
Gaussian lattice reduction algorithm terminates

in polynomial time

Michael Soltys

November 18, 2011

Abstract

In this short note we show that the classical Gaussian reduction algo-
rithm for finding the shortest vector in an R2 lattice works in polynomial
time. In other words, we show that the SVP (shortest vector problem)
has a polytime solution in the case of two dimensions. This has always
been known, but the author could not find an explicit proof.

1 Gaussian reduction algorithm

We show that the Gaussian lattice reduction algorithm terminates in polynomial
time. The algorithm takes as input two vectors v1, v2, and replaces the longer,
say v2, with v2 −mv1 where m = bpe = bp + 1

2c where p = (v1 · v2)/‖v1‖2, as
long as m 6= 0, at which point it terminates. The algorithm also swaps v1, v2 as
needed to maintain the property that ‖v1‖ ≤ ‖v2‖.

First, it follows directly from the fact that v2 − pv1 is the projection of v2
onto the orthogonal complement of v1, and from the Pythagorean theorem that:

‖v′2‖2 ≤ ‖v2‖2 +

(
1

4
− p2

)
‖v1‖2, (1)

where v′2 = v2 −mv1, i.e., v′2 is the result of one iteration of the algorithm. To
be more precise we prove (1):

‖v′2‖2 = ‖v2 −mv1‖2 = ‖v2 − pv1‖2 + ‖(m− p)v1‖2 by Pythagorean Thm

≤ ‖v2 − pv1‖2 +
1

4
‖v1‖2 since |m− p| ≤ 1

2

= ‖v2‖2 − 2p(v1 · v2) + p2‖v1‖2 +
1

4
‖v1‖2

= ‖v2‖2 − p2‖v1‖2 +
1

4
‖v1‖2 since p‖v1‖2 = v1 · v2

It is easy to show that for |p| ≤ 1 the algorithm terminates in at most
two more iterations, and so we assume that |p| > 1. With this assumption in

1

place (1) becomes:

‖v′2‖2 ≤ ‖v2‖2 −
3

4
‖v1‖2, (2)

and we consider two cases.

Case 1 ‖v2‖ ≤ 2‖v1‖. Then we have that − 1
4‖v2‖

2 ≥ −‖v1‖2, so from (2) we
obtain the following bound: ‖v′2‖2 ≤ 13

16‖v2‖
2.

Case 2 ‖v2‖ > 2‖v1‖. If ‖v′2‖2 ≤ 13
16‖v2‖

2 then we are done. Otherwise we
have the following two:

• ‖v′2‖2 ≥ 13
16‖v2‖

2 and

• ‖v2‖ > 2‖v1‖.

But with those two assumptions we obtain:

‖v′2‖ >
√

13

4
‖v2‖ >

√
13

4
2‖v1‖ =

√
13

2
‖v1‖ > ‖v1|,

which means that in the next iteration v′′1 = v′1 = v1, i.e., there is no
swapping, and

|p| =
∣∣∣∣v1 · v′2‖v1‖2

∣∣∣∣ =
|v1 · v′2|
‖v1‖2

= | cos(θ)| ‖v
′
2‖
‖v1‖

,

and since | cos(θ)| ≤ ‖v′
2‖

1
2‖v1‖

, it follows that |p| ≤ 1, and so we have termi-

nation in at most two steps.

Therefore, putting the two cases together, we have that the algorithm termi-
nates in at most two steps, or we have a decrease of ‖v′2‖ by a constant factor,
i.e.,

‖v′2‖2 ≤
13

16
‖v2‖2.

Using Hadamard’s inequality, det(L) ≤ ‖v1‖‖v2‖, we can now conclude that the
algorithm runs in polynomial time as follows.

Let D = ‖v1‖‖v2‖ be our parameter; then |det(L)| ≤ D, where det(L) =
det(v1, v2) is fixed, and so D is bounded from below by a positive number. At

the same time, after each iteration D decreases by a factor of
√
13
4 . Therefore,

the number of steps is bounded by n where:(√
13

4

)n

‖v1‖‖v2‖ ≤ det(v1, v2).

Solving for n we have that:

n = log2

(
16

13

)
[log(det(v1, v2))− log(‖v1‖)− log(‖v2‖)] ,

i.e., the running time is given by a polynomial in the lengths of the binary
encodings of the coordinates of the two vectors.

2

