness. First
convert A into diagonal form.

Case 1. If a = 0 (so R = S = 0, by the diagonal form of A), then lA = lM ,
and proceed to compute αM ; output α̂A.

Case 2. If a 6= 0, we first examine R to see if the matrix M ′, consisting of
the columns of M minus those columns of M which correspond to 1s in R, has
a cover of size lM −ΣR (of course, if lM < ΣR, then the answer is “no”).

If the answer is “yes”, compute the minimal cover of M ′, αM ′ . Then let αM

be the cover of M consisting of the lines in αM ′ properly renamed to account
for the deletion of columns that transformed M into M ′, plus the columns of M
corresponding the 1s in R. Let αA = α̂A ∪ {1st column of A}.

If the answer is “no”, repeat the same with S: check whether M ′ has a cover
of size lM −ΣS. If the answer is “yes” then αA = α̂A ∪ {1st row of A}.

If the answer is “no”, then compute any minimal cover for M , extend it to
A, and add the first row and column of A; this results in a cover for A.

3 Equivalence of various Min-Max principles

Theorem 9 The theory LA proves the equivalence of KMM, Menger’s, Hall’s
and Dilworth’s Theorems.

3.1 Menger’s Theorem

Given a graph G = (V,E), an x, y-path in G is a sequence of distinct vertices
v1, v2, . . . , vn such that x = v1 and y = vn and for all 1 ≤ i < n, (vi, vi+1) ∈ E.
The vertices {v2, . . . , vn−1} are called internal vertices; we say that two x, y-
paths are internally disjoint if they do not have internal vertices in common. We
also say that S ⊆ V is an x, y-cut if there is no path from x to y in the graph
G′ = (V − S,E′), where E′ is the subset of those edges in E which have no
end-point in S.
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Let κ(x, y) represent the size of the smallest x, y-cut, and let λ(x, y) represent
the size of the largest set of pairwise internally disjoint x, y-paths. Menger’s
theorem states that for any graph G = (V,E), if x, y ∈ V and (x, y) /∈ E,
then the minimum size of an x, y-cut equals the maximum number of pairwise
internally disjoint x, y-paths. That is, κ(x, y) = λ(x, y). Menger’s Theorem is of
course the familiar Min-Cut Max-Flow Theorem where all edges have capacity 1.
For more details on Menger’s Theorem turn to [Men27,Gör00,Pym69].

Let β be a matrix that encodes disjoint paths; the rows of β correspond to
the paths, and the columns to the vertices of G, where β(i, j) = 1 if path i
contains vertex j. The disjointness can be stated by insisting that each column
has at most one 1. Let γ be a 1× |V | matrix that encodes a cut in the natural
way. Maximality and minimality can be expressed as in the KMM Theorem. We
leave the details to the reader:

Menger(A) := MaxDisj(A, x, y, β) ∧MinCut(A, x, y, γ)→ Σβ = Σγ (4)

Lemma 10 LA ∪Menger ` KMM.

Proof. Consider a bipartite graph G = (V0 ∪ V1, E), where E ⊆ V0 × V1. Let
A be the adjacency matrix for G where A(i, j) = 1 iff i ∈ V0 and j ∈ V1 and
(i, j) ∈ E. We now extend G to Gx,y by adding two new vertices, x and y, and
edges {(x, v) : v ∈ V1}, denoted “red edges”, and edges {(y, v) : y ∈ V0}, denoted
“green edges.”

The adjacency matrix Ax,y of Gx,y is of size (|A|+ 1)× (|A|+ 1) and:

Ax,y(i, j) =


A(i, j) for 1 ≤ i, j ≤ |A|
1 one {i, j} equals |A|+ 1

0 both {i, j} equal |A|+ 1

yx

i.e., λij〈r(A) + 1, c(A) + 1, cond(1 ≤ i, j ≤ |A|, A(i, j), cond(i = j = |A|+ 1, 0, 1))〉.
As the graphs related to Menger’s Theorem are not bipartite, we convert

Ax,y to a non-bipartite graph A′ as follows:

A′ =

[
0 Ax,y

AT
x,y 0

]
,

Let G′ be the non-bipartite graph represented by A′. We now finish the proof of
the Lemma with a sequence of claims.

Claim 11 LA proves that if there is a cut in G′ of size k, then there is a cut
in G′ if size k that only cuts the red/green edges, i.e., only those edges that are
adjacent to either x or y.

Proof. Suppose that a black edge is part of a cut. Every x, y-path crosses from
V0 to V1, and taking off one black edge can only block one x, y-path; the same
path is blocked by taking off the corresponding red or green edge. ut

Claim 12 LA proves the following two:
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1. G has a matching of size k ⇐⇒ G′ has k disjoint x, y-paths.
2. G has a vertex cover of size k ⇐⇒ G′ has an x, y-cut of size k.

Claim 12 follows directly from Claim 11. On the other hand, the direct conse-
quence of Claim 12 is that the size of a maximum matching in G equals the size
of a maximum set of disjoint x, y-paths in G′; and the size of the minimum vertex
cover in G equals the size of the minimum x, y-cut in G′. All this is provable in
LA. This ends the proof of Lemma 10 because by Menger’s Theorem, the size
of the maximum set of disjoint x, y-paths in G′ equals the size of the minimum
x, y-cut in G′. Therefore, the size of the maximum matching in G equals the size
of the minimum vertex cover in G. ut

Lemma 13 LA ∪KMM ` Menger.

Proof. Each path in β must have at least one vertex in the cut γ and no vertex of
γ can be in more than one path in β, hence λ ≤ κ. The proof of this is identical
to the proof of Claim 4.

Thus, it remains to show, using KMM, that λ ≥ κ. The proof of this is
inspired by [Aha83]; we assume that G is directed, but a simple construction
gives us the undirected case as well. Let A = {u ∈ V : (x, u) ∈ E} and let
B = {v ∈ V : (v, y) ∈ E}. Let X = V − (A ∪ B), and also split every vertex
v ∈ V into two vertices v′, v′′. We now construct a new bipartite graph Γ where
the two sides are given by A′ ∪ X ′ and B′′ ∪ X ′′, and where the edges are
given by {(u′, v′′) : (u, v) ∈ E} ∪ {(x′, x′′) : x ∈ X}. By KMM there is a
matching M and a cover C in Γ of the same size. We let P be the set of paths
{x1, x2, . . . , xk} such that (x′i, x

′′
i+1) ∈ M , and we let S be a cut consisting of

{v ∈ V : v′, v′′ ∈ C or v′ ∈ A′ ∩ C or v′′ ∈ B′′ ∩ C}. LA can prove that P is a
set of disjoint paths, and S is a cut, and |P| ≥ |S|. This is enough to prove the
lemma as: λ ≥ |P| ≥ |S| ≥ κ. ut

3.2 Hall’s Theorem

Let S1, S2, . . . , Sn be n subsets of a given set M . Let D be a set of n elements of
M ,D = {a1, a2, . . . , an}, such that ai ∈ Si for each i = 1, 2, . . . , n. ThenD is said
to be a system of distinct representative (SDR) for the subsets S1, S2, . . . , Sn.

If the subsets S1, S2, . . . , Sn have an SDR, then any k of the sets must contain
between them at least k elements. The converse proposition is the combinatorial
theorem of P. Hall: suppose that for any k = 1, 2, . . . , n, any Si1 ∪Si2 ∪ · · · ∪Sik

contains at least k elements of M ; we call this the union property. Then there
exists an SDR for these subsets. See [Hal87,EW49,HV50] for more on Hall’s
theorem.

We formalize Hall’s theorem in LA with an adjacency matrix A such that
the rows of A represent the sets Si, and the columns of A represent the indices
of the elements in M , i.e., the columns are labeled with [n] = {1, 2, . . . , n}, and
A(i, j) = 1 ⇐⇒ j ∈ Si. Let SDR(A) be the following ΣB

1 formula which states
that A has a system of distinct representatives:

SDR(A) := (∃P ≤ n)(∀i ≤ n)(AP )ii = 1 (5)
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The next predicate is a ΠB
2 formula stating the union property:

UnionProp(A) := (∀P ≤ n∀k ≤ n∃Q ≤ n)[Σλpq〈1, k, (PAQ)pp〉 = k] (6)

Therefore, we can state Hall’s theorem as a ΣB
2 formula:

Hall(A) := UnionProp(A)→ SDR(A) (7)

Lemma 14 LA ∪KMM ` Hall.

Proof. Let A be a 0-1 sets/elements incidence matrix of size n×n. Assume that
we have UnionProp(A); our goal is to show in LA, using KMM, that SDR(A)
holds.

Since by Claim 6, every matrix can be put in a diagonal form, using the
fact that we have UnionProp(A), it follows that we can find P,Q ≤ n such that
∀k ≤ n(PAQ)kk = 1. Thus we need n lines to cover all the 1s, but by KMM
there exists a selection of n 1s no two on the same line, hence oA = n.

But this means that the maximal selection of 1s, no two on the same line,
constitutes a permutation matrix P (since A is n× n, and we have n 1s, no two
on the same line). Note that APT has all ones on the diagonal, and this in turn
implies SDR(A). ut

Lemma 15 LA ∪Hall ` KMM.

Proof. Suppose that we have MinCover(A,α) and MaxSelect(A, β); we want to
conclude that Σα = Σβ using Hall’s Theorem.

As usual, let lA = Σα and oA = Σβ, and by Claim 4 we already have that
LA ` oA ≤ lA. We now show in LA that oA ≥ lA using Hall’s Theorem.

Suppose that the minimum number of lines that cover all the 1s of A consists
of e rows and f columns, so that lA = e+ f . Both lA and oA are invariant under
permutations of the rows and the columns of A (Lemma 3), and so we reorder
the rows and columns of A so that these e rows and f columns are the initial
rows and columns of A′,

A′ =

[
A1 A2

A3 A4

]
,

where A1 is of size e× f . Now, we shall work with the term rank of A2 and A3

in order to show that oA ≥ lA. More precisely, we will show that the maximum
number of 1s, no two on the same line, in A2 is e, while in A3 it is f .

Let us consider A2 as an incidence matrix for subsets S1, S2, . . . , Se of a
universe of size |A| − f , and At

3 (which is the transpose of A3) as an incidence
matrix for subsets S′1, S

′
2, . . . , S

′
f of a universe of size |A| − e. It is not difficult

to prove that UnionProp(A2) and UnionProp(At
3) holds (and can be proven in

LA; this is left to the reader), which in turn implies SDR(A2) and SDR(At
3),

resp., by Hall’s Theorem. But the system of distinct representative of A2 (resp.
At

3) implies that oA2
≥ e (resp. oAt

3
= oA3

≥ f), and since oA ≥ oA2
+ oA3

, this
yields that oA ≥ e+ f = lA. ut
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3.3 Dilworth’s Theorem

Let P be a finite partially ordered set or poset (we use a “script P” in order to
distinguish it from permutation matrices, denoted with P ). We say that a, b ∈ P

are comparable elements if either a < b or b < a. A subset C of P is a chain if
any two distinct elements of C are comparable. A subset S of P is an anti-chain
(also called an independent set) if no two elements of S are comparable.

We want to partition a poset into chains; a poset with an anti-chain of size k
cannot be partitioned into fewer than k chains, because any two elements of the
anti-chain must be in a different partition. Dilworth’s Theorem states that the
maximum size of an anti-chain equals the minimum number of chains needed to
partition P. For more on Dilworth’s Theorem see [Dil50,Per63].

In order to formalize Dilworth’s theorem in LA, we represent finite posets
P = (X = {x1, x2, . . . , xn}, <) with an incidence matrix A = AP of size |X|×|X|,
which expresses the relation < as follows: A(i, j) = 1 ⇐⇒ xi < xj . For more
material regarding formalizing posets see [Sol11]. Let 1× n α encode a chain:

Chain(A,α) := (∀i 6= j ≤ n)[α(i) = α(j) = 1→ A(i, j) = 1 ∨A(j, i) = 1]. (8)

In a similar fashion we define an anti-chain β; the only difference is that the
succedent of the implication expresses the opposite: A(i, j) = 0 ∧A(j, i) = 0.

Dilworth(A) can be stated as:

MinChain(A,α) ∧MaxAntiChain(A, β)→ Σα = Σβ, (9)

where MinChain and MaxAntiChain are defined in the same style as the pred-
icates expressing the other theorems. Note that (9) also requires a statement
that A encodes a poset, that is, A(i, i) = 1, A(i, j) = 1 → A(j, i) = 1, and
A(i, j) ∧A(j, k)→ A(i, k).

Lemma 16 LA ∪KMM ` Dilworth

Proof. Suppose that MinChain(A,α) and MaxAntiChain(A, β); we want to use
LA reasoning and KMM in order to show that Σα = Σβ.

As usual we define a matrix A′ whose rows are labeled by the chains in β,
and whose columns are labeled by the elements of the poset. As there cannot be
more chains than elements in the poset, it follows that the number of rows of
A′ is bounded by |A| (while the number of columns is exactly |A|). The proof of
this is similar to the proof of Claim 4.

We have that A′(i, j) = 1 ⇐⇒ chain i contains element j. Clearly each
column contains at least one 1, as β is a partition of the poset. On the other
hand, rows may contain more than one 1, as in general chains may have more
than one element.

Note that a maximal selection of 1s, no two on the same line, corresponds
naturally to a maximal anti-chain; such a selection picks one 1 from each line, and
so its size is the number of rows of A′. By KMM, Σα = oA′ = lA′ = r(A′) = Σβ,
where r(A′) is the number of rows of A′. ut
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Lemma 17 LA ∪Dilworth ` KMM

Proof. It is in fact easier to show that that LA ∪Dilworth ` Hall, and since by
Lemma 15 we have that LA ∪Hall ` KMM, we will be done.

Assume that we have 0-1 sets/elements n × n matrix A, and that we have
UnionProp(A); our goal is to show in LA, using Dilworth, that SDR(A) holds.

Let S1, S2, . . . , Sn be subsets of [n] where n = |A|. We define a partial order
P based on A; the universe of P is X = {S1, S2, . . . , Sn} ∪ [n]. The relation <P

is defined as follows: i <P Sj ⇐⇒ A(i, j) = 1. Note that the the maximum size
of an anti-chain in P is n. The [n] form an anti-chain of length n, and we cannot
add any of the Sj , as some i ∈ Sj , and hence i <P Sj .

By Dilworth we can partition P into n chains, where each of the chains
has two elements {i, Sj}, giving the set of distinct representatives, and hence
SDR(A). ut
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