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Abstract

We show that the logical theory QLA proves the Cayley-Hamilton
theorem from the Steinitz Exchange theorem together with a strength-
ening of the linear independence principle. Since QLA is a fairly weak
theory (in the sense that its quantifier-free fragment, LA, translates into
tautologies with TC0-Frege proofs—when restricted to the field Q of the
rationals), it follows that the proof complexity of matrix algebra can be
distilled to the Steinitz Exchange theorem.

1 Introduction

The theory LA is a field-independent logical theory for matrix algebra. LA
proves all the ring properties of matrices (e.g., A(BC) = (AB)C) and restricted
to the field Q of the rationals translates in TC0-Frege. QLA is a quantified
theory axiomatized by all the theorems of LA. As these theories are described
in detail elsewhere ([5]), suffice it to say that LA is a natural theory for matrix
algebra, with three sorts: indices, field elements, and matrices, and axioma-
tized by the usual number theoretic axioms for indices, the usual field axioms,
and induction over open formulas. See the appendix for a table giving a brief
description of LA.

In practice, QLA is just strong enough to prove all the ring properties of
matrices, and it is conjectured that it is too weak to prove properties of matrix
inverses. We show in this paper that inverse properties of matrices, of which
the Cayley-Hamilton theorem is the example par excellence (because it gives
a (non-zero) annihilating polynomial for a matrix, and effectively shows that
the adjoint is the inverse), can be shown in QLA from the Steinitz Exchange
theorem and a strengthening of the linear independence principle. A preliminary
version of this paper, containing some of the results mentioned here, appeared
in [4]. For the algebra material in this paper the reader can consult, for example,
[1] or [3].

Let the Strong Linear Independence (SLI) principle be the following
assertion: if {v1, . . . , vm} are n × 1, non-zero, linearly dependent vectors, then
there exists a 1 ≤ k < m such that {v1, . . . , vk} is linearly independent, but
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{v1, . . . , vk+1} is linearly dependent. This can be stated easily as a QLA-
formula by encoding the vectors as the columns of a matrix, a practice we
follow implicitly throughout the paper.

Recall that the Steinitz Exchange Theorem (SET) states the following:
if T is a total set (i.e., it spans the whole vector space), and E is a linearly
independent set, then there exists a subset F ⊆ T , such that |F | = |E|, and
(T − F ) ∪E is total. Note that totality can be stated as follows: ∃X[TX = I],
and also that the standard proof of SET (as, for example, given in [2, pg. 216])
can be formalized in ∃LA (so it has a polytime proof).

Note that both the number k in SLI and the set F in SET can be computed
with NC2 algorithms (polysize circuits of depth O(log2 n)). To compute the
k, we compute the rank of {v1, . . . , vi} and {v1, . . . , vi+1} independently for all
i < m, and we let k = i for the first i for which the two sets have the same
rank. To compute the F in SET we list all the vectors in E followed by all the
vectors in T , and for each i < |E|+ |T | we check if the first i vectors and the first
(i+1) vectors have the same rank; if they do, we put the (i+1) vector in F , and
we stop when |F | = |E|. As rank can be computed in NC2 with Mulmuley’s
algorithm, the claim follows (for an exposition of Mulmuley’s algorithm, see [6]).

Finally, note once again that both SET and SLI can be shown in the theory
∃LA using a straightforward induction over ΣB

1 formulas (i.e., formulas of the
form (∃X ≤ n)α, where X is a matrix of size at most n, and α has not matrix
quantifiers).

Csanky’s algorithm for computing the characteristic polynomial of a matrix
uses Newton’s symmetric polynomials, which are defined as follows: s0 = 1, and
for 1 ≤ k ≤ n,

sk =
1
k

k∑
i=1

(−1)i−1sk−itr(Ai) (1)

Then, pA(x) := s0x
n − s1x

n−1 + s2x
n−2 − · · · ± snx0. Note that we can ex-

press the coefficients of the characteristic polynomial (computed by Csanky’s
algorithm) as a term in the language of LAP (which is LA together with the
matrix powering function), as the next lemma shows. Note that we require fields
of characteristic 0 to run Csanky’s algorithm, and so the underlying assump-
tion throughout this paper is that the field is Q. (See [6] for a more detailed
exposition.)

Lemma 1 pA can be given as a term of LAP.

Proof. We restate (1) in matrix form: s = Ts − b where s, T, b are given,
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respectively, as follows:


s1

s2

...
sn

 ,



0 0 0 . . .

1
2 tr(A) 0 0 . . .

1
3 tr(A2) 1

3 tr(A) 0 . . .

1
4 tr(A3) 1

4 tr(A2) 1
4 tr(A) . . .

...
...

...
. . .


,


tr(A)

1
2 tr(A2)
...

1
n tr(An)



Then s = −b(I − T )−1. Note that (I − T ) is an invertible matrix as it is lower
triangular, with 1s on the main diagonal, and so its inverse can be computed
easily, and shown that it is computed correctly, in LAP. �

Note that we do not have matrix powering in QLA, but we show in lemma 3
that we can prove the existence of the powers of matrices in QLA from SET,
and thus QLA with SET can “simulate” LAP.

2 A proof of the Cayley-Hamilton Theorem

Let A be an n × n matrix, and pA(x) its characteristic polynomial computed
by Csanky’s algorithm. By the comment at the end of the preceding section,
we can prove the existence of pA(x) in QLA with SET. The CHT states
that pA(A) = 0. To show that, we are going to prove in QLA that for all i,
pA(A)ei = 0, where B0 = {e1, . . . , en} is the standard basis.

Theorem 1 The theory QLA proves from SLI and SET that for all the vectors
ei in the standard basis, (pA(A))ei = 0, where pA is the characteristic polynomial
of the matrix A as computed by Csanky’s algorithm. It follows that pA(A) = 0,
i.e., the Cayley-Hamilton theorem.

Proof. Consider the set W = {ei, Aei, . . . , A
nei}. By the principle of linear

independence ((n+1) n-vectors must be linearly dependent, which follows from
SET in QLA by lemma 2 below) we know that W must be linearly dependent.
By SLI there exists a k ≤ n such that the first k vectors of W are linearly
independent, but the first (k+1) vectors are not; let W0 = {ei, Aei, . . . , A

k−1ei}
where k is the largest power of A such that W0 is linearly independent.

As an aside, note that showing the existence of such a k seems to require
induction over ΣB

1 formulas, which we do not have in QLA. On the other
hand, any subset of a linearly independent set is linearly independent, and any
superset of a linearly dependent set is linearly dependent (and furthermore, this
can be shown in QLA). It thus follows that we can find this k with binary
search, where we ask if {ei, Aei, . . . , A

jei} is linearly independent or not, and
eliminate half of the remaining candidates for k in one step.
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Then Akei can be written as a linear combination of the vectors in W0.
Let c1, . . . , ck be the coefficients of this linear combination, so that if g(x) =
xk + c1x

k−1 + · · ·+ ck, then g(A)ei = 0.
Let Ag be the k × k companion matrix of g,

0 0 0 . . . 0 −ck

1 0 0 . . . 0 −ck−1

0 1 0 . . . 0 −ck−2

...
. . .

...
0 0 0 . . . 1 −c1

 . (2)

We show in lemma 4 below that LAP proves that pAg = g, and conclude that
(pAg

(A))ei = 0. (Remember that by lemma 3 we can simulate LAP in QLA
with SET.)

Now, we extend W0 to B = W0 ∪ {ej1 , . . . , ejn−k
}, a basis, using SET (let

T = B0, the standard basis, and let E = W0, which is linearly independent,
so B = (T − F ) ∪ E for some F ). Let MB be the matrix whose columns are
the vectors of B, and so MB is invertible (because the columns of MB are
linearly independent, and so by lemma 2 MB has a right-inverse, and hence a
two-sided-inverse) and

A ·MB = MB ·
(

Ag E1

0 E2

)

where E =
(

E1

E2

)
is defined by E = M−1

B A′ where A′ is composed of columns

j1, . . . , jn−k of A (note that MB is a change of basis). Thus:

A ∼
(

Ag E1

0 E2

)
i.e., they are similar matrices.

LAP proves that if C1 ∼ C2 then pC1(x) = pC2(x), i.e. that similar matrices
have the same characteristic polynomial (this follows easily from the fact that
tr(A) = tr(PAP−1)—since tr(AB) = tr(BA)—and (1)), and we show that
LAP proves that if

C =
(

C1 ∗
0 C2

)
(3)

then pC(x) = pC1(x) · pC2(x) (see lemma 5 below for a proof of this; note that
the lemma proves this result for a transpose of (3), but since tr(A) = tr(At), we
have the result for (3) as well).

We conclude that pA(A)ei = (pAg
(A) · pE(A))ei = pE(A) · (pAg

(A)ei) = 0.
Since this holds for all the vectors ei in the standard basis, it follows that
pA(A) = 0. �

Lemma 2 QLA proves that the following principles are consequences of SET:
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1. (∃B 6= 0)[AB = I ∨AB = 0],

2. Linear Independence (n + 1 vectors in Fn are linearly independent),

3. Every matrix has an annihilating polynomial,

4. AB = I ⊃ BA = I.

Note that the understanding is that the matrices A,B mentioned above are
square matrices.

Proof. Let A be an n × n matrix, and suppose that AB 6= 0 for any B 6= 0.
Then the columns of A are linearly independent, and so by SET they are total
(just take T = B0, the standard basis), and in particular there exist Bi’s such
that ABi = ei, so A[B1B2 . . . Bn] = I.

1 implies 2: suppose that we have n + 1 vectors, and arrange them as the
columns of a matrix A (and so A is an n × (n + 1) matrix). If AB 6= 0 for all
B 6= 0, then the same holds for A′ which is A with a row of zeros appended (and
so A′ is a square matrix), and hence there exists B′ 6= 0 such that A′B′ = I
which is not possible.

2 implies 3: consider I,A, A2, . . . , An2
. This set is linearly dependent (as

vectors), and so there exists C 6= 0 such that c0I + c1A + · · · cn2An2
= 0 giving

us the coefficients of an annihilating polynomial of A.
3 implies 4: suppose that AB = I, and let p be an annihilating polynomial

of A. If p0 6= 0, i.e., the constant coefficient of p is not zero, then from p(A) = 0
we can obtain a two sided inverse of A. If p0 = 0, then let q be a polynomial
with q0 6= 0 such that p(A) = q(A)As. Since AB = I, AsBs = I, so q(A) = 0,
so once again we have a two sided inverse. Since AB = I implies (in LA) that
A(BA − I) = 0, we know that BA = I. Note that this argument requires
finding an s such that p(A) = q(A)As, which effectively means finding the first
non-zero coefficient of p. Since p is represented as a vector of coefficients, i.e.,
p = [pmpm−1 . . . p0]t 6= 0, this means finding the least s such that ps 6= 0, which
can be done with LA-induction. �

Lemma 3 QLA can prove the existence of powers of a matrix from SET.

Proof. Let POW(A,n) be the formula:

∃〈X0X1 . . . Xn〉(∀i ≤ n)[X0 = I ∧ (i < n ⊃ Xi+1 = Xi ∗A)] (4)

The size of 〈X0X1 . . . Xn〉 can be bounded as it is a r(A)×(r(A)·(n+1)) matrix.
We now show that QLA ` (∃B 6= 0)[AB = I ∨ AB = 0] ⊃ POW(A,n).

Note that in lemma 2 we showed that the LHS of this implication is provable
in QLA from SET.

Let N be the n2 × n2 matrix consisting of n × n blocks which are all zero
except for (n − 1) copies of A above the diagonal zero blocks. Then Nn = 0,
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and (I −N)−1 = I + N + N2 + . . . + Nn−1 =
I A A2 . . . An−1

0 I A . . . An−2

...
. . .

...
0 0 0 . . . I

 .

Set C = I − N . Show that if CB = 0, then B = 0, using induction on the
rows of B, starting with the bottom row. Using (∃B 6= 0)[CB = I ∨ CB = 0],
conclude that there is a B such that CB = I.

Next, show that B = I + N + N2 + · · ·+ Nn−1, again, by induction on the
rows of B, starting with the bottom row. Thus, B contains I,A, A2, . . . , An−1

in its top rows, and POW(A,n) follows. �

Lemma 4 Let Ag be the companion matrix of the polynomial g (see (2)). Then
QLAP shows that the characteristic polynomial of Ag is precisely g, i.e., pAg

=
g, and furthermore QLAP shows that pAg

(Ag) = 0, i.e., we have the CHT for
companion matrices.

Proof. The following proof is not complex, but it is complicated; it can be
formalized in LAP (and hence in QLA with SET), but it is quite technical.
The matrix A := Ag (we drop the subscript for readability) is a k × k matrix,
with 1s below the main diagonal, and zeros everywhere else except (possibly)
in the last column where it has the negations of the coefficients of g(x) (again,
see (2) for a definition of Ag).

Divided A into four quadrants, with the upper-left containing just 0. Let R =
( 0 . . . 0 −ck ) be the 1× (k − 1) row vector in the upper-right quadrant,
i.e., the first row of A without the first entry. Let S = e1 be the (k − 1) × 1
column vector in the lower-left quadrant, i.e., the first column of A without the
top entry. Finally, let M be the principal submatrix of A, M = A[1|1]; the
lower-right quadrant.

Let s0, s1, . . . , sk be the Newton’s symmetric polynomials of A, as given
by (1). To prove that g(x) = pA(x) we prove something stronger: we show that
(i) for all 0 ≤ i ≤ k (−1)isi = ci, and (ii) pA(A) = 0.

We show this by induction on the size of the matrix A. Since the principal
submatrix of A (i.e., M) is also a companion matrix, we assume that for i < k,
the coefficients of the symmetric polynomial of M are equal to the ci’s, and that
pM (M) = 0. (Note that the Basis Case of the induction is a 1× 1 matrix, and
it is trivial to prove.)

Since for i < k, tr(Ai) = tr(M i), it follows from (1) and the induction
hypothesis that for i < k, (−1)isi = ci (note that s0 = c0 = 1).

Next we show that (−1)ksk = ck. By definition (i.e., by (1)) we have that
sk is equal to:

1
k

(sk−1tr(A)− sk−2tr(A2) + · · ·+ (−1)k−2s1tr(Ak−1) + (−1)k−1s0tr(Ak)),
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and by the induction hypothesis and the fact that for i < k tr(Ai) = tr(M i) we
have that this is equal to

1
k

(−1)k−1(ck−1tr(M) + ck−2tr(M2) + · · ·+ c1tr(Mk−1) + c0tr(Ak)),

and note that tr(Ak) = −kck + tr(Mk), so this equals

1
k

(−1)k−1
[
ck−1tr(M) + ck−2tr(M2) + · · ·+ c1tr(Mk−1) + c0tr(Mk)

]
+ (−1)kck.

Observe that

tr(ck−1M + ck−2M
2 + · · ·+ c1M

k−1 + c0M
k) = tr(pM (M)M) = tr(0) = 0

since pM (M) = 0 by the induction hypothesis. Therefore, sk = (−1)kck.
It remains to prove that pA(A) =

∑k
i=0 ciA

k−i = 0. First, show that for
1 ≤ i ≤ (k − 1):

Ai+1 =


0 RM i

M iS
∑i−1

j=0 M jSRM (i−1)−j + M i+1

 (5)

(for A of the form given by (2), and R,S,M defined as in the first paragraph of
the proof). Define wi, Xi, Yi, Zi as follows:

Ai+1 =
(

wi+1 Xi+1

Yi+1 Zi+1

)
=

(
wi Xi

Yi Zi

) (
0 R
S M

)
=

(
XiS wiR + XiM
ZiS YiR + ZiM

) (6)

We want to show that the right-most matrix of (6) is equal to the right-hand
side of (5). First note that:

Xi+1 =
i∑

j=0

wi−jRM j wi+1 =
i−1∑
j=0

(RM jS)wi−1−j (7)

With the convention that w0 = 1. Since w1 = 0, a straight-forward induction
shows that wi+1 = 0. Therefore, at this point the right-most matrix of (6) can
be simplified to: (

0 RM i

ZiS YiR + ZiM

)
We have:

Yi+1 = M iS +
i−2∑
j=0

(RM jS)Yi−1−j Zi+1 = M i+1 +
i−1∑
j=0

Yi−1−jRM j
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By the same reasoning as above,
∑i−2

j=0(RM jS)Yi−1−j = 0, so putting it all
together we obtain the right-hand side of (5).

Using the induction hypothesis (pM (M) = 0) it is easy to show that the first
row and column of pA(A) are zero. Also, by the induction hypothesis, the term
M i+1 in the principal submatrix of pA(A) disappears but leaves ckI. Therefore,
it will follow that pA(A) = 0 if we show that

k∑
i=2

ck−i

i−2∑
j=0

M jSRM (i−2)−j (8)

is equal to −ckI.
Some observations about (8): for 0 ≤ j ≤ i − 2 ≤ k − 2, the first column

of M j is just ej+1. And SR is a matrix of zeros, with −ck in the upper-right
corner. Thus M jSR is a matrix of zeros except for the last column which is
−ckej+1. Thus, M jSRM (i−2)−j is a matrix with zeros everywhere, except in
row (j + 1) where it has the bottom row of M (i−2)−j multiplied by −ck. Let
m(i−2)−j denote the 1 × (k − 1) row vector consisting of the bottom row of
M (i−2)−j . Therefore, (8) is equal to:

−ck ·



∑k
i=2 ck−im(i−2)

∑k
i=3 ck−im(i−3)

...∑k
i=k ck−im(i−k)


(9)

We want to show that (9) is equal to −ckI to finish the proof of pA(A) = 0. To
accomplish this, let l denote the l-th row of the matrix in (9) starting with the
bottom row. We want to show, by induction on l, that the l-th row is equal to
ek−l.

The Basis Case is l = 0:

k∑
i=k

ck−im(i−k) = c0m0 = et
k−1,

and we are done.
For the induction step, note that ml+1 is equal to ml shifted to the left by

one position, and with

ml · ( −ck−1 −ck−2 . . . −c1 )t (10)

in the last position. (Here the “·” denotes the dot product of the two vectors.)
We introduce some more notation: let rl denote the k − l row of (9). Thus rl

is 1 × (k − 1) row vector. Let
←
r l denote rl shifted by one position to the left,
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and with a zero in the last position. This can be stated succinctly in LAP as
follows:

←
r l

def= λij〈1, (k − 1), e(rl, 1, i + 1))〉.

Based on (9) and (10) we can see that:

rl+1 =
←
r l +[rl · ( −ck−1 −ck−2 . . . −c1 )t]et

k−1 + clm0.

Using the induction hypothesis:
←
r l= et

k−(l+1), and

rl ·( −ck−1 −ck−2 . . . −c1 )t = et
k−l ·( −ck−1 −ck−2 . . . −c1 )t = −cl

so rl+1 = et
k−(l+1) − cle

t
k−1 + cle

t
k−1 = et

k−(l+1) as desired. This finishes the
proof of the fact that the matrix in (9) is the identity matrix, which in turn
proves that (8) is equal to −ckI, and this ends the proof of pA(A) = 0, which
finally finishes the main induction argument, and proves the lemma. �

Lemma 5 LAP proves that if A is a matrix of the form:(
B 0
C D

)
(11)

where B and D are square matrices (not necessarily of the same size), and the
upper-right corner is zero, then pA(x) = pB(x) · pD(x).

Proof. Let sA
i , sB

i , sD
i be the coefficients of the characteristic polynomials (as

given by (1)) of A,B,D, respectively. We want to show by induction on i that

sA
i =

∑
j+k=i

sB
j sD

k ,

from which the claim of the lemma follows. The Basis Case: sA
0 = sB

0 = sD
0 = 1.

For the Induction Step, by definition and by the induction hypothesis, we have
that (i + 1) · sA

i+1 equals

=
i∑

j=0

(−1)jsA
i−jtr(A

j+1) =
i∑

j=0

(−1)j

 ∑
p+q=i−j

sB
p sD

q

 tr(Aj+1)

and by the form of A (i.e., (11)):

=
i∑

j=0

(−1)j

 ∑
p+q=i−j

sB
p sD

q

 (tr(Bj+1) + tr(Dj+1))

9



to see how this formula simplifies, we divide it into two parts:

=
i∑

j=0

(−1)j

 ∑
p+q=i−j

sB
p sD

q

 tr(Bj+1) +
i∑

j=0

(−1)j

 ∑
p+q=i−j

sB
p sD

q

 tr(Dj+1).

Consider first the left-hand side. When q = 0, p ranges over {i, i − 1, . . . , 0},
and j + 1 ranges over {1, 2, . . . , i + 1}, and therefore, by definition, we obtain
(i + 1) · sB

i+1. Similarly, when q = 1, we obtain i · sB
i , and so on, until we obtain

1 · sB
1 . Hence we have:

=
i∑

j=0

((i + 1)− j) · sB
(i+1)−js

D
j +

i∑
j=0

(−1)j

 ∑
p+q=i−j

sB
p sD

q

 tr(Dj+1).

The same reasoning, but fixing p instead of q on the right-hand side, gives us:

=
i∑

j=0

((i + 1)− j) · sB
(i+1)−js

D
j +

i∑
j=0

sB
j ((i + 1)− j) · sD

(i+1)−j

which gives us (i + 1) ·
∑

j+k=i+1 sB
j sD

k and finishes the proof. �
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3 Appendix

LA: three sorts: indices i, j, k, . . .; field elements a, b, c, . . .; matrices A, B, C, . . .

Equality Axioms

E1 → x = x
E2 x = y → y = x
E3 (x = y ∧ y = z) → x = z
E4 x1 = y1, ..., xn = yn → fx1...xn = fy1...yn

E5 i1 = j1, i2 = j2, i1 ≤ i2 → j1 ≤ j2

Index Axioms

I6 → i + 1 6= 0
I7 → i ∗ (j + 1) = (i ∗ j) + i
I8 i + 1 = j + 1 → i = j
I9 → i ≤ i + j
I10 → i + 0 = i
I11 → i ≤ j, j ≤ i
I12 → i + (j + 1) = (i + j) + 1
I13 i ≤ j, j ≤ i → i = j
I14 → i ∗ 0 = 0
I15 i ≤ j, i + k = j → j − i = k
i � j → j − i = 0
I16 j 6= 0 → rem(i, j) < j
j 6= 0 → i = j ∗ div(i, j) + rem(i, j)
I17 α → cond(α, i, j) = i ¬α → cond(α, i, j) = j

Fields Axioms

F18 → 0 6= 1 ∧ a + 0 = a
F19 → a + (−a) = 0
F20 → 1 ∗ a = a
F21 a 6= 0 → a ∗ (a−1) = 1
F22 → a + b = b + a
F23 → a ∗ b = b ∗ a
F24 → a + (b + c) = (a + b) + c
F25 → a ∗ (b ∗ c) = (a ∗ b) ∗ c
F26 → a ∗ (b + c) = a ∗ b + a ∗ c
F27 α → cond(α, a, b) = a
¬α → cond(α, a, b) = b

Axioms for Matrices

M28 (i = 0 ∨ r(A) < i ∨ j = 0 ∨ c(A) < j) → e(A, i, j)=0
M29 → r(λij〈m, n, t〉) = m → c(λij〈m, n, t〉) = n
1 ≤ i, i ≤ m, 1 ≤ j, j ≤ n → e(λij〈m, n, t〉, i, j) = t
M30 r(A) = 1, c(A) = 1 → Σ(A) = e(A, 1, 1)
M31 r(A) = 1, 1 < c(A) → Σ(A) = Σ(λij〈1, c(A)− 1, Aij〉) + A1c(A)

M32 c(A) = 1 → Σ(A) = Σ(At)
M33 1 <r(A), 1<c(A) → Σ(A)=e(A, 1, 1)+Σ(R(A))+Σ(S(A))+Σ(M(A))
M34 r(A) = 0 ∨ c(A) = 0 → ΣA = 0

Rules

The usual LK rules for logical consequence.

Equality:
Γ → ∆, e(T, i, j) = e(U, i, j) Γ → ∆, r(T ) = r(U) Γ → ∆, c(T ) = c(U)

Γ → ∆, T =U

Induction:
Γ, α(i) → α(i + 1), ∆

Γ, α(0) → α(n), ∆
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