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Abstract. Given a separable polynomial p(x) ∈ Q[x], which splits in R[x], is it possible to find a
symmetric matrix over Q whose eigenvalues are precisely the roots of p(x)? This note investigates this
questions, and provides a condition on p(x) under which it is always possible to find such a matrix—
the question whether such a matrix can be found unconditionally is left open. The condition we give
is that the Vandermonde matrix of the roots of p(x) be (quasi) orthogonal.

1. Introduction. In this note we are concerned with the following question:
given a polynomial p(x) of degree n over Q, i.e., p has rational coefficients, such
that p splits in R[x], i.e., p(x) = (x − λ1)(x − λ2) · · · (x − λn), where the λi’s are all
distinct real numbers, is it possible to find a symmetric matrix Ap over Q such that
the eigenvalues of Ap are precisely the roots of p(x), i.e.,

Ap ∼ D = Diag(λ1, λ2, . . . , λn)? (1.1)

(“∼” denotes similarity of matrices, and “Diag(λ1, λ2, . . . , λn)” denotes a diagonal
matrix, with λ1, λ2, . . . , λn on the main diagonal.)

The tacit assumption in (1.1) is that Ap is an n × n matrix, i.e., Ap ∈ Qn×n. If
this is required, then in general it is not true that such an Ap can be found, as the
following example1 illustrates: there is no rational symmetric 2 × 2 matrix M with
characteristic polynomial x2 − 3 = (x+

√
3)(x−

√
3).

Suppose by way of contradiction that there is such a rational symmetric 2 × 2
matrix M , and let

M =
[
a b
b c

]
,

so the characteristic polynomial of M , pM , is given by

pM (x) = x2 + (−a− c)x+ (ac− b2).

Since −a− c = 0, it follows that −a2 − b2 = −3, so a2 + b2 = 3, which is not possible
if a, b are rational numbers. To see this, just clear the denominators, and consider
arithmetic modulo 3. We get that for some integers x, y (not both zero), we have
x2 + y2 ≡ 0 (mod 3); this is not possible.

Of course, our example leaves open the question whether there exists a rational
symmetric matrix of dimension greater than 2 which has ±

√
3 as eigenvectors.

Given a polynomial p(x) ∈ Q[x] of degree n, such that p(x) splits over R, i.e.,
p(x) = (x− λ1)(x− λ2) · · · (x− λn), define a Vandermonde matrix of its roots to be
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1This example is due to Stephen Cook; private communication to the author.
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the following matrix:

Vp =


1 λ1 λ2

1 . . . λn−1
1

1 λ2 λ2
2 . . . λn−1

2
...

1 λn λ2
n . . . λn−1

n

 . (1.2)

We say that Vp is quasi-orthogonal if

V t
pVp = rI where r ∈ Q. (1.3)

In this note we show that if p(x) ∈ Q[x] of degree n, which splits over R, and its
matrix Vp is quasi-orthogonal, then there exists a 2n× 2n symmetric rational matrix
whose eigenvalues are precisely λ1, λ2, . . . , λn.

Note that our example polynomial x2−3 = (x+
√

3)(x−
√

3) does not satisfy (1.3),
while the polynomial x2 − 1 = (x− 1)(x+ 1) does.

We leave open the question whether the condition given by (1.3) is necessary. It
is plausible that in general we can unconditionally find a rational symmetric matrix
as required, albeit of size greater than the degree of the polynomial. This seems to
be an interesting open question.

2. Main Result. We now prove the main result of this note. We start with
lemma 2.1, and then we state and prove our result as theorem 2.3.

Lemma 2.1. Suppose that p(x) = xn + pn−1x
n−1 + · · ·+ p0 ∈ Q[x] is a separable

polynomial of degree n that splits in C[x], that is, p(x) = (x−λ1)(x−λ2) · · · (x−λn),
where the λi ∈ C are all distinct. Then, if Vp is quasi-orthogonal, there exists a
symmetric matrix Ap ∈ Qn×n (i.e., an n× n matrix over Q) such that:

Ap ∼ D := Diag(λ2
1, λ

2
2, . . . , λ

2
n),

that is, Ap is similar to a diagonal matrix whose eigenvalues are the λ2
i .

Proof. First of all, since all the λi’s are distinct, it follows that:

Cp =


0 0 . . . −p0

1 0 . . . −p1

...
...

...
...

0 0 1 −pn−1

 ∼ D
where Cp is the companion matrix of p(x).

Note that from general considerations about bases of eigenvectors (for distinct
eigenvalues) we know that Vp is invertible. However, we can also check it directly,
since Vp is the Vandermonde matrix, and therefore its determinant is Πi<j(λi − λj).
Since all the λi’s are distinct, it follows that det(Vp) 6= 0, and hence Vp is invertible.

Claim 2.2. VpCpV
−1
p = D.

Proof. (of claim 2.2)

VpCpV
−1
p = D ⇐⇒ VpCp = DVp

⇐⇒ Ct
pV

t
p = V t

pD,
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and the last statement holds iff ∀i, the i-th column of V t
p is the eigenvector of Ct

p

corresponding to λi. This in turn is true iff (λiI −Ct
p)(V t

p )i = 0, where (V t
p )i denotes

the i-th column of the matrix V t
p .

The last statement in the above paragraph holds since

(λiI − Ct
p)(V t

p )i =


λi −1 0 . . . 0
0 λi −1 . . . 0

... −1
p0 p1 p2 . . . λi + pn−1




1
λi

λ2
i
...

λn−1
i

 ,

and the product of the two right-hand side matrices is clearly the zero column-vector.
(End of proof of claim 2.2.)

Now,

D2 = D ·D = [(V t
p )−1Ct

p(V t
p )][VpCpV

−1
p ] = (V −1

p )t[Ct
p(V t

p )VpCp︸ ︷︷ ︸
(∗)

]V −1
p ,

and the matrix in the middle, namely (∗), is symmetric, and furthermore, it is rational.
This is going to be our matrix2, i.e., our Ap.

Theorem 2.3. Suppose that p(x) = xn+pn−1x
n−1+· · ·+p0 ∈ Q[x] is a separable

polynomial that splits in R, that is, p(x) = (x−λ1)(x−λ2) · · · (x−λn) ∈ R[x], and all
the λi’s are distinct. If Vp is quasi-orthogonal, then there exists a symmetric matrix
over Q2n×2n whose eigenvalues are the λi’s.

Proof. Let q(x) = p(x2). Then q(x) ∈ Q[x] as well, and

q(x) = (x2 − λ1)(x2 − λ2) · · · (x2 − λn)

= (x−
√
λ1)(x+

√
λ1)(x−

√
λ2)(x+

√
λ2) · · · (x−

√
λn)(x+

√
λn).

Note that
√
λi may be purely real or purely imaginary, as λi ∈ R, so

√
λi

2 ∈ R. Also,
there are 2n roots of q(x), and they are all distinct:√

λ1,−
√
λ1,
√
λ2,−

√
λ2, . . . ,

√
λn,−

√
λn.

So we can apply lemma 2.1 to q(x).
Note that Cq, the companion matrix of q(x), is a 2n × 2n matrix, and so is the

rational symmetric matrix Aq = Ct
qV

t
pVpCq, and

Aq ∼D(
√
λ1

2
,−
√
λ1

2
,
√
λ2

2
,−
√
λ2

2
, . . . ,

√
λn

2
,−
√
λn

2
)

= D(λ1,−λ1, λ2,−λ2, . . . , λn,−λn),

and this finishes the proof.

2Or, rather, a multiple of our matrix; since (V −1
p )t(V −1

p ) = rI, we let Ap = r(Ct
p(V t

p )VpCp),

which is now similar to D2 via 1√
r

(V −1
p ) and its transpose.
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Finally, note that we can relax the condition (1.3) a little bit, and only require
that V t

pVp = rI, and not insist explicitly that r ∈ Q. This is because r ∈ Q a priori
as we show next:

V t
pVp =


s0 s1 . . . sn−1

s1 s2 . . . sn

...
sn−1 sn . . . s2n−2


where si = λi

1 + λi
2 + · · ·+ λi

n−1 = tr(Ci
p), and tr(Ci

p) ∈ Q (i.e., the trace of a power
of a rational matrix is a rational number).

3. Conclusion. Do we need the condition that Vp is quasi-orthogonal? We know
for sure that in general our rational symmetric matrix will be larger than the degree
of the polynomial, but if a condition is required is there one that is weaker than
quasi-orthogonality? It was pointed out3 that there exists a vast literature by Ed
Bender on the conditions for the existence of a symmetric matrix over Q; it would
be interesting to find out if those results relate directly to the question posed in this
note.
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