Feasible proofs of Szpilrajn’s Theorem

A proof-complexity framework for concurrent automata

Michael Soltys

McMaster University soltys@mcmaster.ca

Abstract. The aim of this paper is to propose a proof-complexity frame-
work for concurrent automata. Since the behavior of concurrent processes
can be described with partial orders, we start by formalizing proofs of
Szpilrajn’s theorem. This theorem says that any partial order may be
extended to a total order. We give two feasible proofs of the finite case
of Szpilrajn’s theorem. The first proof is formalized in the logical theory
LA extended to ordered rings; this yields a TC? Frege derivation. The
second proof is formalized in the logical theory JLA and yields a P/poly
Frege derivation. Although TC? is a much smaller complexity class than
P /poly, the trade-off is that the P/poly proof is algebraically simpler—it
requires the algebraic theory LA over the simplest of rings: Zs.
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1 Introduction

The purpose of proof complexity is to study logical systems which use restricted
reasoning based on concepts from computational complexity; see [CN10] for an
introduction to the subject.

In this paper we propose to investigate the proof complexity of standard
reasoning associated with finite orders. The aim is to establish a proof complexity
framework for concurrent automata—a framework capable of formalizing, for
example, the reasoning in [Jan08] and [Lé08]. See [JK93] for background related
to the fundamentals of concurrency, such as order structures and traces, where
Szpirlajn’s theorem finds its important applications.

In particular, [Jan08] deals with the foundations of concurrency theory, and
the author shows how structurally complex concurrent behaviors can be modeled
by relational structures. We propose a proof-complexity framework (i.e., a logical
theory) able to formalize this kind of reasoning. We start at the very beginning,
and propose the logical theory LA (introduced in [SC04]) as an appropriate
theory for formalizing reasoning about that most basic of relations: orders.

Szpilrajn’s theorem®, which says that every partial order can be extended
to a total order, is a central result about orders. Here we give two proofs of

1 As is pointed out in [Lé&08, pg. 9], Szpilrajn’s theorem is a fundamental theorem in
the foundation of concurrency theory. The original proof, written in French, can be
found in [Szp30].



the finite case of Szpilrajn’s theorem. The first one follows an algorithm due
to Ruzzo (cited as private communication in [Coo85]) for computing the simple
extension of a finite order. The second follows the presentation in [Mon]. Both
proofs are formalized in variants of the logical theory LA (see [SC04]), and in
the first case the formalization yields a TC” proof, while in the second a P proof.

It is very interesting to observe that the two approaches trade conceptual
complexity for computational complexity; we require ordered rings (and thus
extra axioms) for a low-complexity proof (TC? Frege), while if we dispense with
ordered rings we require a stronger induction (FLA induction) and obtain a
higher complexity proof (P/poly Frege).

2 Background

2.1 Orders

Let A be a set, and < a binary relation on A, i.e., <C A x A. We say that <
is a partial order if it is irreflexive (i.e., for all a € A we have —(a < a)) and
transitive (i.e., for all a,b,c € A, if a < b and b < ¢, then a < ¢). The pair
(A, <) is called a partially ordered set, or poset for short. In this paper we are
interested in finite posets. If for all a,b € A, it is the case that a < bor b < a
or a = b (i.e., any two elements in A are comparable), then (4, <) is in fact a
simple order (also known as a total order).

Szpilrajn’s theorem says that if (A, <) is a partially ordered set, then there
always exists a simple order (A, <) such that <C<, i.e., a simple order < that
extends <. Note that this is true whether A is finite or infinite, but when A is
infinite the Axiom of Choice is required for the proof. Since we are interested in
partial orders as a formalism for expressing the behavior of concurrent automata,
we concentrate on finite orders.

2.2 LA

LA is afirst order logical theory geared towards algebraic reasoning—we define it
precisely in section 5, at the end of the paper. We present just enough background
to formalize proofs of Szpilrajn’s theorem in different extensions of LA.

By translating those proofs into propositional logic we obtain TCY and P /poly
Frege proofs of Szpilrajn’s theorem. Boolean circuits, or just circuits as well
call them in this paper, are the archetypical example of computation: these
are Boolean gates connected by directed edges; they can be seen as directed
acyclic graphs, where the input “flows” from the input-gates to the output gates,
modified by AND, OR, NOT gates on the way. P/poly simply denotes circuit
families of polynomial size, while TC? is defined in section 3 below.

We are going to encode finite posets as matrices over Zg = {0, 1}, the ring
of two elements. Given a finite set A = {a1,a2,...,a,}, and a poset (A4, <), we
let M4 <) be an n x n matrix where the entry (4, j) is 1 if and only if a; < a;
(and 0 otherwise).



Let X be the set of formulas over the language L1,a without matrix quanti-
fiers, without ring elements quantifiers, and where all the index quantifiers (which
are allowed in any number and any alternation) are bounded. Free matrix and
ring elements variables are allowed.

Let X5 be the set of formulas which contain all the X% formulas, and also
those formulas which in prenex form have a single bounded matrix quantifier in
front, followed by a X formula, i.e., formulas which in prenex form is (3M < t)a
where o € X8 and t is term without the matrix variable M.

Given a square matrix M, we can state with a S} -formula over Lra that

M represents a poset:
POSET(M) := (Vi < |M|)M;; = 0 A (Vijk < |M)[(Mi; A Mjg) — My], (1)
that M is a simple order:
SIMPLE(M) := POSET(M) A (Vij < |M|)[M;; =1V M;; =1Vi=j], (2)
and that N extends M:
MC N :=|M|=|N|AVij<|M|)[M;;=1— N;; =1]. (3)
We can state Szpilrajn’s theorem with a Y'B-formula over Ly,4:

SZPILRAIN(M) := POSET(M) — 3N < |M|[SIMPLE(N) AM C N]. (4)

2.3 The circuit class TC®

The (nonuniform) complexity class TCC consists of languages that are accepted
by a family of polynomial-size constant-depth circuits whose gates can be Boolean
gates or the majority gate. A majority gate has unbounded fan-in and outputs
1 if and only if the number of 1 inputs is more than the number of 0 inputs.
Instead of the majority gates, TC® can be equivalently defined using count-
ing gates or threshold gates. A counting gate Cy, (for k € N) has unbounded
fan-in, and Cg(z1,2,...,2,) is true if and only if there are exactly k inputs
x; that are true. Similarly, the threshold gate Thy has unbounded fan-in, and
Thg(x1, 22, ..., x,) is true if and only if there are at least k inputs that are true.
The class TC is the smallest class known to contain problems such as sort-
ing, integer multiplication and division—when the input integer arguments are
presented in binary. See [CN10, §9C] for the logical theories related to TCC.

3 A TC° proof

We show that TC’-Frege can prove Szpilrajn’s theorem in the finite case. To
do so, we extend the theory LA to ordered rings, and formalize in this new
theory the proof of correctness of an algorithm due to Ruzzo (cited as private
communication in [Coo85]) for computing simple extensions.



Let our language be L1,a U {<ying}, and we extend LA to ordered rings by
adding the following two axioms defining <,ing ([Mar02, Example 1.2.9]):

0 <ring 1
(VaVyVz) [z <iing ¥ = ( + Y <ring Y + 2)] (5)
(VaVy¥z)[(z <iing Y A0 <ying 2) = & 2 <ying Y - 2],

we call the new theory LA,,, and we write < instead of <;ing (and < instead of
<ring) When it is clear from the context that we are comparing ring elements.

Suppose that M is a poset, i.e., POSET(M). We compute N, the simple
extension of M, as follows: let ¢ps(i) represent the number of ones in column i
of M; it can be defined in LA:

ep (i) == XApg(r(M),1,e(M,p,i)).
Now we define the matrix N (in LA):
N 1= Nij(r (M), e(M), cond(enr(i) < enr(G)V [ens (i) = ene(§) Ai < 41,1,0)). (6)

Note that the symbol “<” appears used with two different meanings. First, as
em (1) <ring cam(J), where it compares ring elements, and second as i <index J,
where it compares index elements.

In words, N;; = 1 iff column j has more 1s than column ¢ or if they have the
same number of 1s, then ¢ < j. Note that the number of 1s in column ¢ is the
number of predecessors of ¢; thus, we order all the elements of M by the number
of predecessors they have (and if they have the same number of predecessors, by
column number).

Lemma 1. LA,, - M C N.

Proof. Suppose that M;; = 1. To show that N;; = 1 as well, we show that
ey (1) < epm(j). So consider column i of M; if the k-th entry of this column is
1, i.e., if My; = 1, then by transitivity Mj; = 1. Thus, whenever we have a 1
in position k of column 4, we also have a 1 in position k of column j. We now
prove the following claim.

Claim. LA, proves that if A, B are matrices of size n, and it is the case that
(Vrv¥s < n)[Ays =1 = B,s = 1], then YA < ¥'B.

Proof. We show the claim by (LA,,) induction on n. Clearly if n = 1 then
e(4,1,1) < e(B,1,1). Assume it holds for n; to show that it holds for n + 1
divide the matrices into 4 parts: the principal submatrix of A, the upper-left
corner element, and the remaining row and column, i.e., A[n],e(A,n+1,n+ 1),
the row R, and the column S, respectively (see definitions given in equation (14),
at the end of the paper).

The claim (VrVs <n+ 1)[4,s =1 — B,s = 1] holds for all the submatrices,
so we apply the induction hypothesis to them, and then use the fact that a < b
and ¢ < d implies that a + ¢ < b+ d.



Using the claim we conclude that ¢ps (i) < cpr(j). But we need strict inequal-
ity, which follows from the fact that M;, = 0 (irreflexivity) while M;; = 1.
It follows therefore that M C N.

Lemma 2. LA, F SIMPLE(N).

Proof. From the definition of N (i.e., from (6)) we see that (Vi < n)N,;; =0, i.e.,
N is irreflexive.
Now we show that N is transitive.
Suppose that N;; = 1 AN = 1. We want to show that N, = 1; we consider
the following four cases.
Case 1. c(i) < c(j) A e(j) < c(k)
Then, by transitivity of < we have that c(i) < ¢(k).
Case 2. ¢(i) < c(j) Ale(d) = e(k) Nj < K]
Then ¢(i) < ¢(k) by virtue of equality.
Case 3. [c(i) = c(j) Ni < K] A e(f) < e(k)
c(t) < (k).
Case 4. c(i) =c(j)Ni<jNnc(j)=clk)Nj<k
Then c(i) = ¢(k) by transitivity of equality, and ¢ < k by transitivity of <.
Finally, we can see that N is simple directly from its definition (6).

We therefore obtain the following theorem.
Theorem 1. LA, - SZPILRAIN(M).
Corollary 1. TC? Frege proves Szpilrajn’s Theorem.

Proof. Following [SC04] we know that LA over Z can be translated into TC°
Frege. But then so can LA, since the three axioms given by (5) can be translated
into TC® formulas and proven in TC® Frege (they just require proving laws of
addition and multiplication over integers).

4 A P proof

We now proceed to show that the theory JLA proves Szpilrajn’s theorem in
the finite case. By employing a stronger induction than the one in LA (or in
LA, for that matter) we are able to prove Szpilrajn’s theorem over the ring Zs
(rather than the ring Z) without introducing new axioms (recall that we needed
to bring in axioms for an ordered ring, namely the axioms given by (5), to give
aTC’ proof). We pay for this in our translations which now yield P/poly Frege
proofs instead of TCY Frege.
Our goal now is to show that

JLA F SzPILRAIN(M). (7)

By a standard witnessing argument, it follows that the extension N can be
computed in polynomial time in |M| (which we already knew—what is of interest
is the type of reasoning we now employ).



We prove SZPILRAJN(M) by induction on the principal submatrices of M
(define the principal submatriz of a matrix A to be A with the last row and
column removed); let M[i] be the matrix consisting of the first i rows and first i
columns on M. In particular, M[1] = [My,] and M[|M|] = M, and the principal
submatrix of M is M[|M| — 1]. We want to show that

JLA + (Vi)SZPILRAIN(Mi]) (8)
by induction on 4 (which is F-induction); since trivially
JLA F (Vi)SzPILRAIN(M[i]) — SZPILRAIN(M),

showing (8) gives us (7), i.e., Szpilrajn’s theorem.
Thus, we want to show

JLA F SZPILRAIN(M[1]) A Vi[SZPILRAIN(M [i]) — SzPILRAIN(M[i + 1])], (9)

and conclude (8) from it by invoking ¥Z-induction.

The basis case, SZPILRAJN(M[1]), is trivial since M[1] = [My1] = [0] and [0]
is its own extension, i.e., N = M[1].

For the induction step, consider M [i+1]. By the induction hypothesis we have
an extension N of M[i]; we show how to construct an extension N’ of M[i + 1]
from N. For the sake of clarity we unclutter our notation: set M = MT[i] and
M’ = M[i+1].

To construct N’ from M’ and N we are going to use the A-constructions of
new matrices allowed in LA. First,

X={u:u<iA(Fv<i) 1/;,2'+1 =1A[Nyw=1Vu=n0]]} (10)
Using the auxiliary matrix X we can now construct N':
D, <iANp =1

/ _
Np=1<«= qorpe X Aqg=i+1 (11)
orp=i+1Ageli]—-X

(All entries of N’ not defined to be 1 are of course 0; in particular, N/, ,,, = 0.
The notation [i] denotes the set {1,2,...,i}.)

We prove the correctness of this construction, i.e., we show that the output
N’ is a simple order which extends M’. But we must formalize this proof of
correctness in LA, so we show:

JLA + SiMpLE(N') A M’ C N'. (12)
The next two lemmas show (12).

Lemma 3. LA+ M'C N'.



Proof. To show that M’ C N’ we must show that Mz/),q =1 NI’W =1 for
1 <p,qg <i+ 1. We consider three cases.

Case 1. 1 <p,q<i:
Since for such p, ¢ we have Ml’hq = M, 4, and by the induction hypothesis M E N,
we know that N, , = 1. Since N is the principal submatrix of N’ it follows that
Nyg=Npg=1

Case 2. p<i,gq=1i+1:
Suppose that MI’M-+1 = 1. We want to show that p € X in order to conclude that
N} ;w1 = 1. By (10) we must show that (Jv <4)[M] ;,; = 1A[Ny, = 1Vp =v]];
taking v = p does the job.

Case 3. p=i+1,q<1:
Suppose that Mi’+17q = 1. We want to show that ¢ ¢ X in order to conclude
that N/, , = 1. So according to the definition of X given in (10) we must show
that —=(Jv < 4)[M, ;11 = 1 A [Ng» = 1V q = v]]. So we must show that for all
v <4, we have M, ; | # 1 or [Ny, # 1 Aq # v]. So suppose that M ,,, = 1;
if it were the case that ¢ = v, then we would have M/, , , (by assumption) and
My 41, and by transitivity M/, ,,,,, which is not possible if M’ represents a
poset. If it were the case that N,, = 1, then (since we just established that
q # v) it follows that N, , = 0, and so M, ; = 0 and so M, , = 0. On the other
hand, M/, , =1 and M, ,., =1 give us M, , = 1 by transitivity, and hence a
contradiction. Thus N, # 1 as desired.

Since M, ;41 = 0, we are done with the proof that ILA - M’ C N'.

Lemma 4. JLA F SIMPLE(N).

Proof. According to (2) we must first show that POSET(N'), i.e., that N’ is
irreflexive and transitive. So following (1), we need to show that for 1 < p < i+1,
N,, = 0. For p < i this follows since N is a poset, and N, = Np,. For p =i+1,
N,, = 0 since it is not defined to be 1 by (11). To show that N’ is transitive we
need to show that if N,, = 1A N,. = 1then N) = 1. If 1 < p,q,r <, then
this follows by the transitivity of N. Otherwise, we consider the following three
cases.
Case l.p=1i+1:
If N, = 1, it follows by (11) that ¢ € [i] — X. We also have N, = 1. Suppose
that 7 = i + 1; by (11) it would follow that ¢ € X, which is not the case, and
so r # i+ 1. Suppose that r € X; by the definition of X, (10), we would have
a v <isuch that M ; ; = 1 A [Ny, =1V r =uv]. On the other hand, since we
have already established that ¢,r <4, and Nér =1, it follows that N, =1, and
so by transitivity of N, we have that Ny, = 1, and so ¢ € X, contradicting the
first sentence of this paragraph. Thus r ¢ X, ie, r € [i{] — X, and so N}, = 1
by (11).
Case 2. ¢ =1+ 1:

If N, =1, then by (11) p € X and r € [i] - X. Since p € X we have a v < i such
that Np, = 1Vp = v. Since N is a simple order, we have N, = 1V, = 1vp =r.
As Nz’jr = 1 by assumption we know that p # r. Suppose that N,, = 1; then
N,, = 1 by transitivity of IV, and so r € X, contradicting the first line of this



paragraph. The only possibility that remains is that N,, = 1, and so it must be
that N, = 1.

Case 3. r =1+ 1:

If N, =1, then by (11) ¢ € X. Since N,,, = 1, if it were the case that p =i +1,
then we would necessarily have that ¢ € [i] — X, giving us a contradiction. Thus
p < i, and so N, = 1. Since ¢ € X, by (10) there exists a v < ¢ such that
M, ;1 N [Ngw = 1V g = v]. Since we just showed that N,, = 1, by transitivity
of N we have that N,, = 1, and so p € X as well. Using (11) we have that
Ny, =1, and we are done.

Thus we have POSET(N’). It remains to show that N’ is a simple order.
Suppose that p,q are distinct elements; if p,q < 4, then since IV is a simple
order, Npg =1V Ny, = 1 and so N, = 1V N, = 1. As they are not equal by
assumption, the only other possibility is that one of them, say p, is ¢ + 1. There
are two possibilities: ¢ € X or ¢ € [i] — X. In the first case we have N,, = 1
(by (11) and in the second case we have N,, = 1 (also by (11)).

This gives us JLA F SIMPLE(N') and finishes the proof of lemma 4.

Lemma 3 and 4 give us (12), which finishes the proof of the induction step,
and gives us (9). Finally, invoking X'Z-induction we obtain (8), from which the
main result follows:

Theorem 2. JLA  SZPILRAIN(M).
Corollary 2. P/poly Frege proves Szpilrajn’s Theorem.

Proof. Following [SC04] we know that LA over Z, can be translated into P/poly
Frege.

5 LA over rings

In this section we define LA in more detail, following [SC04]. We modify some
definitions to suit the purpose of this paper.

The logical theory LA is strong enough to prove the ring properties of ma-
trices such as A(BC) = (AB)C, A+ B = B + A, but weak enough so that the
theorems of LA translate into propositional tautologies with short Frege proofs.
The nature of the translation depends on fixing an underlying ring. In this pa-
per we are concerned with the ring Z, for translating theorems of LA, (and
obtaining TC® Frege proofs), and the ring Zs, for translating theorems of ILA
(and obtaining P/poly Frege proofs).

Our theory has three sorts of object: indices (i.e., natural numbers), ring
elements, and matrices, where the corresponding variables are denoted 1, j, k, ...;
a,b,c,...;and A, B, C, ..., respectively. The semantic assumes that objects of type
ring are from a fixed but arbitrary ring (for the purpose of this paper we are
really only interested in Zs and Z), and objects of type matrix have entries from
that ring.



Terms and formulas are built from the following function and predicate sym-
bols, which together comprise the language Ly,a:

0index, 1indeX7 +indexy *index; —indexs diV, rem,
—1
Oringy 11ring,‘7 ~+ring; *ring, —ring; ¥, C, €, X, (13)

<index, =index; =ring; —matrix; condipdex, COndring

The intended meaning should be clear, except in the case of —j gex, cut-off
subtraction, defined as i —j = 0 if ¢ < j. For a matrix A: r(A),c(A) are the
numbers of rows and columns in A, e(A,4,j) is the ring element A;; (where
A =0ifi=00rj=0o0ri>r(A) orj>c(Ad)), Z(A) is the sum of the
elements in A. Also cond(a, t1,t2) is interpreted if « then t; else to, where o
is a formula all of whose atomic sub-formulas have the form m < n or m = n,
where m, n are terms of type index, and t1, t2 are terms either both of type index
or both of type ring. The subscripts index, ring, ad matrix are usually omitted,
since they ought to be clear from the context.

We use n, m for terms of type index, ¢, u for terms of type ring, and T, U for
terms of type matrix. Terms of all three types are constructed from variables and
the symbols above in the usual way, except that terms of type matrix are either
variables A, B,C, ... or A-terms Aij(m,n,t). Here i and j are variables of type
index bound by the A operator, intended to range over the rows and columns of
the matrix. Also m,n are terms of type index not containing 4, j (representing
the numbers of rows and columns of the matrix) and ¢ is a term of type ring
(representing the matrix element in position (i, j)).

Atomic formulas have the forms m < n,m = n,t = u,T = U, where the
three occurrences of = formally have subscripts indexsring smatrix, respectively.
General formulas are built from atomic formulas using the propositional connec-
tives =, V, A and quantifiers V, 3.

5.1 Axioms and rules of LA

For each axiom listed below, every legal substitution of terms for free variables is
an axiom of LA. Note that in a A term Aij{m,n,t) the variables 7, j are bound.
Substitution instances must respect the usual rules which prevent free variables
from being caught by the binding operator \ij. The bound variables ¢, j may be
renamed to any new distinct pair of variables.

Equality Axioms These are the usual equality axioms, generalized to apply to
the three-sorted theory LA. Here = can be any of the three equality symbols,
x,y, z are variables of any of the three sorts (as long as the formulas are syn-
tactically correct). In A4, the symbol f can be any of the non-constant function
symbols of LA. However A5 applies only to <, since this in the only predicate
symbol of LA other than =.

Al z==x



A2 z=y—y==x

A3 (z=yAhy=2z2)—zx==z2

A4 =Yy Tn = Yn — fxlxn = fylyn
A5 iy =1, = 2,01 Sd2 = j1 < o

Axioms for indices These are the axioms that govern the behavior of index
elements. The index elements are used to access the entries of matrices, and so
we need to define some basic number theoretic operations.

A6 i+1#0

A7 ix(J+1)=(i*xj)+1

A8 i+l=j+1—=i=j

A9 i<itj

Al10 i +0=1

All i<jAj<i

Al12 i+ (j+1)=(t+j)+1
A13 [i<jAj<i]—i=]

Al4 ix0=0

Al5 [i<jNitk=jl—>j—i=k
Al16 ~(i<j)—j—i=0

A17 [a — cond(w,i,7) =i] A [~ — cond(«, 4, j) = j]

Axioms for a ring These are the axioms that govern the behavior for ring
elements; addition and multiplication, as well as additive inverses. We do not
need multiplicative inverses.

Al18 0#1Aa+0=a

Al19 a+(—a)=0

A20 lxa=a

A21 a+b=b+a

A22 axb=bxa

A23 a+(b+c)=(a+b)+c

A24 ax(bxc)=(axb)xc

A25 ax(b+c)=axb+axc

A26 [a — cond(w,a,b) = a] A [~a — cond(w, a,b) = b

Axioms for matrices Axiom A27 states that e(A,4,j) is zero when i,j are
outside the size of A. Axiom A28 defines the behavior of constructed matrices.
Axioms A29-A32 define the function X' recursively by first defining it for row
vectors, then column vectors (A" := Xij(c(A),r(A), A;;)), and then in general
using the decomposition (14). Finally, axiom A34 takes care of empty matrices.

A27 (i=0Vr(A) <iVj=0Vc(A)<j)—elAij) =0
A28 r(Aij(m,n,t)) =mAchij(m,n,t)) =nA[l<iAi<mAl<jAj<n]
— e(Aij(m,n,t),i,j) =t



A29 £(A) = 1, c(A) = 1 — T(A) = e(4,1,1)
A30r(A)=1A1 A) Y(A) = X(Nij(l,c(A) — I,Aij>) + Alc(A)
A3l c(A) =1

M(A) i= Aij(r(A) — 1,c(A) — 1, e(A,i+ 1,5 + 1)).

Rules for LA In addition to all the axioms just presented, LA has two rules:
matrix equality and induction.

Matrix equality rule
From the three premises:

1. e(T,i,j) = e(U,14, )
2. x(T) =x(U)
3. ¢(T) =c(U)

we conclude T'=U.

The only restriction is that the variables i, 7 may not occur free in T' = U,
other than that, T and U can be arbitrary matrix terms. Our semantics implies
that 4 and j are implicitly universally quantified in the top formula. The rule
allows us to conclude T' = U, provided that T and U have the same numbers of
rows and columns, and corresponding entries are equal.

Induction rule
a(i) = ali+1)

a(0) = a(n)

Here (i) is any formula, n is any term of type index, and «(n) indicates n is
substituted for free occurrences of 7 in «(i). (Similarly for a(0).)

This completes the description of LA. We finish this section by observing
the substitution property in the lemma below. We say that a formula S’ of
LA is a substitution instance of a formula S of LA provided that S’ results by
substituting terms for free variables of S. Of course each term must have the
same sort as the variable it replaces, and bound variables must be renamed as
appropriate.

Lemma 5. FEvery substitution instance of a theorem of LA is a theorem of LA.

This follows by straightforward induction on LA proofs. The base case follows
from the fact that every substitution instance of an LA axiom is an LA axiom.



6 Conclusion and future work

We presented two different proofs of the finite version of Szpilrajn’s theorem—a
theorem at the foundation of concurrency theory. One proof uses concepts of a
very low complexity, TC", and requires reasoning over ordered rings, Z, while
the second proof uses concepts of higher complexity, P, but over the simplest of
rings: Zo = {0,1}.

A natural next step in this line of research is to formalize the reasoning in
chapters 9 and 10 of [Lé08]. The ideas contained in those chapters, namely traces
and comtraces, and the relational representation of generalized comtraces, are
motivated by Szpilrajn’s theorem, and more importantly by its proofs. It would
be interesting to formalize those ideas along the lines presented in this paper.
Hopefully, new algorithms of low complexity can be extracted from those proofs,
using variants of the witnessing theorem.
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