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Abstract. We introduce a new propositional proof system, which we callH, that allows quantifi-
cation over permutations. InH we may write(∃ab)α and(∀ab)α, which is semantically equivalent
to α(a, b) ∨ α(b, a) andα(a, b) ∧ α(b, a), respectively. We show thatH with cuts restricted toΣ1

formulas (we denote this systemH1) simulates efficiently the Hajós calculus (HC) for constructing
graphs which are non-3-colorable. This shows that short proofs over formulas that assert the exis-
tence of permutations can capture polynomial time reasoning (as by [9],HC is equivalent in strength
to EF, which in turn captures polytime reasoning). We also show thatEF simulates efficientlyH∗

1
,

which isH1 with proofs restricted to being tree-like. In short, we showthatH∗

1
≤p EF ≤p H1.

1. Introduction

Permutation Frege is a textbook propositional proof systemwith the extra rule:α(p1, p2, . . . , pn) `
α(pσ(1), pσ(2), . . . , pσ(n)), whereσ is some permutation. In essence, thepermutation ruleallows a bijec-
tive renaming of the variables in a formula. In this paper we introduce a new propositional proof system
which permits quantification (∀ and∃) over permutationsσ.

It is not known whether permutation Frege is stronger than Frege, and in particular it is not known
whether it is as strong as renaming Frege which allows a non-injective renaming of variables (and which
is equivalent in power to extended Frege). The strength of permutation Frege remains an open problem
despite an intense scrutiny (see [11], where the permutation rule is called the symmetry rule and it is
studied in the context of resolution; ando also [2]).

To compare the relative strengths of proof systems, we definethe notion of efficient simulation (a
notion introduced in the seminal paper [5]). IfP1 and P2 are proof systems, thenP1 simulatesP2

(denotedP2 ≤p P1) if there exists a fixed polynomialp(n), such that whenever there is a proofπ1 in
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the proof systemP1 of some tautologyτ , then there is a proofπ2 of τ in the proof systemP2 such that
|π2| ≤ p(|π1|). Two proof systemsP1, P2 areequivalent(denotedP1 ≡p P2) if they simulate each other.
(In fact, throughout this paper we can replace the notion ofsimulationby p-simulationwhich adds the
extra condition that there exists a polynomial time function f suchπ2 = f(π1).)

Using this terminology, it is an open question whether permutation Frege is equivalent to Frege, or
equivalent to extended Frege, or whether it falls somewherein between. Of course, showing that it falls
strictly in between would automatically show the separation of Frege and extended Frege, which is one
of the fundamental problems in theoretical computer science. The strength of permutation Frege is a
tantalizing problem since renaming Frege turns out to be equivalent to extended Frege, and permutation
and renaming Frege seem to be very closely related.

Furthermore, permutations are a basic algebraic notion andhence it is interesting to design a proposi-
tional proof system capable of making assertions about them. In particular, from a complexity-theoretic
point of view, graph isomorphism is anNP problem for which the certificate is a permutation. In figure 1
the graphsG1, G2 are isomorphic via the permutationσ: 1 7→ 6, 2 7→ 1, 3 7→ 2, 4 7→ 3, 5 7→ 4, 6 7→ 5,
but graphsG1, G3 (and henceG2, G3) are not isomorphic. A proof system for reasoning with quantifi-
cation over permutations is very well suited for expressingproperties of graphs (such as graph isomor-
phism) in a natural way, and in fact we show that a “tiny” fragment ofH, which we callH1, is capable
of polytime reasoning, by showing that it simulates the Haj´os calculus for constructing graphs which are
non-3-colorable.
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Figure 1. G1, G2 are isomorphic,G1, G3 are not.

Notice that there is no (known) short certificate of non-isomorphism. An interesting fact about graph
isomorphism is that the relatedNP language, i.e.,{〈G1, G2〉| G1, G2 are isomorphic graphs} is one of
a fewNP problems which are neither known known to be inP nor to beNP-complete. Nevertheless, we
show that the related propositional proof system is strong enough to capture polynomial time reasoning.

2. The system PK

We use Gentzen’s propositional proof systemPK (which is equivalent to Frege). For more details onPK
see [3, 8, 10]. The propositional variables arep1, p2, p3, . . ., but we shall usea, b, c, . . . , a1, b1, c1, . . .,
as meta-variables.

PK is a propositional proof system which operates over sequents. A sequentS is written as two
sequences of formulas separated by an arrow, i.e.,α1, α2, . . . , αn → β1, β2, . . . , βm, where theαi’s and
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theβj ’s are formulas. The formulas to the left of the arrow are called theantecedentand the formulas to
the right of the arrow are called thesuccedent. Both are referred to ascedents.

A truth assignmentτ satisfies a sequentS (written τ |= S), if τ satisfies a formula in∆ or falsifies a
formula inΓ. Therefore a sequentS is logically equivalent to the propositional formula

∧
Γ ⊃

∨
∆. A

sequent issatisfiableif it is true under some truth assignment, andvalid if all truth assignments satisfy it.
A logical axiomis a sequent of the formA → A, whereA is any formula. APK proof π is a finite

sequence of sequents, ending with the sequent that we want toprove: S1, S2, . . . , Sn. EachSi is either
an axiom, or follows from one or two previous sequents by a rule. In thePK rules given in table 1,A
andB are formulas, andΓ and∆ are cedents.

Weakening Γ → ∆ ` A,Γ → ∆

Γ → ∆ ` Γ → ∆, A

Exchange Γ1, A,B,Γ2 → ∆ ` Γ1, B,A,Γ2 → ∆

Γ → ∆1, A,B,∆2 ` Γ → ∆1, B,A,∆2

Contraction A,A,Γ → ∆ ` A,Γ → ∆

Γ → ∆, A,A ` Γ → ∆, A

∨ A,Γ → ∆ B,Γ → ∆ ` A ∨ B,Γ → ∆

Γ → ∆, A,B ` Γ → ∆, A ∨ B

∧ A,B,Γ → ∆ ` A ∧ B,Γ → ∆

Γ → ∆, A Γ → ∆, B ` Γ → ∆, A ∧ B

¬ Γ, A → ∆ ` Γ → ¬A,∆

Γ → A,∆ ` Γ,¬A → ∆

cut Γ → ∆, A A,Γ → ∆ ` Γ → ∆

Table 1. The rules of PK.

It is well known, and easy to show, that any valid sequent is provable inPK (completeness), and a
sequent with aPK proof is valid (soundness).

PK is equivalent to Frege, and corresponds to reasoning withNC1 concepts. This means that the
lines ofPK are sequents of boolean formulas which have the expressive power ofNC1 circuits, which
are circuits of polynomial size (inn) and depthO(log(n)), wheren is the number of input variables—
see [8, 1] for more details.

3. Extensions of PK

Several extensions ofPK are known which strengthen it to reasoning with polytime concepts. Note that
NC1 ⊆ PolyTime, and the (conjectured) separation of these two complexity classes is one of the
fundamental open problems of theoretical computer science. Note that the lack of a known separation of
NC1 andPolyTime is mirrored in the lack of a known separation ofPK with all of the proof systems
presented in this section.
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α(B),Γ → ∆

∀xα(x),Γ → ∆

Γ → ∆, α(p)

Γ → ∆,∀xα(x)

α(p),Γ → ∆

∃xα(x),Γ → ∆

Γ → ∆, α(B)

Γ → ∆,∃xα(x)

Table 2. Rules for introducing quantifiers inG.

The most famous extensiuon, equivalent toExtended Frege(EF), is Extended PK (EPK) which
allows new variables to be introduced and declared to be equivalent to any formula; thus, these new vari-
ables serve as abbreviations. Since these abbreviations can later become part of a definition themselves,
the effect is that of creating polynomial size circuits, where the abbreviations stand for gates. This is
what yields polytime strength of reasoning. The extensionsare simply introduced as sequents of the
form → a ≡ α (the connective “≡” can be simulated with other connectives).

There are many systems equivalent toEPK. We now list some of them:Substitution PK allows
replacing any variable consistently throughout a sequent by a formula;Renaming PKallows the renam-
ing of variables, again consistently throughout a sequent,by new variable names; andT-F PK allows
replacing variables consistently throughout a sequent by the constants T (true) and F (false). See [10, 8]
and especially [2] for renaming andT-F PK .

Permutation PK is very closely related toRenaming PK, but in permutationPK there is the added
requirement that the renaming has to be bijective. While it is well known that renamingPK is equivalent
to EPK, it is not known whether permutationPK is equivalent toPK or EPK or is strictly in between.

The systemG (see [8,§4.6] for a complete description) allows boolean quantifiers, and it consists of
PK together with the four new rules given in table 2. Note that intable 2,B is any formula, and we have
the restriction that the atomp does not occur in the bottom sequent for∀-right and∃-left. Semantically,

∃xα(x) ≡ α(0/x) ∨ α(1/x)

∀xα(x) ≡ α(0/x) ∧ α(1/x)
(1)

(note thatα(β/x) means the formulaα with every (free) instance ofx replaced byβ). Thus, quantifi-
cation does not add to the expressive power ofPK, but rather allows to shorten formulas. In particular,
∃x1∃x2 . . . ∃xnα would be of lengthO(2n|α|) according to the above translation.

We present one more propositional proof system equivalent to EPK: the Hajós calculusHC, a
system for constructing non-k-colorable graphs (so in fact it is a family of proof systems for every
k ≥ 3); we are concerned withk = 3, so we shall restrict ourselves to that. Note thatEPK is a system
for deriving valid sequents whileHC is a system for deriving non-3-colorable graphs; they are equivalent
via the standard reductions between satisfiability and 3-colorability. It was shown in [9] that theHC is
equivalent toEPK (the original paper defining theHC is [6]). The single axiom of theHC is a cliques
on 4 vertices,

K4 =

and it has three rules:

1. Addition: any number of new vertices and edges may be added,
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2. Join: any two vertices which are not connected may be joined into one, with the resulting duplicate
edges removed, and

j
i j

Figure 2. The join rule: nodesi, j are joined and renamedj.

3. Edge Elimination: given two graphsG1, G2 on the same vertex setV , and with the edges on all
vertices inV − {i, j, k} the same, and with(i, j) an edge in both,(i, k) an edge inG1 only, and
(j, k) an edge inG2 only, we conclude a graph identical toG1 with the edge(i, k) removed.

k

i i ij j j

k k

Figure 3. The edge elimination rule. From the two left graphswe conclude the right graph.

As was mentioned above, it was shown in [9] that theHC is equivalent toEPK (and we use the same
presentation ofHC as in [9]). Interestingly enough, it was shown in [7] that tree-like HC, i.e.,HC∗ in
our notation, has exponential lower bounds (and hence we suspect it to be weaker than dag-likeHC).

4. PK with permutation quantification (H)

In this section we present a new extension ofPK which, likeG, adds rules which introduce quantifiers.
However, rather than quantifying over the boolean assignments to a variable (as inG), we quantify
over transpositionsof two variables. By combining quantifications over transpositions, we can build
quantification over general permutations.

Here is the formula syntax: ifα is a formula, then so are(∃ab)α and(∀ab)α (note that there are no
other restrictions ona andb, so that any, both, or none of them may appear inα and they may be the
same variable).

We introduce some notation to give the formal semantics of the new quantifiers. Letα(ab) represent
a transposition of the variablesa andb within α. That is, every instance ofa is replaced byb and every
instance ofb is replaced bya. For example,(a∨ b)(ab) is (b∨ a). It is important to note that occurrences
of a or b within other permutation quantifiers are also affected. Hence, the formula((∃ac)α)(ab) is
syntactically equal to(∃bc)α(ab).

The intended meaning of permutation quantifiers is as follows:

(∃ab)α ≡ (α ∨ α(a,b))

(∀ab)α ≡ (α ∧ α(a,b))
(2)

while for classical boolean quantification the intended meaning is given in (1).
There are two equivalent ways of giving the semantics of permutation quantifiers. Firstly, we can

say that the truth assignmentτ satisfies a formula(∃ab)α (written asτ |= (∃ab)α), iff τ |= α or
τ |= α(ab). The obvious alternative is to defineτ (ab) by settingτ (ab)(a) = τ(b), τ (ab)(b) = τ(a), and
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τ (ab)(x) = τ(x) wheneverx /∈ {a, b}. We then say thatτ |= (∃ab)α iff τ |= α or τ (ab) |= α. The cases
for universal permutation quantifiers are similar, but require both transpositions to be satisfied, rather
than just one. The two alternative semantics are equivalentways of assigning truth values to formulas.

Using several quantifications over transpositions, the existence of a permutation of the variables
p1, p2, . . . , pn can be stated as follows:

(∃pipj)1≤i,j≤nα. (3)

Similarly, we can state thatα holds for all permutations of a set of variables by replacing∃ with ∀ in (3).
Note that this representation is efficient because it requires onlyn2 many existential quantifiers (sort-

ing circuits can actually allow an arbitrary permutation tobe simulated by onlyO(n log n) transposi-
tions). To see that (3) is sufficient to express the existenceof an arbitrary permutation inSn, we have
to show that for anyσ ∈ Sn, the formulaα(pσ(1)/p1, . . . , pσ(n)/pn

) appears in the long disjunction
that we obtain by applying the equivalence given in (2) systematically to get rid of all the transposition
quantifiers. A short inductive argument convinces one that this is indeed the case.

The six rules for introducing transposition quantifiers aregiven in table 3, whereα′ may be any
permutation of those variables inα which occur in the quantifier (for example, if the quantifier is (∃ab),
thenα′ may be eitherα or α(ab)). The rules R5 and R6 have the following restriction:a1, a2, . . . , an do
notoccur or are bound in the rest of the sequent (i.e., every formula inΓ∪∆ does not contain anyai, or
it starts with an appropriate quantifier over permutation ofvariables inS ⊇ {a1, . . . , an}).

The rules R3 and R4 are required for completeness ofH, but not necessary to showHC ≤p H1,
while the rules R5 and R6 (in the case ofS being strictly equal to{a1, . . . , an}) are necessary for showing
HC ≤p H1, but not for completeness.

R1:
α,Γ → ∆

(∀ab)α′,Γ → ∆
R2:

Γ → ∆, α

Γ → ∆, (∃ab)α′

R3:
α ∨ α(ab),Γ → ∆

(∃ab)α′,Γ → ∆
R4:

Γ → ∆, α ∧ α(ab)

Γ → ∆, (∀ab)α′

R5:
α,Γ → ∆

(∃a1a2 . . . an)α′,Γ → ∆
R6:

Γ → ∆, α

Γ → ∆, (∀a1a2 . . . an)α′

Table 3. Rules for introducing transposition quantifiers.

Definition 4.1. The systemH consists of the rules ofPK together with the six new rules in table 3.
(We call this systemH to follow the notation introduced in [8], whereG is the name given to the proof
system for quantified boolean formulas.)

Theorem 4.1. H is sound and complete.

Proof:
We know thatPK is both sound and complete. The soundness ofH follows from the soundness ofPK,
and the soundness of the six new rules in table 3 (which can be easily checked).
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We show completeness by induction on the number of permutation quantifiers in a sequent. The base
case (no permutation quantifiers) follows from the completeness ofPK.

In the induction step, in each leaf sequent we pick a formula whose outer-most connective is a
permutation quantifier (if there is no such formula we apply the¬,∨,∧ elimination rules until we obtain
such a formula). If the quantifier is∃ on the right:

Γ → ∆, α, α(ab)

∃-right
Γ → ∆, α, (∃ab)α

exchange-right
Γ → ∆, (∃ab)α,α

∃-right
Γ → ∆, (∃ab)α, (∃ab)α

contraction-right
Γ → ∆, (∃ab)α

Note that the top sequent continues being valid if the bottomsequent was valid (α,α(a,b) in a succedent
meansα ∨ α(a,b)), and it has one less quantifier, and so we now apply to it the induction hypothesis.

If the quantifier is∃ on the left, we just apply the∃-left rule. The cases for∀ left and right are
analogous. Note that we did not need to use rules R5 and R6 to prove completeness. ut

Definition 4.2. Let Σ0 = Π0 be the set of quantifier-free boolean formulas. Now, recursively, letΣi+1

be the set of all formulas inΣi ∪ Πi plus the formulas of the form(∃a1a2 . . . an)α, whereα ∈ Πi, and
let Πi+1 be defined analogously (with∀ instead of∃). Following the notation ofG in [8], we letHi be
H with cuts restricted to formulas inΣi only, and we letH∗

i
beHi restricted to tree-like proofs only (i.e.,

proofs where each line is used in at most one inference).

Note that unlike inG, an arbitrary formula with permutation quantifiers does notnecessarily have an
equivalent prenex form. On the other hand, the above definition makes no such claims; it only defines a
class of formulas, and we are really only interested inH1.

5. EPK and H1

In this section we show thatEPK simulatesH∗
1
, i.e.,H∗

1
≤p EPK, and thatH1 simulates the Hajós

calculus (HC) and hence it simulatesEPK (i.e., EPK ≡p HC ≤p H1). SinceEPK corresponds to
polytime reasoning, it follows thatH1 captures polytime reasoning (and possibly more—just how much
is an open question).

Lemma 5.1. EPK simulatesH∗
1
.

Proof:
This is a witnessing argument, in the style of [8, lemma 4.6.3] where it is shown thatEPK simulates
G∗

1
. Roughly speaking, we take anH∗

1
proof, and simulate it line-by-line with a treelikeEPK proof

(EPK and treelikeEPK are ip-equivalent). The novelty is showing how to simulate the sixnew per-
mutation quantifier rules (given in table 3). In fact, we do not have to deal with the rules introducing
universal quantifiers, so we only need to consider R2,R3 and R5, where the last two are taken care off
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“automatically”, as in the witnessing argument given belowthe existential quantifiers in the antecedent
simply get dropped.

We transform the sequents of theH∗
1

proof as follows:Σ0 formulas are unchanged, and forΣ1 for-
mulas, if we have a sequent with a formula(∃p1q1) · · · (∃pnqn)α, whereα ∈ Σ0, i.e.,α is quantifier free,
we remove the quantifiers, and add “witnessing” definitions on the right of the sequent. These witnessing
definitions compute which transposition ought to be taken. For example, a block of transposition quan-
tifiers (∃ab)(∃cd)(∃ef) can be simulated with variablesxab, xcd, xef , wherexab is 0 if the transposition
(ab) is not taken, and 1 otherwise.

Note that since all the cuts ofH∗
1

are onΣ1 formulas only, it follows that all quantifiers are existential
transposition quantifiers, and they occur only in prenex form (because the conclusion is aΣ0 sequent,
and there is no way of getting rid of a formula other than with acut rule).

Let α(φ/a) represent the formulaα with every instance of the variablea replaced byφ, and let:

{y1, y2}ab := [y1 ↔ ((xab ∧ a) ∨ (¬xab ∧ b))], [y2 ↔ ((xab ∧ b) ∨ (¬xab ∧ a))]. (4)

Then, a formula(∃ab)α in thesuccedentof a given sequent can be re-stated asα(y1/a, y2/b), and the
definition {y1, y2}ab would be added to theantecedent. Repeat this for every transposition quantifier
in the block, from the outside in; that is, if the next transposition quantifier was(∃cd), then we obtain
the definitions{y3, y4}cd, {y1, y2}ab in the antecedent and the formula[α(y1/a, y2/b)](y3/c, y4/d) in
the succedent. It is important to note thatxab, xcd, y1, y2 arenewvariables that “belong” to a particular
occurrence of(∃ab), (∃cd) andα.

If a Σ1 formula occurs in the antecedent, we simply drop all the quantifiers.
It remains to show how to translate an entireH∗

1
-proof. We apply the conversion just described to

every formula in every sequent. As we go through the proof, from the axioms down to the conclusion,
we now have to modify the proof inductively to make sure that it is a valid (treelike)EPK-proof (note
that we changed theH∗

1
proof line-by-line, but the resulting proof is not necessarily a valid EPK proof;

we have to fill-in in between the lines). Consider for examplethe∃-right rule:

Γ → ∆, α

Γ → ∆, (∃ab)α
.

By the induction hypothesis, the top has already been translated to~v,Γ′ → ∆′, α′, where~v denotes the
definitions already introduced, and it has a validEPK-proof. Now consider the bottom sequent. We
have to introduce{y1, y2}ab in the antecedent, which we do with weakening, and we have to replacea, b
by y1, y2, respectively, inα′. Here is were we make a crucial use of the tree-likeness ofH∗

1
proofs; we

replacea, b by y1, y2, respectively, inα′ and its ancestors throughout the entire proof of~v,Γ′ → ∆′, α′

(which is now anEPK-proof, but our translation preserves the tree-likeness ofthe originalH∗
1
-proof).

Finally, we obtain anEPK-proof of

{y1, y2}ab, ~v,Γ′ → ∆′, α′(y1/a, y2/b).

Consider also a cut rule where all the formulas inΓ,∆ areΣ0, and the cut formula is(∃ab)β, where
β is alsoΣ0:

Γ → ∆, (∃ab)β (∃ab)β,Γ → ∆

Γ → ∆
.
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By the induction hypothesis we haveEPK-proofs of

{y1, y2}ab,Γ
′ → ∆′, β(y1/a, y2/b) and β,Γ′′ → ∆′′.

Before we can apply a cut in the new proof we have tounify the two sequents. Thus, we replacea, b in
β in the right sequent byy1, y2, respectively, throughout the proof of the right sequent, and then do the
cut. The same idea works for when the upper sequents are general Σ1 formulas. The other rules involve
similar considerations. The resulting proof has a small growth of size. SinceΓ,∆ areΣ0 formulas,
Γ′ = Γ′′ = Γ and∆′ = ∆′′ = ∆. In the case that they haveΣ1 formulas we need to do unification on
those as well.

Clearly, this is a polytime transformation.
One final observation is thatH∗

1
is a proof system forΣ0-sequents, i.e., sequents whose formulas are

quantifier-free (i.e., the conclusion of anH∗
1
-proof is aΣ0-sequent, but in the middle of the proof we may

haveΣ1-sequents, whoseΣ1-formulas must be eliminated with cuts before reaching the conclusion). At
the end of the translation we therefore end up with anEPK-proof of ~v,Γ → ∆ (note that sinceΓ,∆
have onlyΣ0-formulas, they have not been modified by the translation). But we still have~v in the
antecedent; to eliminate~v we now use the power ofEPK: we introduce the abbreviations in~v at the
beginningof the newEPK-proof (to ensure that the abbreviations introducenewvariables), and once
we reach~v,Γ → ∆, we use these definitions and the cut rule to eliminate~v. ut

For the other direction, that is, to show thatH1 simulatesEPK, we show that it proves efficiently
the soundness of the Hajós calculus. This is enough to conclude thatH1 can simulate extendedPK
(see [4, 8]).

To show thatH1 proves efficiently the soundness of theHC, it is convenient to use a different
formulation ofH1. We define it in terms ofΠ1 formulas (i.e.,∀πα, whereα ∈ Σ0 = Π0). Note that the
two formulations ofH1 are equivalent, as we can always change sides of all the formulas in the sequent,
and obtain an equivalent sequent except all quantifiers havebeen flipped. It is a matter of expediency
which of the two formulations ofH1 we use (as long as we do not mix them together!): for the proof of
the simulation ofH∗

1
by extendedPK, we prefer to use theΣ1 definition. To show thatH1 proves the

soundness of theHC, we prefer to use theΠ1 definition.
First, we define a propositional encoding for non-3-colorability of graphs as follows. We fix a vertex

setV = {1, . . . , n}, with n large enough to contain all the intermediate graphs from theHC proof.
Every graph will be represented by its edge setE (all vertices “outside” of the graph are kept isolated,
which does not influence graph colorability). Our formulas will use variablesri, gi, bi (for i ∈ V ), with
the intended meaning of vertexi being colored red, green or blue, respectively. We now define:

INV :=
∨

i∈V

(ri ∧ gi) ∨
∨

i∈V

(ri ∧ bi) ∨
∨

i∈V

(gi ∧ bi) ∨
∨

i∈V

(¬ri ∧ ¬gi ∧ ¬bi)

and
BADE :=

∨

{i,j}∈E

(ri ∧ rj) ∨
∨

{i,j}∈E

(gi ∧ gj) ∨
∨

{i,j}∈E

(bi ∧ bj),

denoting that the current variable assignment is not valid as a coloring (INV) and that it is a bad coloring
with respect to the edge setE (BADE), respectively. Finally, we encode non-3-colorability as

N3CE := (∀r1 . . . rn)(∀g1 . . . gn)(∀b1 . . . bn)(INV ∨ BADE)
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(note, that even without permutation quantifiers, N3CE encodes the non-3-colorability of the graph with
edge setE; we need the quantifiers however to prove the soundness of thejoin rule of theHC).

Let us also defineE(ij) asE with verticesi andj transposed, andEi→j asE with all the edges
incident oni redirected toj.

We are now ready to formally prove the soundness of theHC in H1.

Lemma 5.2. H1 proves the soundness of the Hajós calculus.

Proof:
It is easy to show thatH1 proves N3CE wheneverE is a 4-clique (we do it without the quantifiers, and
then introduce them) because it is a constant size graph. We now analyze each of the inference rules of
theHC:

1. Addition: Having
E ⊆ E′

we wantH1 to prove
N3CE → N3CE′ .

We start with the axiom
INV ∨ BADE → INV ∨ BADE,

use weakening and exchanges (and the fact thatE ⊆ E′) to get

INV ∨ BADE → INV ∨ BADE′ ,

introduce the universal quantifiers (R1) one-by-one on the left

N3CE → INV ∨ BADE′ ,

and finally on the right (R6 – all quantified transpositions are already bound on the left):

N3CE → N3CE′ .

2. Join: Having
{i, j} /∈ E

we wantH1 to prove
N3CE → N3CEi→j .

Start with the axiom
INV ∨ BADEi→j → INV ∨ BADEi→j .

Use weakenings and exchanges (and the fact that every edge inEi→j appears in at least one ofE
or E(ij)) to get

INV ∨ BADE , INV ∨ BADE(ij) → INV ∨ BADEi→j

and then (based on the fact that BADE(ij)
synt.
= BAD

(rirj)(gigj)(bibj)
E ) to arrive at

(INV ∨ BADE), (INV ∨ BADE)(rirj)(gigj)(bibj) → INV ∨ BADEi→j .
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Now use rule R1, exchanges and contraction to get

N3CE → INV ∨ BADEi→j .

Finally, introduce the universal quantifiers on the right (R6 – again, all the transpositions are al-
ready bound on the left), and we are done.

3. Edge Elimination: Having

{i, j} ∈ E,

{i, k}, {j, k} /∈ E,

E1 = E ∪ {{i, k}},

E2 = E ∪ {{j, k}},

we wantH1 to prove
N3CE1 , N3CE2 → N3CE.

Consider any pair of edges{u, v} ∈ E1, {x, y} ∈ E2. If {u, v} 6= {i, k}, then{u, v} ∈ E and, by
weakening the axiom

(ru ∧ rv) ∨ (gu ∧ gv) ∨ (bu ∧ bv) → (ru ∧ rv) ∨ (gu ∧ gv) ∨ (bu ∧ bv)

we can prove

((ru ∧ rv) ∨ (gu ∧ gv) ∨ (bu ∧ bv)) ∧ ((rx ∧ ry) ∨ (gx ∧ gy) ∨ (bx ∧ by)) → INV ∨ BADE.

The case for{x, y} 6= {j, k} is analogous. If{u, v} = {i, k} and{x, y} = {j, k}, then we start
with

ri ∧ rj → ri ∧ rj

gi ∧ gj → gi ∧ gj

bi ∧ bj → bi ∧ bj

rk ∧ gk → rk ∧ gk

. . . ,

weaken them to

(ri ∧ rk) ∧ (rj ∧ rk) → BADE

(gi ∧ gk) ∧ (gj ∧ gk) → BADE

(bi ∧ bk) ∧ (bj ∧ bk) → BADE

(ri ∧ rk) ∧ (gj ∧ gk) → INV

. . . ,

introduce the connectives, weaken the right size and reorganize the left to get

((ru ∧ rv) ∨ (gu ∧ gv) ∨ (bu ∧ bv)) ∧ ((rx ∧ ry) ∨ (gx ∧ gy) ∨ (bx ∧ by)) → INV ∨ BADE.
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Having arrived at the same conclusion for all the pairs of edges fromE1 andE2, we can combine
them together introducing the connectives to get

BADE1 ∧ BADE2 → INV ∨ BADE .

Reorganizing and weakening the left side slightly gives us

INV ∨ BADE1, INV ∨ BADE2 → INV ∨ BADE ,

and now we can introduce the quantifiers (as usual, first usingR1 and then R6), to get

N3CE1, N3CE2 → N3CE ,

as required.

Having analyzed all the axioms and inference rules ofHC, we see that it can be proved sound byH1. ut

Putting together lemmas 5.1 and 5.2, and the fact thatHC simulatesEPK, we arrive at the main
result of this work:EPK simulatesH∗

1
, and in turnH1 simulatesEPK. This is stated succinctly in

theorem 5.1 below.

Theorem 5.1. H∗
1
≤p EPK ≤p H1.

6. Conclusion

We have introducedH, a propositional proof system with quantification over permutations. Our system
H does not increase the expressive power of boolean formulas,but allows for abbreviations:(∃ab)α ≡
(α ∨ α(a,b)), and(∀ab)α ≡ (α ∧ α(a,b)). It turns out that these abbreviations make a small fragment
of the systemH capable of capturing polytime reasoning (we showed, theorem 5.1, thatH1 simulates
EPK, and thus Extended Frege). This is interesting because permutations are a fundamental concept of
algebra, and we wanted to design a propositional proof system where reasoning about the existence of
permutations (H) is built in as a “primitive.” SinceG∗

1
simulatesEF, the obvious next question is: can

H∗
1

be shown equivalent toEF? Unfortunately, by [7] tree-likeHC is not equivalent to dag-likeHC, and
so we cannot claim directly thatH∗

1
is equivalent toEF. So we pose the following obvious question: is

H∗
1

equivalent toEF?
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