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Abstract. This paper is concerned with the complexity of computing
winning strategies for poset games. While it is reasonably clear that such
strategies can be computed in PSPACE, we give a simple proof of this
fact by a reduction to the game of geography. We also show how to
formalize the reasoning about poset games in Skelley’s theory W1

1 for
PSPACE reasoning. We conclude that W1

1 can use the “strategy stealing
argument” to prove that in poset games with a supremum the first player
always has a winning strategy.
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1 Introduction

We study the complexity of computing winning strategies for poset games; these
are two player games on finite partially ordered sets that were already studied
in 1902 by [2]. The two players take turns selecting an element x from the poset
and deleting all the elements y such that x ≤ y. The player who has to play an
empty set loses. Our running example of a poset game is Chomp, first proposed
by Gale ([1]) in 1974. This is a curious game because it is very easy to give
a proof of existence of a winning strategy for the first player, but no efficient
method for computing the actual strategy exists.

Given a poset game, in order to give a complexity-theoretic framework, we
consider the language (i.e., set) of those “board configurations” from which the
first player has a winning strategy. Although it is reasonably clear that such
a language is in PSPACE—as the answer can be determined by evaluating a
quantified boolean formula—we give a simple and direct proof of this fact by
reducing general poset games to the game of geography (known to be PSPACE
complete from [7]).

We also show how to reason about poset games in Skelley’s third-order logical
theory W1

1 (introduced in [8]) for PSPACE reasoning. Since, as we show, W1
1 can

formalize the “strategy-stealing argument,” W1
1 proves that the first player has

a winning strategy in the poset game Chomp.



More than anything, this is an invitation to consider the problem whether
poset games are PSPACE complete, and show under what conditions computing
a winning strategy can be done efficiently.

The paper is organized as follows: in section 2 we give some background
on posets, poset games—and, in particular, the poset game Chomp—explain
the “strategy-stealing argument,” and remind the reader about PSPACE and
completeness. In section 3 we give a reduction from poset games to geography
and thereby show that computing a winning strategy for poset games can be
done in PSPACE. In section 4 we show how to formalize the “strategy-stealing
argument” in W1

1 and use it to show that W1
1 proves that in Chomp the first

player has a winning strategy; this gives another proof (by a standard witnessing
argument) that this winning strategy can be computed in PSPACE. We end with
two sections discussing open problems and with acknowledgments.

2 Background

A partially ordered set (a poset) is a set U together with an ordering relation ≺
on its elements, where ≺ is a subset of U × U . The relation ≺ must satisfy the
following conditions: (1) if a ≺ b, then b 6≺ a (anti-symmetry), and (2) if a ≺ b
and b ≺ c, then a ≺ c (transitivity). Not all elements are necessarily comparable,
in that there may be elements a, b such that a 6= b, where a 6≺ b and b 6≺ a. When
two elements are incomparable, we write a||b. We are going to use � in practice,
where a � b ⇐⇒ [a ≺ b ∨ a = b].

Given a poset (U,�), a poset game (A,�) on (U,�) is played as follows:
at first A := U . Then, two players take turns making moves. On each move, a
player picks an element x ∈ A, and removes all the elements y ∈ A such that
x � y. More precisely, let Sx = {y ∈ A|x � y}. Then, after choosing x we reduce
the universe to be A − Sx. The player who is unable to move because on their
turn A = ∅, loses.

Our example of a poset game is Chomp, first detailed by Gale in [1] (but there
are other Chomp games such as Nim, Hackendot or Hackenbush—see [2–4]). A
game of Chomp is played on a “chocolate bar” divided into individual squares,
with the bottom-left square being “poisoned.” This is usually represented by a
grid of m rows and n columns, with the poisoned square residing at position
(1, 1) (see Fig. 1). Two players take turns breaking off pieces of the chocolate by
selecting a square (i, j) from among the remaining squares and deleting all the
squares (k, l) such that i ≤ k and j ≤ l. The game ends when a player selects
the poisoned square—the player who does so loses.

To transform Chomp to a poset game we delete the lower-left square, so now
the player who ends up without any chocolate to chomp loses. Define

Barm,n := {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n} − {(1, 1)},
(i, j) � (k, l) ⇐⇒ [(i ≤ k ∧ j < l) ∨ (i < k ∧ j ≤ l)].

Note that (i, j) = (k, l) iff i = k and k = l, and it can be checked that ≺ is a
partial order. Thus, for any m,n we have the poset game (Barm,n,�).
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Fig. 1. A 4× 5 Chomp grid. The ‘X’ denotes the poisoned square.

It is surprisingly easy to show, by a strategy-stealing argument, that player 1
has a winning strategy (no matter what the initial parameters m,n are, as long
as it is not the case that m = n = 1). This argument works as follows: say that
player 2 has a winning strategy (player 1 or 2 always wins, i.e., there can be no
draw, and we show in theorem 1 that W1

1 can prove this). Then player 1 selects
the top-left square (i.e., square (m,n)), and player 2 responds by selecting some
square (i, j). But for all i, j it is always the case that i ≤ m and j ≤ n. Therefore,
player 1 could have chosen (i, j) to begin with; in either case, the outcome is the
same board configuration, but the turns of the players have been reversed. So
loser becomes winner and vice versa.

Note that the strategy-stealing argument can be applied to any poset game
with a supremum (and where |U | > 1). But this argument is non-constructive,
in the sense that it does not tell us what the strategy is. In the case of Chomp,
it is an open question whether a winning strategy for player 1 can be computed
in polynomial time. In section 3 we show, with a short and slick reduction to
geography, that the existence of a winning strategy for player 1, for any poset
game, can be computed in polynomial space. Therefore, using a standard reduc-
tion of a search problem to its decision problem, we can actually compute the
strategy (if it exists) in polynomial space.

Recall that PSPACE is the class of languages decidable on a Turing machine in
polynomial space in the length of the input. A language L is PSPACE complete if
it is in PSPACE, and for every language L′ in PSPACE, there exists a polynomial
time function f : Σ∗ −→ Σ∗, such that x ∈ L′ ⇐⇒ f(x) ∈ L. It is well known
that many two-player games can be decided in PSPACE. See [5] or [6] for more
background on PSPACE.

3 From poset games to geography

In this section we present a polynomial time reduction from poset games to
geography and thereby show that poset games are in PSPACE. In order to study
the complexity of poset games and their reductions, we assume that the posets
are finite (i.e., U is finite). However, the reductions still works on infinite posets,
and yields infinite instances of the game of geography.

The game of geography is a well known game in complexity, and it is often
used as a paradigmatic example of a PSPACE complete language. As was men-
tioned in the introduction, its PSPACE completeness was shown for the first time
in [7]—for a more recent presentation, see [5, Theorem 19.3] or [6, Theorem 8.14].



Geography is played as follows: a directed graph is given (it does not have
to be acyclic), and a starting node s is specified. The first player selects s, then
the second player selects an outgoing edge of s, and takes that edge to another
node. The two players then traverse the graph, alternatively selecting outgoing
edges of the current node. The player who is forced to revisit a node, or has no
outgoing edges to select from, loses.

Define the following languages over {0, 1}:

Posetgame = {〈(U,�)〉 : player 1 has a winning strategy},
Geography = {〈(G = (V,E), s)〉 : player 1 has a winning strategy}.

Here 〈(U,�)〉 and 〈(G = (V,E), s)〉 are the encodings of the poset (U,�) and the
graph (G = (V,E), s), respectively. To be more specific, let 〈(U,�)〉 be a string
over {0, 1}, of length |U |2, consisting of the rows of a matrix with entries from
{0, 1}, where entry (i, j) is a 1 iff i � j. Let 〈(G = (V,E), s)〉 be the adjacency
matrix of G, with the understanding that node s is always 1, also presented as
a sequence of rows, giving a string of length |V |2. (Note that in either case, a
proper input is a string which is a perfect square, so the Turing machine can
easily figure out the length of the rows.)

Since s (i.e., node 1) is the specified starting node for the game of geography
on the graph G, the game starts by player 1 selecting node s, then player 2
selects an edge out of s to a new node n. This is in contrast to poset games,
where any element x ∈ U can be selected on the first turn.

We show that Posetgame can be reduced to Geography in logarithmic
space (and hence in polynomial time), and conclude that Posetgame is in
PSPACE. Note that Posetgame is a decision problem; the corresponding search
problem is actually finding the winning strategy. This can be done with a stan-
dard (polytime) reduction of a search problem to its decision problem. Thus,
computing winning strategies for poset games can also be done in PSPACE.

The following algorithm shows how to transform 〈(U,�)〉 to 〈(G = (V,E), s)〉.
Reduction Algorithm: For every element x ∈ U there corresponds a gadget

of nodes g(x) in G; see Fig. 2. The gadget is a subgraph consisting of the following
nodes and edges:

g(x) := ({x, x1, x2, x3, x4}, {(x, x2), (x2, x3), (x2, x4), (x4, x1), (x1, x)}).

We call the nodes {x1, x2, x3, x4} auxiliary nodes.
We say that there is a (directed) connection from gadget g(y) to gadget g(x),

and write [g(y), g(x)], if there are two (directed) edges from y3 (in the gadget
for y) to x and x1 (in the gadget for x). Again, see Fig. 2.

We connect the gadgets as follows: if x ≺ y then we add the connection
[g(y), g(x)]. If x||y (i.e., x, y are incomparable), then we add both connections
[g(x), g(y)] and [g(y), g(x)].

Finally, we add two more nodes, s, s′, with an edge from s to s′, and edges
from s′ to every non-auxiliary node. This ends the description of the reduction
algorithm.
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Fig. 2. Reduction gadget: each x ∈ U is represented by five nodes in G.

The idea of the gadgets is to simulate the poset game by moving to gadget
g(x) whenever x was selected in U . The gadgets help us to keep track of A: every
time player 2 makes a move to a gadget, player 1 can challenge that move. What
is this challenge? It is player 1’s claim that player 2 moved to a gadget g(y) such
that x ≺ y and x has already been played. We must also ensure that challenging
a legal move, or even one’s own move, yields no benefit to the challenger. These
challenges ensure that players simulate the poset game correctly.

The nodes s, s′ are required because in a poset game (U,�) we can select
any x ∈ U to start the game, whereas in geography the first player must select
node s on their first turn. To emulate the free choice of the poset game, we have
s as the initial node, which means player 2 must move to s′, then player 1 can
select any non-auxiliary node in V . It is clear that this simple construction can
be carried out in logarithmic space: |V | = 5|U |+ 2 and computing E from � is
straightforward.

It is obvious that the geography game on G mirrors a poset game on (U,�) if
it is played correctly, in the sense that we never go to a node that corresponds to
an element in U that was removed at a previous step. As mentioned previously,
the auxiliary nodes enable players to challenge each other’s moves. We examine
below what occurs during these challenges.

Legitimate Challenge: Here player 2 moves to a node y where x � y and
node x was visited in the past. This means that player 2 moves to a y /∈ A. Then
player 1 challenges player 2 as follows: he moves from y to the challenging node
x1 of x. Player 2 is now forced to revisit x, and loses. This ensures that players
can only move to legal nodes.

False Challenge: What if a player challenges a legal move? That is, if
player 2 moved to node y which was in A? Then the following happens: player 1
challenges player 2 by moving to node x1, and now player 2 moves to x and
nothing happens as x has not been visited before. Then player 1 is forced to



move to x2, and then player 2 moves to x4, and player 1 is now forced to move
to x1, and thereby revisit a node, and player 1 loses. This not only shows that
challenges to legal nodes yield no benefit, but also challenges to incomparable
nodes yield no benefit.

Self-Challenge: The final type of challenge occurs when a player challenges
their own move. Suppose player 2 arrives at node x without a challenge, i.e.,
directly through one of the incoming edges, then player 1 moves to x2. Now
player 2 has a choice to move to x4, as if player 2 were going to do a counter-
challenge. If indeed player 2 moves to x4, then player 1 moves to x1, and player
2 is forced to revisit node x, and player 2 loses. Thus, no gains are made if a
player challenges their own move.

Therefore, if player 2 arrives at node x directly (without a challenge) he must
continue (after the move of player 1) from x2 to x3, and then player 1 is free to
select an outgoing edge from x3 to another node z.

The above shows that there is a (correct) polynomial time reduction from
Posetgame to Geography. As Geography itself is in PSPACE, this gives us
that Posetgame ∈ PSPACE as well. Of course, this was expected as the exis-
tence of a winning strategy for a given “board configuration” can be expressed
as the satisfiability of a quantified Boolean formula. On the other hand, we have
given a simple and direct proof by reducing to Geography.

The interesting open questions are whether the language Posetgame is
PSPACE-complete, and to characterize the poset games for which a winning
strategy can be computed efficiently. There are a few instances of starting config-
urations for which this can be done; for example, consider a chomp configuration
in the shape of an “L.” That is, we have the first column and last row, with their
intersection containing the poisoned square. Then as long as the two arms of the
“L” have a different length, the first player has the following (simple) winning
strategy: the first player chomps the longer arm to be the same length as the
shorter, and then copies symmetrically the moves of the second player on the
opposite arm, to force the second player to be left with the poisoned square.

For further instances for which it is possible to compute a winning strategy
see [18], where it is shown how to play when the chocolate bar has at most
three rows (with some restrictions), and [21], where the Poset Game Periodicity
Theorem, regarding certain winning configurations. It should be noted, however,
that we seem to be very far from knowing a general strategy for winning Chomp.
This is what makes Chomp so curious: it is easy to establish that player 1 can
win; what is computationally difficult is to establish how.

4 Formalizing strategy stealing in W1
1

In this section we provide an alternative proof of the existence of a PSPACE
winning strategy for player 1 in the game of Chomp: we formalize the strategy
stealing argument using Skelley’s theory W1

1 ([8]). In fact, our approach works
for any poset game to which the strategy stealing argument may be applied,
namely, any poset game with a supremum. We hope that a program consisting



in formalizing proofs of existence of winning strategies in weaker and weaker
fragments of Bounded Arithmetic can yield better algorithms (i.e., algorithms
of lower complexity) for computing winning strategies for poset games.

W1
1 is a logical theory that captures PSPACE reasoning. It extends V1 (which

captures polynomial time, the class P) presented by Cook and Nguyen in [9],
but W1

1 is designed to reason over sets of strings, which themselves encode
sets of sets of elements. W1

1 is a three-sorted (“third-order”) predicate calculus
with free and bound variables of three sorts (the bound variables are given in
parentheses): a, b, c, . . . (x, y, z, . . .) for the first sort, intended to denote natural
numbers encoded in unary, A,B,C, . . . (X,Y, Z, . . .) for the second sort, intended
to denote finite binary strings, and A,B,C, . . . (X,Y,Z, . . .) for the third sort,
intended to denote sets of strings, and in particular functions from strings to
strings.

The third order language we use is L3
A = [0, 1,+, ·, |·|2,∈2,∈3,≤,=] where 0, 1

are numbers, +, · is addition and multiplication of numbers, | · |2 denotes length
of strings (note that size of third sort objects is not there). We abbreviate i ∈2 X
and X ∈3 X as X(i) and X(X), respectively. (we may omit the subscript 2 or 3

if it is clear from the context which type it is). Finally, ≤,= are used to compare
numbers. There is no equality symbol for the second and third sort; equality
for these objects can be defined with the symbols already in L3

A; for example,
equality of strings, X = Y , can be stated as [|X| = |Y |∧∀i < |X|(X(i)↔ Y (i))].

Table 1. The set of axioms 2-BASIC.

B1. x + 1 6= 0 B7. (x ≤ y ∧ y ≤ x)→ x = y
B2. (x + 1 = y + 1)→ x = y B8. x ≤ x + y
B3. x + 0 = x B9. 0 ≤ x
B4. x + (y + 1) = (x + y) + 1 B10. x ≤ y ∨ y ≤ x
B5. x× 0 = 0 B11. x ≤ y ↔ x < y + 1
B6. x× (y + 1) = (x× y) + x B12. x 6= 0→ ∃y ≤ x(y + 1 = x)
L1. X(y)→ y < |X| L2. y + 1 = |X| → X(y)

We let ΣB
i be the set of formulas over L3

A containing formulas with arbitrarily
many bounded first and second-order quantifiers, and exactly i alternations of
third-order quantifiers (when put in prenex form). The comprehension axiom
schemes are the following:(

∃Y ≤ t
(
a,A

)) (
∀z ≤ s

(
a,A

)) [
φ

(
a,A,A, z

)
↔ Y (z)

]
, ΣB

0 -2COMP

(∃Y)
(
∀Z ≤ s

(
a,A

)) [
φ

(
a,A,A, Z

)
↔ Y (Z)

]
. ΣB

0 -3COMP

In each of these schemes φ ∈ ΣB
0 is subject to the restriction that neither Y nor

Y (as appropriate) occurs free in φ.
The theory W1

1 is axiomatized by B1–B12 and L1,L2, listed in table 1, as
well as the two comprehension axiom schemes ΣB

0 -2COMP and ΣB
0 -3COMP. The



reader is directed once more to the source, [8], for details on W1
1; we are going to

limit ourselves to the use of the witnessing theorem for W1
1 ([8, theorem 4]) in the

following fashion. The third order elements can be used to represent functions:
S(C1) = C2 (formally, 〈C1, C2〉 ∈ S). If W1

1 ` ∃Sα, where α ∈ ΣB
0 , and S

represent a function, then we can compute S in polynomial space (in |C1|).
Thus, our goal is now to show that W1

1 proves the existence of a winning
strategy S for player 1 in chomp. We start with a neat way of encoding board
configurations of chomp.

Following a suggestion of [10], a chomp configuration on an n×m board can
be represented with a binary string X ∈ {0, 1}n+m, where there are exactly n
ones and m zeros. In this scheme, a board configuration can be seen as a path
from the upper-left corner to the lower-right corner (the poisoned square is in
the lower-left corner), where we are only allowed to move right or down. Reading
the string left to right, every time we see a 0 we move right, and every time we
see a 1 we move down.

The original configuration according to this representation is 000000011111,
and the final configuration is the string with all the 1s moved to the left. Whoever
moves the game into the final configuration loses. An example of two intermediate
configurations is given in Fig. 3.

011001000101 011011000001

Fig. 3. The board on the right is the result of chomping off the squares with the X’s
from the board on the left. The corresponding string representations are given below
each board.

Each move is a “chomp,” which consists in picking a square, from among
the surviving squares (i.e., to the left of the thick line in Fig. 3), and chomping
off all the squares to the right and up. This means, that each move of chomp
consists in moving one or more 1s, one or more positions to the left, without
ever “overtaking” the 1s in front.

All this can be expressed in the language of W1
1. We are going to provide a

formula Φ(X,n,m) which will assert that X is a valid chomp game on an n×m
board. Here X is a long string, consisting of n ·m many segments (the longest
possible chomp game, where each player bites off just one square at a time) of
length (n+m) each. We denote the i-th segment by X [i] (this can be defined in
W1

1; see [9]); Φ is the conjunction of three formulas: φinit, φfinal, and φmove.



φinit asserts that X [1] is the initial configuration, i.e.,

φinit(X,n,m) := ∀i ≤ (n+m)((i > m)→ X [1](i) = 1),

φfinal asserts that X [n·m] is the final configuration:

φfinal(X,n,m) := ∀i ≤ (n+m)((i > n)→ X [n·m](i) = 0),

and φmove asserts that each segment of X can be obtained from a legal move
applied to the previous segment (or simply by copying the last segment—this
will be needed for games that last less than n ·m many moves):

φmove(X,n,m) := ∀i < (n ·m)(X [i] “yields” X [i+1]).

The work, of course, is in defining the “yields,” which we proceed to do next.
Note that for the remainder of this paper we will “invert” our coordinate system
for Chomp configurations, as now the “origin” (1, 1) is the top-right square,
while (m,n) is the bottom-right square.

First, notice that in our string representation of configurations, a 0 occurring
to the left of at least a single 1 corresponds to a column of playable squares, the
height of which is the number of 1s to the right of the 0. Thus, a square (j, k)
can be played on X [i] if and only if, in reading X [i] from left to right, the kth 0
is encountered before the jth 1.

Using the function numones from [9] we can count the number of 1s in any
sub-segment of a string X. Thus, we can define the following two functions: F0

and F1, where
F0(a, b,X) = c,

if the earliest position in X where we see b zeros, starting in position a and going
right, is position c. Analogously, we define F1(a, b,X) = c but we count ones
instead. There are details to be taken care of, like how to define the function
when there is no such c (e.g., if b > |X|). But taking care of those details is
routine, as we have a powerful language at our disposal, and so we omit it.

Lemma 1. A square (j, k) can be played on a configuration X [i] if and only if

F0(1, k,X [i]) < F1(1, j,X [i]). (ψ1)

Proof. We will argue by contradiction; suppose square (j, k) can be played on
configuration X [i], but F0(1, k,X [i]) > F1(1, j,X [i]).

We cannot have F0(1, k,X [i]) = F1(1, j,X [i]) as a position in X [i] cannot
be simultaneously 0 and 1. This means that the kth 0 occurs after that jth 1,
which in turn means that row j terminated before column k. Thus, there are no
squares beyond column k−1 in row j, so square (i, j) does not exist in X [i], and
cannot be played. ut

Now that we can identify playable squares, we need to determine the con-
figurations which result from playing these squares. In general, playing a square
(j, k) shifts at least a single 1 behind the 0 corresponding to the move, to delimit



the row being shortened or eliminated. If a move affects multiple rows, then mul-
tiple 1s will be shifted over. In order to figure out the substring of X which is
affected by playing a square (j, k), we calculate two values p and q which mark
the beginning and ending of the substring (inclusive):

p = F0(1, k − 1, X [i]) + 1, (ψ2)

q = F1(p, j,X [i]). (ψ3)

Intuitively, (p − 1) marks the location of the (k − 1)th 0, so p forms the left
boundary of the substring, and q is the position of X [i] in which we have seen j 1s
starting from p, so it designates the right boundary. Finally, to arrive at the new
configuration X [i+1] we replace positions p through q in X [i] with 1j0(q−p−k+1),
i.e., the number of 1s corresponding to the number of rows affected, then the
number of 0s indicating the new difference in row lengths.

In order to express this new substring as a formula we break it down into
several sub-formulas. First, positions that are outside the range of p and q remain
unchanged:

(r < p)→ (X [i+1](r) = X [i](r)), (ψ4)

(r > q)→ (X [i+1](r) = X [i](r)). (ψ5)

Next, for positions between p and q we assign values based on their placement
relative to the 0 associated with the move. Positions before the 0 hold 1s affected
by the move, while positions after contain 0s.

(r < p+ j)→ (X [i+1](r) = 1), (ψ6)

(r ≥ p+ j)→ (X [i+1](r) = 0), (ψ7)
(p ≤ r ≤ q)→ (ψ6 ∧ ψ7). (ψ8)

We now put formulas ψ4, ψ5 and ψ8 together to create one formula describing
the changes between configurations X [i] and X [i+1]:

(∀r ≤ |X|)(ψ4 ∧ ψ5 ∧ ψ8). (ψ9)

Finally, we combine formulas ψ2 and ψ3 with existential quantification to
describe the existence of valid p and q:

(∃p < |X [i]|)(∃q ≤ |X [i]|)(ψ2 ∧ ψ3) (ψ10)

Thus, if we take the formula ψ9 for describing legal changes between configu-
rations and combine it with formula ψ1 for the existence of a playable square, as
well as ψ10 for the existence of values for p and q, we have the following formula
for “yields”:

(∃j ≤ |X [i]|)(∃k ≤ |X [i]|) [ψ1 ∧ ψ10 ∧ ψ9] .

Having designed the formula Φ(X,n,m)—and note that Φ is a ΣB
0 —we can

now state and prove in W1
1 properties of a winning strategy.



A winning strategy in chomp is just a function S which maps configurations
to configurations. If a player has a winning strategy, and plays by S, then that
player wins. The fact that player 1 in chomp has a winning strategy can be
stated as follows: ∀X, where |X| ≤ nm(n + m), and Φ(X,n,m) (i.e., X is a
valid history of a chomp game), if ∀i, where i < (nm/2), it is the case that
S(X [2i+1]) = X [2i+2], then player 2 eats the poisoned square.

We want to say that given any configuration C as an initial configuration,
either player 1 or player 2 has a winning strategy. This can be stated as follows:

∀C∃S[WinP1(S, C) ∨WinP2(S, C)], (1)

where WinPi(S, C) (i ∈ {0, 1}, and ı̄ := 1 − i) asserts that if player i plays by
strategy S, then player i wins.

We now define the formula WinPi
as follows: ∀Y (where Y is a sequence

of moves of player ı̄), if it is player i’s move on configuration C, player i plays
C ′ = S(C), and the two players play a valid game (which can be ensured with
the formula Φ), then player ı̄ will end up with the poisoned square. Note that (1)
is a ΣB

1 formula since the “∀C” is bounded by the size of the chomp grid—we
omit the bound for clarity, and WinPi is a ΣB

0 formula.

Theorem 1. W1
1 ` ∀C∃S[WinP1(S, C) ∨WinP2(S, C)].

Proof. We prove it by induction on |C|, where we let |C| be the number of
squares in configuration C (in particular, if C is just the poisoned square, then
|C| = 1). Note that we do not have induction on the length of strings in W1

1 as
is, however induction is derivable from the comprehension axioms ΣB

0 -2COMP—
see [9] where this is done in the context of the theory V1.

Basis case: if |C| = 1, then P1 loses, so in particular ∃SWinP2(S, C) holds; in
fact any S is a witness here.

For the induction step, suppose that the claim holds for all C such that
|C| ≤ n. Consider some C ′ such that |C ′| = n+ 1. We want to show that

∃S[WinP1(S, C ′) ∨WinP2(S, C ′)]. (2)

Let C ′′ be the result of P1 making a move; since P1 must select some square,
it follows that |C ′′| < |C ′|, and so we can apply the induction hypothesis to it;
in other words, ∃SWinP1(S, C ′′) ∨ ∃SWinP2(S, C ′′) (we used the fact here that
∃x(α ∨ β) is equivalent to ∃xα ∨ ∃xβ).

If no matter what first move P1 makes (to obtain C ′′) it is always the case
that ∃SWinP2(S, C ′′), then we can conclude that ∃SWinP2(S, C ′). If, on the
other hand, for some move of P1, it is the case that ∃SWinP1(S, C ′′), then define
(using comprehension) S′ to be the same as S, except S′(C ′) = C ′′, and we can
conclude that WinP1(S′, C ′), and so ∃SWinP1(S, C ′). Therefore, in either case
we obtain (2). ut

Once we know that W1
1 proves (1), i.e., that W1

1 can show that either player 1
or player 2 has a winning strategy, then we can show that W1

1 proves that P1 has
a winning strategy for the full rectangle. It is in this theorem that we formalize
the strategy-stealing argument in W1

1.



Theorem 2. W1
1 ` “C is full rectangle”→ ∃SWinP1(S, C).

Proof. Suppose that C is a full rectangle (an r × c chomp grid). We know that
either P1 or P2 has a winning strategy. Suppose that it is P2; so P2 (playing
by some S) will win no matter what first move P1 makes. So let P1 select the
top-right square (i.e., the square (r, c)), and let C ′ be the resulting configuration
(i.e., C ′ has all the squares except it has a dent in the top-right square).

Now P2 makes a move according to S, i.e., P2 plays to obtain C ′′ = S(C ′).
Now observe that whoever starts playing from configuration C ′′ loses, i.e., P1

loses on C ′′, (by our assumptions). Also observe that P1 could have played to
obtain C ′′ directly, since no matter what C ′′ is, it must contain the top-right
corner, as it is the supremum of the grid. Thus, by taking the strategy S′ to
be S(C) = C ′′ and otherwise S′ = S, P1 can win (note that we have used
comprehension to define S′ from S). Contradiction; so P2 cannot have a winning
strategy, and so P1 must have a winning strategy. ut

5 Open Problems

Theorem 2 may be redone for any poset game with a supremum. The question is:
can we prove the existence of winning strategies for such games in a theory weaker
than W1

1, and thereby conclude that the winning strategy can be computed in
a subclass of PSPACE?

Another possible direction is to classify poset games, using formal proofs of
existence of strategies, according to the complexity required for computing the
winning strategy.

An interesting open question is whether poset games are PSPACE complete.
It has been suggested by [11] that the game of Hex, which is known to be PSPACE
complete, would be a good candidate to reduce to Posetgame.
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