Fundamenta Informaticae 79 (2007) 1-13 1
I0S Press

A propositional proof system with quantification over permutations

Grzegorz Herman*®, Tim Paterson, Michael Soltys
Department of Computing and Software

McMaster University, Ontario, Canada
hermang@mcmaster.ca; paterst@mcmaster.ca; soltys@stenta

Abstract. We introduce a new propositional proof system, which we Eglkhat allows quantifi-
cation over permutations. H we may write(3ab)a and(Vab)«, which is semantically equivalent
to a(a,b) V a(b,a) anda(a,b) A a(b, a), respectively. We show tha with cuts restricted t&;
formulas (we denote this systeHy) simulates efficiently the Hajés calculusd@) for constructing
graphs which are non-3-colorable. This shows that shofprover formulas that assert the exis-
tence of permutations can capture polynomial time reagpais by [9],HC is equivalent in strength
to EF, which in turn captures polytime reasoning). We also shawHF¥ simulates efficientlyH},
which isH; with proofs restricted to being tree-like. In short, we shbatH; <, EF <, H;.

1. Introduction

Permutation Frege is a textbook propositional proof systdth the extra rule:a(pi,p2,...,pn) F
Ps(1)s Po(2)s - - - » Po(n))» Whereos is some permutation. In essence, pleemutation ruleallows a bijec-
tive renaming of the variables in a formula. In this paper mieoiduce a new propositional proof system
which permits quantificatioriv(and3) over permutations-.

It is not known whether permutation Frege is stronger thagé&rand in particular it is not known
whether it is as strong as renaming Frege which allows a njgative renaming of variables (and which
is equivalent in power to extended Frege). The strength mhpetion Frege remains an open problem
despite an intense scrutiny (see [11], where the permutatie is called the symmetry rule and it is
studied in the context of resolution; ando also [2]).

To compare the relative strengths of proof systems, we déifim&otion of efficient simulation (a
notion introduced in the seminal paper [5]). M and P, are proof systems, theR; simulatesP;
(denotedP, <, P) if there exists a fixed polynomial(n), such that whenever there is a progfin

*Address for correspondence: Department of Computing aftv&e, McMaster University, Ontario, Canada

2 G. Herman et al./ Quantification over Permutations

the proof systenP; of some tautologyr, then there is a proaf, of 7 in the proof systen, such that

|m2| < p(|m1]). Two proof systems?, P, areequivalentdenotedP; =, 1) if they simulate each other,
(In fact, throughout this paper we can replace the notiosirafilationby p-simulationwhich adds the
extra condition that there exists a polynomial time funetfosuchmy = f(71).)

Using this terminology, it is an open question whether peation Frege is equivalent to Frege, or
equivalent to extended Frege, or whether it falls somewimebetween. Of course, showing that it falls
strictly in between would automatically show the separatib Frege and extended Frege, which is one
of the fundamental problems in theoretical computer s@ernthe strength of permutation Frege is a
tantalizing problem since renaming Frege turns out to bévalgunt to extended Frege, and permutation
and renaming Frege seem to be very closely related.

Furthermore, permutations are a basic algebraic notiomancde it is interesting to design a proposi-
tional proof system capable of making assertions about themarticular, from a complexity-theoretic
point of view, graph isomorphism is &P problem for which the certificate is a permutation. In figure 1
the graphs>,, G, are isomorphic via the permutation 1 — 6,2 — 1,3 — 2,4+ 3,5 +— 4,6 — 5,
but graphs7, G3 (and hences, G3) are not isomorphic. A proof system for reasoning with gifant
cation over permutations is very well suited for expresgingperties of graphs (such as graph isomor-
phism) in a natural way, and in fact we show that a “tiny” fragrhofH, which we callH4, is capable
of polytime reasoning, by showing that it simulates theddajalculus for constructing graphs which are
non-3-colorable.

G, G,

" \:

| |

\ 1
Gs

Figure 1. G1, G are isomorphicz;, Gz are not.

Notice that there is no (known) short certificate of non-isgamism. An interesting fact about graph
isomorphism is that the relatédP language, i.e{(G1, G2)| G1, G2 are isomorphic graphjis one of
a fewNP problems which are neither known known to bd”inor to beNP-complete. Nevertheless, we
show that the related propositional proof system is straraugh to capture polynomial time reasoning.

2. The system PK

We use Gentzen'’s propositional proof systek (which is equivalent to Frege). For more detailsRif
see [3, 8, 10]. The propositional variables afep,, ps, ..., but we shall use., b, c, ..., a1,b1,c1,...,
as meta-variables.

PK is a propositional proof system which operates over sequefitsequentS is written as two
sequences of formulas separated by an arrowaeqs, ..., a, — B1, 52, - .., Bm, Where they;'s and

G. Herman et al./ Quantification over Permutations 3

the 3;’s are formulas. The formulas to the left of the arrow areezhtheantecedenaind the formulas to
the right of the arrow are called tlseiccedentBoth are referred to asedents

A truth assignment satisfies a sequesst (written 7 = S), if 7 satisfies a formula ich or falsifies a
formula inT". Therefore a sequeist is logically equivalent to the propositional formyfal’ > \/ A. A
sequent isatisfiableif it is true under some truth assignment, avadid if all truth assignments satisfy it.

A logical axiomis a sequent of the ford — A, whereA is any formula. APK proof r is a finite
sequence of sequents, ending with the sequent that we warave: Sy, 5o, ..., S,. EachsS; is either
an axiom, or follows from one or two previous sequents by a.rinh thePK rules given in table 1,4
andB are formulas, and andA are cedents.

Weakening T'—- A F AT — A
r- AT —-AA

Exchange I',A,B,I'as = AFTI1,B,ATy— A
I' - A,AB,Ao T — Ay,B, A Ay

Contraction A AT —-AF AT - A
r-AAAFT - AA

\% Al'-A BI'—-AFAVBT—A
r-AABFI'—-AAVB

A A BT —->AF AANBT — A
r-AA I'-ABFI'—-AAAB

- I'N'A—-AFT —-4A
r- A AFT,-A— A

cut I'-AA ATAFT—-SA

Table 1. The rules of PK.

It is well known, and easy to show, that any valid sequent évgitle inPK (completenegsand a
sequent with &K proof is valid 6oundnegs

PK is equivalent to Frege, and corresponds to reasoning Wit concepts. This means that the
lines of PK are sequents of boolean formulas which have the expresswerpfNC! circuits, which
are circuits of polynomial size (in) and depthO(log(n)), wheren is the number of input variables—
see [8, 1] for more details.

3. Extensions of PK

Several extensions &K are known which strengthen it to reasoning with polytimecapis. Note that
NC! C PolyTime, and the (conjectured) separation of these two compleXityses is one of the
fundamental open problems of theoretical computer sciedote that the lack of a known separation of
NC! andPolyTime is mirrored in the lack of a known separationRK with all of the proof systems
presented in this section.

4 G. Herman et al. / Quantification over Permutations

oB),I = A I' = A ap)
Vea(z),I' — A ' — A, Vza(z)
a(p), I - A I' - A, a(B)

Jza(x), I - A I' = A, Jza(z)

Table 2. Rules for introducing quantifiers@.

The most famous extensiuon, equivalenEtdended Frege(EF), is Extended PK (EPK) which
allows new variables to be introduced and declared to bevaiguit to any formula; thus, these new vari-
ables serve as abbreviations. Since these abbreviatioriatea become part of a definition themselves,
the effect is that of creating polynomial size circuits, whéhe abbreviations stand for gates. This is
what yields polytime strength of reasoning. The extensemssimply introduced as sequents of the
form — a = « (the connective £” can be simulated with other connectives).

There are many systems equivalenfB®K. We now list some of themSubstitution PK allows
replacing any variable consistently throughout a sequgatformula;Renaming PK allows the renam-
ing of variables, again consistently throughout a sequanew variable names; andF PK allows
replacing variables consistently throughout a sequenhéyonstants T (true) and F (false). See [10, 8]
and especially [2] for renaming affdF PK.

Permutation PK is very closely related tRenaming PK, but in permutatiorPK there is the added
requirement that the renaming has to be bijective. Whik\teéll known that renaminBK is equivalent
to EPK, it is not known whether permutatid?K is equivalent td’K or EPK or is strictly in between.

The systenG (see [8,54.6] for a complete description) allows boolean quantifiarsl it consists of
PK together with the four new rules given in table 2. Note thaable 2,B is any formula, and we have
the restriction that the atopdoes not occur in the bottom sequentYeright and3-left. Semantically,

Jza(z) = a(0/x) V a(l/z)

Vza(z) = a(0/z) A a(l/x) (1)

(note thatw(8/x) means the formula: with every (free) instance of replaced by3). Thus, quantifi-
cation does not add to the expressive powdrkf but rather allows to shorten formulas. In particular,
Jdz13xs ... Iz, would be of lengthO(2"|«|) according to the above translation.

We present one more propositional proof system equivate@RK: the Hajos calculuiC, a
system for constructing nok-colorable graphs (so in fact it is a family of proof systeros évery
k > 3); we are concerned with = 3, so we shall restrict ourselves to that. Note tBRK is a system
for deriving valid sequents whildC is a system for deriving non-3-colorable graphs; they atgvatent
via the standard reductions between satisfiability andI@rability. It was shown in [9] that thélC is
equivalent toEPK (the original paper defining thdC is [6]). The single axiom of thélC is a cliques

on 4 vertices,

1. Addition: any number of new vertices and edges may be added,

and it has three rules:

G. Herman et al./ Quantification over Permutations 5

2. Join: any two vertices which are not connected may be joined inég with the resulting duplicate
edges removed, and

N\ \V
1 Ik [
j
Figure 2. The join rule: nodes; are joined and renamed

3. Edge Elimination: given two graphs7, G2 on the same vertex sét, and with the edges on all
vertices inV — {i, j, k} the same, and witfi, j) an edge in both(i, k) an edge inG; only, and
(7, k) an edge irGG, only, we conclude a graph identical @& with the edggi, k) removed.

i o ie oj ie]

NI

[°
k k k

Figure 3. The edge elimination rule. From the two left grawksconclude the right graph.

As was mentioned above, it was shown in [9] that i@ is equivalent tdEPK (and we use the same
presentation oHC as in [9]). Interestingly enough, it was shown in [7] thaettike HC, i.e., HC* in
our notation, has exponential lower bounds (and hence wiestii to be weaker than dag-likéC).

4. PK with permutation quantification (H)

In this section we present a new extensioriP&f which, like G, adds rules which introduce quantifiers.
However, rather than quantifying over the boolean assigisnt a variable (as itx), we quantify
over transpositionsof two variables. By combining quantifications over trarspons, we can build
guantification over general permutations.

Here is the formula syntax: i is a formula, then so arélab)a and(Vab)« (note that there are no
other restrictions om andb, so that any, both, or none of them may appeat iand they may be the
same variable).

We introduce some notation to give the formal semantics @hetw quantifiers. Let(*® represent
a transposition of the variablesandb within «.. That is, every instance afis replaced by and every
instance ob is replaced by:. For example(a Vv b)(®) is (b V a). It is important to note that occurrences
of a or b within other permutation quantifiers are also affected. déerthe formula((3ac)a)(®) is
syntactically equal t¢3bc)al®).

The intended meaning of permutation quantifiers is as falow

(Fab)a = (a vV (@)

(Vab)a = (a A a(a’b)) (2)

while for classical boolean guantification the intended mirggis given in (1).

There are two equivalent ways of giving the semantics of pgation quantifiers. Firstly, we can
say that the truth assignmentsatisfies a formuld3ab)a (written ast = (Jab)a), iff 7 = « or
7 = (), The obvious alternative is to definé®®) by settingr(®) (a) = 7(b), 7(®) (b) = 7(a), and

6 G. Herman et al. / Quantification over Permutations

7(9) () = 7(z) wheneverr ¢ {a,b}. We then say that |= (3ab)« iff 7 = a or 7(®?) = a. The cases
for universal permutation quantifiers are similar, but iegjloth transpositions to be satisfied, rather
than just one. The two alternative semantics are equivalags of assigning truth values to formulas.

Using several quantifications over transpositions, theterce of a permutation of the variables
1, P2, ..., Pn Can be stated as follows:

(Fpipj)i<i,j<nc. (3)

Similarly, we can state that holds for all permutations of a set of variables by replaéimvgth V in (3).

Note that this representation is efficient because it reguinlyn? many existential quantifiers (sort-
ing circuits can actually allow an arbitrary permutationb® simulated by only)(n log n) transposi-
tions). To see that (3) is sufficient to express the existerfi@ arbitrary permutation i8,,, we have
to show that for anyr € Sy, the formulac(p,1)/p1; - - Po(n)/p,) @PPEArS in the long disjunction
that we obtain by applying the equivalence given in (2) systtically to get rid of all the transposition
guantifiers. A short inductive argument convinces one thiatis indeed the case.

The six rules for introducing transposition quantifiers gieen in table 3, where’ may be any
permutation of those variables inwhich occur in the quantifier (for example, if the quantifigf3ab),
theno’ may be eithery or a(?)). The rules R5 and R6 have the following restriction; as, . . . , a,, do
notoccur or are bound in the rest of the sequent (i.e., everydtain I" U A does not contain any;, or
it starts with an appropriate quantifier over permutationafables inS O {a1,...,a,}).

The rules R3 and R4 are required for completenesH obut not necessary to shadC <, H;,
while the rules R5 and R6 (in the caseibeing strictly equal tda4, . . . , a,, }) are necessary for showing
HC <, Hy, but not for completeness.

a, I’ - A ' - A«
R1: 4 R2: :
(Vab)o!, T — A I'— A, (Jab)o!
(ab) N (ab)
Rg:a\/a ,JT—A R4:F A oA«
(Jab)o!, T' — A I' = A, (Vab)o!

a,I' - A - A«

R5: R6:
(Jaras . ..an)a!, T — A I' = A, (Vajas . ..ap)d!

Table 3. Rules for introducing transposition quantifiers.

Definition 4.1. The systemH consists of the rules dPK together with the six new rules in table 3.
(We call this systenH to follow the notation introduced in [8], wheK@ is the name given to the proof
system for quantified boolean formulas.)

Theorem 4.1. H is sound and complete.
Proof:

We know thatPK is both sound and complete. The soundnesHd dbllows from the soundness &K,
and the soundness of the six new rules in table 3 (which caadily €hecked).

G. Herman et al./ Quantification over Permutations 7

We show completeness by induction on the number of permoutgtiantifiers in a sequent. The base
case (no permutation quantifiers) follows from the compless ofPK.

In the induction step, in each leaf sequent we pick a formul@sg outer-most connective is a
permutation quantifier (if there is no such formula we appby-t, \V, A elimination rules until we obtain
such a formula). If the quantifier i5on the right:

I — A, a@®
I' - Ao, (Jab)a
I' - A, (Jab)a,
I' —» A, (Jab)a, (Jab)a
I' = A, (Jab)a

J-right

exchange-right
J-right

contraction-right

Note that the top sequent continues being valid if the botequent was valich(a(*?) in a succedent
meansy V o(®?)), and it has one less quantifier, and so we now apply to it tthedtion hypothesis.

If the quantifier is3 on the left, we just apply thé-left rule. The cases fov left and right are
analogous. Note that we did not need to use rules R5 and R@te pompleteness. O

Definition 4.2. Let >y = Il be the set of quantifier-free boolean formulas. Now, reeahgiletX:; ¢
be the set of all formulas i&; U I1; plus the formulas of the fordaas . . . a,), wherea € I1;, and
let IT;, 1 be defined analogously (withinstead ofd). Following the notation ofx in [8], we letH; be
H with cuts restricted to formulas i9; only, and we leH; be H; restricted to tree-like proofs only (i.e.,
proofs where each line is used in at most one inference).

Note that unlike inG, an arbitrary formula with permutation quantifiers doesmetessarily have an
equivalent prenex form. On the other hand, the above defimitiakes no such claims; it only defines a
class of formulas, and we are really only intereste#flin

5. EPK and H;

In this section we show th&PK simulatesH], i.e., H] <, EPK, and thatH; simulates the Hajos
calculus HC) and hence it simulateBPK (i.e., EPK =, HC <, H;). SinceEPK corresponds to
polytime reasoning, it follows thdf; captures polytime reasoning (and possibly more—just howhmu
is an open question).

Lemma 5.1. EPK simulatesHj.

Proof:

This is a witnessing argument, in the style of [8, lemma 4.@/3ere it is shown thaEPK simulates
Gj. Roughly speaking, we take &fj proof, and simulate it line-by-line with a treelil@PK proof
(EPK and treelikeEPK are p-equivalent). The novelty is showing how to simulate thersw per-
mutation quantifier rules (given in table 3). In fact, we dd have to deal with the rules introducing
universal quantifiers, so we only need to consider R2,R3 @dMRere the last two are taken care off

8 G. Herman et al. / Quantification over Permutations

“automatically”, as in the witnessing argument given betbe existential quantifiers in the antecedent
simply get dropped.

We transform the sequents of thE| proof as follows:%, formulas are unchanged, and oy for-
mulas, if we have a sequent with a form{#;q1) - - - (Ipngn), Wherea € X, i.e.,« is quantifier free,
we remove the quantifiers, and add “witnessing” definitiom¢he right of the sequent. These witnessing
definitions compute which transposition ought to be takesr. dxample, a block of transposition quan-
tifiers (Jab)(3ed) (e f) can be simulated with variablesy, z.q, z.r, Wherez,, is 0 if the transposition
(ab) is not taken, and 1 otherwise.

Note that since all the cuts 13 are on>; formulas only, it follows that all quantifiers are existexti
transposition quantifiers, and they occur only in prenerf@ibecause the conclusion iR sequent,
and there is no way of getting rid of a formula other than wittutrule).

Let a(¢/a) represent the formula with every instance of the variabtereplaced by, and let:

v, 92}ab = 11 = (Tap A @) V (220 A D)), [y2 < ((Tap A D) V (m20p A a))]. (4)

Then, a formula3ab)«a in the succedendf a given sequent can be re-statech#g, /a, y2/b), and the
definition {y1,y2}. would be added to thantecedent Repeat this for every transposition quantifier
in the block, from the outside in; that is, if the next transiion quantifier wag3cd), then we obtain
the definitions{ys, y4}c4, {v1, y2}ap In the antecedent and the formuyta(y, /a, y2/b)](ys/c,ya/d) in
the succedent. It is important to note that, x.4, y1, yo arenewvariables that “belong” to a particular
occurrence of3ab), (Jed) anda.

If a 31 formula occurs in the antecedent, we simply drop all the tfiers.

It remains to show how to translate an entig-proof. We apply the conversion just described to
every formula in every sequent. As we go through the proofnfthe axioms down to the conclusion,
we now have to modify the proof inductively to make sure thi a valid (treelike)EPK-proof (note
that we changed thH; proof line-by-line, but the resulting proof is not necedgax valid EPK proof;
we have to fill-in in between the lines). Consider for exantpked-right rule:

' - A«
' — A, (Jab)a’

By the induction hypothesis, the top has already been atetstov, I/ — A’, o/, wherev denotes the
definitions already introduced, and it has a valllPK-proof. Now consider the bottom sequent. We
have to introducd y;, y2 } 4 in the antecedent, which we do with weakening, and we havepacea, b

by y1, y2, respectively, im/. Here is were we make a crucial use of the tree-likenedd’oproofs; we
replacea, b by y1, 42, respectively, iv’ and its ancestors throughout the entire prooffof’ — A’, o/
(which is now anEPK-proof, but our translation preserves the tree-likenesh®briginalHj-proof).
Finally, we obtain afEPK-proof of

{yla y?}aba 6) F/ - A/a a/(yl/aa ?/2/b)

Consider also a cut rule where all the formulad'im\ are3}, and the cut formula i§3ab)3, where
B is alsoXy:
I'— A, (Jab)g (Jab)p, T — A
I = A '

G. Herman et al./ Quantification over Permutations 9

By the induction hypothesis we ha¥#PK-proofs of

{yhy?}abvrl - A/75(y1/a’7y2/b) and 57F// - A//'

Before we can apply a cut in the new proof we havendy the two sequents. Thus, we replace in

6 in the right sequent by, y», respectively, throughout the proof of the right sequent| then do the
cut. The same idea works for when the upper sequents areadj@hefiormulas. The other rules involve
similar considerations. The resulting proof has a smalivinoof size. Sincd’, A are X, formulas,
I"=T" =T andA’ = A” = A. In the case that they hawg formulas we need to do unification on
those as well.

Clearly, this is a polytime transformation.

One final observation is th&l; is a proof system foE(-sequents, i.e., sequents whose formulas are
quantifier-free (i.e., the conclusion of & -proof is a¥Xy-sequent, but in the middle of the proof we may
haveX;-sequents, whosg; -formulas must be eliminated with cuts before reaching theclusion). At
the end of the translation we therefore end up witHEAPK -proof of v,I' — A (note that sincd’, A
have onlyX,-formulas, they have not been modified by the translationiit Be still havev in the
antecedent; to eliminaté we now use the power dEPK: we introduce the abbreviations ihat the
beginningof the newEPK-proof (to ensure that the abbreviations introdnesvvariables), and once
we reachv, I" — A, we use these definitions and the cut rule to elimirate O

For the other direction, that is, to show tiHa} simulatesEPK, we show that it proves efficiently
the soundness of the Hajos calculus. This is enough to edadhatH; can simulate extendedK
(see [4, 8)).

To show thatH; proves efficiently the soundness of thiC, it is convenient to use a different
formulation ofH;. We define it in terms ofT; formulas (i.e.Vra, wherea € Xy = Ily). Note that the
two formulations ofH; are equivalent, as we can always change sides of all the fasnmthe sequent,
and obtain an equivalent sequent except all quantifiers bega flipped. It is a matter of expediency
which of the two formulations cH; we use (as long as we do not mix them together!): for the prbof o
the simulation of; by extendedPK, we prefer to use th&,; definition. To show thaH, proves the
soundness of thelC, we prefer to use thH; definition.

First, we define a propositional encoding for non-3-colditglof graphs as follows. We fix a vertex
setV = {1,...,n}, with n large enough to contain all the intermediate graphs fromH@eproof.
Every graph will be represented by its edge Befall vertices “outside” of the graph are kept isolated,
which does not influence graph colorability). Our formulal use variables;, g;, b; (for i € V), with
the intended meaning of vertéXeing colored red, green or blue, respectively. We now define

INV = \/ (’I“i AN gi) V \/ (’I“i AN bz) vV \/ (gi VAN bz) V \/ (—|TZ' A =g N\ ﬁbi)
i€V i€V i€V i€V
and
BADp:= \/ (Ar)v \/ @ing)Vv \/ (biAby),
{i,j}eE {i,j}€E {i,j}€FE
denoting that the current variable assignment is not valid eoloring (INV) and that it is a bad coloring
with respect to the edge set(BAD g), respectively. Finally, we encode non-3-colorability as

N3Cg := (Vr1...7) (Vg1 ... 9n) (Vb1 ...b,)(INV V BADE)

10 G. Herman et al./ Quantification over Permutations

(note, that even without permutation quantifiers, N3hcodes the non-3-colorability of the graph with
edge sef’; we need the quantifiers however to prove the soundness githeule of theHC).

Let us also definéZ(¥) as E with vertices: and j transposed, an&’—/ as E with all the edges
incident oni redirected tgj.

We are now ready to formally prove the soundness oHBein H;.

Lemma 5.2. H; proves the soundness of the Hajos calculus.

Proof:

It is easy to show thdt; proves N3G; wheneverFE is a 4-clique (we do it without the quantifiers, and
then introduce them) because it is a constant size graph.oWenalyze each of the inference rules of
theHC:

1. Addition: Having
ECFE

we wantH; to prove
N3Cgr — N3Cpg.

We start with the axiom
INV v BADE — INV vV BADE,

use weakening and exchanges (and the factAhat £') to get
INV VBADg — INV VvV BAD g,
introduce the universal quantifiers (R1) one-by-one onefte |
N3Cg — INV v BAD 1,
and finally on the right (R6 — all quantified transpositions already bound on the left):

N3Cg — N3Cg'.

2. Join: Having
{i,j} ¢ E
we wantH; to prove
N3Cg — N3Cpgi—;.
Start with the axiom
INV VBADgi—; — INV VBADgi—;.
Use weakenings and exchanges (and the fact that every edije’irappears in at least one &f
or E(@)) to get
INV V BADE, INV V BAD ;) — INV V BAD gi—;

sg,ilt.

and then (based on the fact that BAD, BADg”j)(g"gj)ity to arrive at

(INV V BADg), (INV v BAD) ("i73)(9:95)(bib5) _, INV v BAD i

G. Herman et al./ Quantification over Permutations 11

Now use rule R1, exchanges and contraction to get
N3Cg — INV VBAD ;i ;.

Finally, introduce the universal quantifiers on the righ6 (Ragain, all the transpositions are al-
ready bound on the left), and we are done.

. Edge Elimination: Having

{%J} € E7
{i,k},{j,k} ¢ E,
By =EU{{i,k}},
Ey = EU{{j,k}},
we wantH; to prove
N3Cg, ,N3Cp, — N3Cp.
Consider any pair of edg€s, v} € Ey, {z,y} € Es. If {u,v} # {i, k}, then{u,v} € E and, by
weakening the axiom
(rau A1) V(gu A gy) V (by ANby) — (1w ATy) V (gu A gy) V (by A by)
we can prove

((ru Ary) V(Gu A go) V (by Aby)) A ((re Ary) V (9e A gy) V (b Aby)) — INV V BADE.

The case fo{z,y} # {j,k} is analogous. Ifu,v} = {i,k} and{z,y} = {j, k}, then we start
with

ri AT —= T ATy

giNGj — i N gj

b; A bj — b; A bj

Tk NGk — Tk N gk

EEREY

weaken them to

(TZ‘ A\ Tk) A\ (7"]' A\ Tk) — BADg
(gi A gk) A\ (gj A\ gk) — BADg
(bz‘ A bk) A (bj A bk) — BADg
(ri Ami) Agj A gr) — INV

ey

introduce the connectives, weaken the right size and ragahe left to get

((ru Ary) V(Gu A go) V (by Aby)) A ((re Ary) V(92 A gy) V (b Aby)) — INV V BADE.

12 G. Herman et al./ Quantification over Permutations

Having arrived at the same conclusion for all the pairs olesdgomFE; and E», we can combine
them together introducing the connectives to get

BAD g, A BADg, — INV vV BAD .
Reorganizing and weakening the left side slightly gives us
INV vV BADE,,INV VBADEg, — INV VvV BADE,
and now we can introduce the quantifiers (as usual, first iBingnd then R6), to get
N3Cg, ,N3Cp, — N3Cp,

as required.

Having analyzed all the axioms and inference ruleldGf we see that it can be proved soundily. O

Putting together lemmas 5.1 and 5.2, and the fact lt@tsimulatesEPK, we arrive at the main
result of this work: EPK simulatesH?, and in turnH; simulatesEPK. This is stated succinctly in
theorem 5.1 below.

Theorem 5.1. H} <, EPK <, H;.

6. Conclusion

We have introduced, a propositional proof system with quantification over petations. Our system

H does not increase the expressive power of boolean formulésillows for abbreviations(3ab)a =

(a Vv al®?), and(Vab)a = (a A a(@?). It turns out that these abbreviations make a small fragment
of the systermH capable of capturing polytime reasoning (we showed, tmedd, thatH, simulates
EPK, and thus Extended Frege). This is interesting becauseupations are a fundamental concept of
algebra, and we wanted to design a propositional proof systhere reasoning about the existence of
permutations K) is built in as a “primitive.” SinceG} simulatesEF, the obvious next question is: can
H; be shown equivalent tBF? Unfortunately, by [7] tree-likéiC is not equivalent to dag-likelC, and

so we cannot claim directly th&l; is equivalent tdEF. So we pose the following obvious question: is
Hj; equivalent taEF?

Acknowledgments.We are very grateful for very valuable comments of anonymeterees that led to
substantial improvements of this paper.

References

[1] Paul Beame and Toniann Pitassi. Propositional proofflerity: Past, present, and future. Bulletin of the
EATCS volume 65, pages 66—89. Springer-Verlag, June 1998.

[2] Samuel R. Buss. Some remarks on the lengths of propoaitioroofs. Archive for Mathematical Logic
34:377-394, 1995.

G. Herman et al./ Quantification over Permutations 13

[3] Samuel R. Buss. An introduction to proof theory. In SaffReBuss, editorHandbook of Proof Theory
pages 1-78. North Holland, 1998.

[4] Stephen Cook and Phuong Nguyen. Foundations of prooptexity: Bounded arithmetic and propositional
translations. Available fromww.cs.toronto.edu/ sacook/csc2429h/book/, 2006.

[5] Stephen A. Cook and Robert A. Reckhow. The relative efficy of propositional proof systemslSL,
44:36-50, 1979.

[6] G. Hajos. Uber eine konstruktion nicht-farbbarer graphenWiss. Zeitschr. Martin Luther Univ. Halle-
Wittenberg 10:116-117, 1961.

[7] Kazuo Iwama and Toniann Pitassi. Exponential lower lisuior the tree-like Hajos calculusnaf. Process.
Lett, 54(5):289-294, 1995.

[8] Jan Krajicek.Bounded Arithmetic, Propositional Logic, and Complexitedry Cambridge, 1995.

[9] Toniann Pitassi and Alasdair Urquhart. The complexitthe Hajos calculusSIAM J. Disc. Math.8(3):464—
483, August 1995.

[10] Alasdair Urquhart. The complexity of propositionabpfs. Bulletin of Symbolic Logicl(4):425-467, 1995.

[11] Alasdair Urquhart. The symmetry rule in propositiotugic. Discrete Applied Mathematic86—-97:177-193,
1998.

