
LA, Permutations, and the Hajós Calculus

Michael Soltys

Department of Computing and Software, McMaster University
1280 Main Street West, Hamilton, Ontario L8S4K1, CANADA

soltys@mcmaster.ca

Abstract. LA is a simple and natural field independent system for
reasoning about matrices. We show that LA extended to contain a ma-
trix form of the pigeonhole principle is strong enough to prove a host
of matrix identities (so called “hard matrix identities” which are candi-
dates for separating Frege and extended Frege). LAP is LA with matrix
powering; we show that LAP extended with quantification over permu-
tations is strong enough to prove theorems such as the Cayley-Hamilton
Theorem. Furthermore, we show that LA extended with quantification
over permutations expresses NP graph-theoretic properties, and proves
the soundness of the Hajós calculus. A corollary is that a fragment of
Quantified Permutation Frege (a novel propositional proof system that
we introduce in this paper) is p-equivalent of extended Frege. Several
open problems are stated.

1 Introduction

The theory LA ([4, 1, 5]) is a field-independent logical theory for expressing and
proving matrix properties. LA proves all the ring properties of matrices (e.g.,
A(BC) = (AB)C). In this paper, we restrict LA to the two element field GF(2).

While LA is strong enough to prove all the ring properties of matrices, its
propositional proof complexity is low: all the theorems of LA translate into
AC0[2]-Frege proofs (see [5] for this result, and [2] for the background). LA
seems too weak to prove those universal matrix identities which require reasoning
about inverses, e.g., AB = I ⊃ BA = I (which we shall denote by IPn, the
Inversion Principle for n × n matrices), proposed by Cook as a candidate for
separating Frege and extended Frege (this separation remains an important open
problem of computer science).

In section 2 we present the theory LA, and several of its extensions. In
section 3 we show that LA strengthened to contain the matrix form of the
pigeonhole principle can prove IPn. It was shown in [6] that a feasible bounded-
depth Frege proof of IPn would lead to a feasible bounded-depth Frege proof
of the functional form of the pigeonhole principle, which is not possible, and
hence no feasible bounded depth proofs of IPn exist. Section 3 presents a weak
converse of that result.

In section 4 we give a proof of the Cayley-Hamilton Theorem (CHT) based
on induction over formulas with quantification over matrix permutations. This



improves the proof of the CHT given in [5], where we used quantification over
general matrices. We call the theory that formalized the new proof ∃PLAP (it
is defined in section 2).

In section 5 we show how to express NP and co-NP graph-theoretic prop-
erties in ∃PLA and ∀PLA. In section 6, we prove the soundness of the Hajós
calculus in ∀PLA. In section 7 we obtain a corollary which states that a fragment
of Quantified Permutation Frege—a novel proof system that we introduce in this
paper—is equivalent to extension Frege. We end with a list of open problems in
section 8.

2 The theory LA and its extensions

LA is a three-sorted logical theory designed for reasoning about matrices. It is
strong enough to prove all the ring properties of matrices (i.e., commutativity of
matrix addition, associativity of matrix products, etc.). The original definition
of LA had no quantification; in this paper we consider a conservative extension
with bounded index quantifiers. This allows us to express that a given matrix is
a permutation matrix. A full description of LA can be found in [4, 1, 5].

The three sorts are indices, field elements, and matrices. All the usual axioms
for equality are in LA. We have the usual axioms of Robinson’s arithmetic in
LA together with axioms defining div, rem, and cond, for elements of type index.
The axioms for field elements are the usual field axioms, plus the extra axiom:
a = 0 ∨ a = 1, since in this paper we are interested in LA restricted to the two
element field.

LA is closed under the usual Frege rules for propositional consequence, as
well as two special rules. Induction: α(i) ⊃ α(i + 1) � α(0) ⊃ α(n), note that
i must be an index variable which does not occur free on the right-hand side of
the rule. Equality: r(A) = r(B), c(A) = c(B), e(A, i, j) = e(B, i, j) � A = B,
where i, j are index variables that do not occur free on the right-hand side of
the rule.

The theorems of LA translate into families of propositional tautologies with
AC0[2]-Frege proofs ([5]). However, in this paper we use a (conservative) exten-
sion of LA which has bounded index quantifiers. Fortunately, it turns out that
the translation result still holds for the extended LA. We prove this in the next
lemma, which will be used in the proof of corollary 2.

Lemma 1. The theorems of LA-with-bounded-index-quantifiers, and over the
field of two elements, translate into families of tautologies with AC0[2]-Frege
proofs.

Proof. Let σ assign values to the index parameters of a formula, and let |σ| be
the largest value in the assignment σ. Let ‖α‖σ be the translation of α into a
family of propositional tautologies, parametrized by σ.

We know from [5], that if α is a formula over the language of LA, then,
there exists a polynomial pα and a constant dα such that for every σ, the size
of ‖α‖σ is bounded by pα(|σ|), and the depth of ‖α‖σ is bounded by dα. If α



is a true formula (in the standard model) then, the propositional formula ‖α‖σ

is a tautology. Furthermore, if α is a theorem of LA-without-index-quantifiers,
then, there exists a polynomial qα and a positive integer dα such that for every σ,
‖α‖σ has an AC0[2]-Frege derivation πα,σ such that the size of πα,σ is bounded
by qα(|σ|) and the depth of πα,σ is bounded by the constant dα.

Now consider LA formulas with bounded index quantifiers. We translate
quantifiers in the obvious manner:

‖(∃i ≤ n)α‖σ �−→
∨

1≤j≤‖n‖
‖α‖σ(i/j) ‖(∀i ≤ n)α‖σ �−→

∧
1≤j≤‖n‖

‖α‖σ(i/j)

where σ(i/j) is σ with i replaced by j. As in any LA proof the number of
quantifiers is bounded (and hence in particular the number of alternations of
quantifiers is bounded), we still have a bounded depth dα.

Furthermore, (Q1i1 ≤ n1)(Q2i2 ≤ n2) . . . (Qkik ≤ nk)α, where Qi ∈ {∀, ∃}
are alternating quantifiers, translates into a formula of size

O(‖n1‖σ · ‖n2‖σ · . . . · ‖nk‖σ · size(‖α‖σ)) (1)

where in any LA proof, the k is bounded by a constant, and so (1) is bounded
by some polynomial in |σ|.

The reason why we want bounded index quantification is that it allows us to
state that a given matrix P is a permutation matrix:

[r(P ) = c(P )] ∧ [(∀i ≤ r(P ))(∃!j ≤ c(P ))e(P, i, j) = 1] ∧ [PP t = I] (2)

(as we are dealing with a field of two elements, if e(P, i, j) �= 1, it follows that
e(P, i, j) = 0). Let (2) be abbreviated by Perm(P ). Then, (∃P ≤ n)α abbreviates
(∃P )[r(P ) ≤ n∧ c(P ) ≤ n∧Perm(P )∧α]. Similarly, (∀P ≤ n)α abbreviates the
same formula but with the last “∧” replaced by “⊃.”

Definition 1. Let ∃PLA denote the theory LA with bounded existential permu-
tation quantification; in particular, ∃PLA allows induction over formulas of the
form (∃P ≤ n)α. Let ∀PLA be an analogous theory, but with bounded universal
permutation quantification instead.

Definition 2. Let LAP be the theory LA with the matrix powering function P,
which is defined by the axioms: P(0, A) = I and P(n + 1, A) = P(n, A) ∗ A. Let
∃PLAP and ∀PLAP be the extensions of LAP that allow bounded existential,
respectively universal, permutation quantification.

3 Matrix Form of the Pigeonhole Principle

The functional form of the Pigeonhole Principle (PHP) states that an injec-
tive function from a finite set into itself must necessarily be surjective. Over the
field GF(2), there are 2n2

matrices of size n × n, and so the Matrix form of



the Pigeonhole Principle (MPHP) states that any injective function from
the set of n × n matrices (over a fixed finite field) into itself must be surjective.

The constructed terms of LA, i.e., terms of the form λij〈n, n, t〉, define func-
tions from matrices to matrices in a very natural way: A �−→ λij〈n, n, t(A)〉
is a function from the set of all matrices into the set of n × n matrices. If we
restrict A to be an n × n matrix, we obtain a function from the set of n × n
matrices into itself. This observation can be used to define the MPHP in LA,
with bounded matrix quantification. We can state that the above mapping is
injective as follows:

(∀X1 ≤ n)(∀X2 ≤ n)[λij〈n, n, t(X1)〉 = λij〈n, n, t(X2)〉 ⊃ X1 = X2] (3)

and we can state that it is surjective with:

(∀Y ≤ n)(∃X ≤ n)[λij〈n, n, t(X)〉 = Y ] (4)

Notice that we could have stated the above more generally for n × m matrices,
but the resulting formulas would be less readable, as we would have to state
(∀X1)[r(X1) ≤ n ∧ c(X1) ≤ m], instead of the handy (∀X1 ≤ n). In any case,
square matrices are sufficient for what we want, and rectangular matrices can
be padded to become square. We define MPHP to be the scheme of formulas
(3) ⊃ (4) for all n, t. We let LAMPHP be LA with the MPHP scheme.

Note that despite the fact that we employed bounded matrix quantification
to express MPHP in LA, the theory LAMPHP is still allowed to have induction
over formulas without quantifiers only.

An important reason why LA was designed in the first place was to study
the proof theoretic complexity of the derivations of hard matrix identities.
These are universal matrix identities, stated without quantifiers but implicitly
universally quantified, that seem to require reasoning about inverses to prove
them. The canonical example is IPn, which can be stated in LA as follows:

λij〈n, n, Σλkl〈1, n, AilBlj〉〉 = In ⊃ λij〈n, n, Σλkl〈1, n, BilAlj〉〉 = In (5)

where In is given by λij〈n, n, cond(i = j, 1, 0)〉.
It turns out that there are a host of matrix identities, that can be derived

with “basic” properties from the IPn, such as AB = I ∧ AC = I ⊃ B = C or
AB = I ⊃ (AC = 0 ⊃ C = 0) (see [5] for more examples). All these identities
are equivalent to IPn in LA (hence they can be shown equivalent with basic ring
properties). Let LAID be LA extended by some matrix identity ID (formally, ID
is any LA-formula). We say that ID is a hard matrix identity if LAIPn = LAID.

We can prove hard matrix identities in LA if at least one matrix is symmetric
(next lemma). It remains an open question whether LA can prove hard matrix
identities for general matrices, but we conjecture that it cannot. On the other
hand, LAP can prove hard matrix identities for triangular matrices, since LAP
proves the CHT for such matrices.

Lemma 2. LA proves hard matrix identities for symmetric matrices.



Proof. If at least one of A, B is symmetric (A = At or B = Bt), and AB = I,
then (AB)t = It = I. And (AB)t = BtAt. Suppose A is the symmetric one,
then BtA = I. Since AB = I implies in LA that A(BA− I) = 0, it follows that
BA − I = 0, so BA = I. Similar argument if B is the symmetric matrix.

In [6] we showed that IPn does not have a bounded depth Frege proof, since
we can derive from IPn (in bounded depth Frege) the functional form of the
PHP, which does not have a bounded depth Frege proof. Here we show a weak
converse of that result; LA with the matrix form of the pigeonhole principle can
prove IPn(over the field of two elements, and over any finite field).

Lemma 3. LAMPHP proves hard matrix identities.

Proof. Suppose that we want to prove AB = I ⊃ BA = I. Given AB = I, let
fA(X) := XA. The function fA can be defined in LA with a constructed term.
If XA = Y A, then (XA)B = (Y A)B, so by associativity X(AB) = Y (AB), so
X = Y . Hence fA is 1-1. By the PHP, (∃X)fA(X) = I, so XA = I. This gives us
a left-inverse for A. Since AB = I implies (in LA) that A(BA−I) = 0, it follows
from this that BA − I = 0, so BA = I. Since all the hard matrix identities can
be shown equivalent in LA (by definition), we have the result.

4 The Cayley-Hamilton Theorem

We show that the CHT can be proven in the theory ∃PLAP. In fact, ∀PLAP
also proves the CHT, as the two theories prove the same theorems in the language
of LAP. Many other universal properties of matrices follow from the CHT within
LAP (see [4, Chapter 5]), so we have their proofs in ∃PLAP as well.

The characteristic polynomial of a matrix A can be given as a term pA in the
language of LAP, using Berkowitz’s algorithm (see [4, Chapter 4]). Let pA(A)
be the LAP-term expressing the result of plugging A into its characteristic
polynomial. The CHT states that pA(A) = 0.

If A is a square matrix, define A[n] to be the n-th principal submatrix of A;
that is, A[1] is A with the first row and column removed, A[2] is A with the first
two rows and columns removed, and so on until A[r(A)−1] which is just the 1×1
matrix consisting of the bottom-right corner entry of A (here r(A) = c(A) =
rows and columns of A). Formally in LAP,

A[n] =def λkl〈r(A) − n, c(A) − n, e(A, n + k, n + l)〉.
Note that A[0] = A.

Let CH(A, n) be a LAP formula stating that the CHT holds for the matrices

A[n], A[n + 1], . . . , A[r(A)− 1].

Formally, CH(A, n) is given by

(∀n ≤ i < r(A))pA[i](A[i]) = 0

Note that the ∀-index quantifier could be replaced with a λ-construction, but
we assume that we have bounded index quantifiers.



Lemma 4. ∃PLAP proves the following:

¬CH(A, n) ⊃ (∃P ≤ r(A))¬CH(PAP t, n + 1). (6)

Proof. If ¬CH(A, n), then there exists a k ∈ {n, n + 1, . . . , r(A)− 1} such that

pA[k](A[k]) �= 0.

We choose the largest such k, and consider two cases.

Case 1 If k �= n, then k ≥ n + 1, so let P = I, and clearly ¬CH(Aσ, n + 1)
holds.

Case 2 If k = n, then by definition of k,

pA[n+1](A[n + 1]) = . . . = pA[r(A)−1](A[r(A)− 1]) = 0 (7)

We now find the first non-zero column of pA[n](A[n]), and call it j. Note that
j �= 1 since pA[n+1](A[n + 1]) = 0, and we know by [4, lemma 8.2.1] that in
that case the first column of pA[n](A[n]) must be zero. Thus 1 < j ≤ r(A)−n.
Let Ik be the matrix obtained from the identity matrix by permuting rows
k and k + 1. Ik can be easily expressed with a λ-construction. We now run
the program given in Figure 1 for finding a permutation P and an integer
0 ≤ i < n such that p(PAP t)[n+j−i]((PAP t)[n + j − i]) �= 0.
The program clearly terminates (in at most j ≤ r(A) steps). It must output
a correct P before i reaches the value j − 1, since otherwise it would follow
that

p(PAP t)[n+1]((PAP t)[n + 1]) = 0 with P = InIn+1 · · · In+j−1.

This is not possible, since it means that column j of A is in position n of
PAP t, and

p(PAP t)[n+1]((PAP t)[n + 1]) = 0

so again by [4, lemma 8.2.1] it would follow that the j-th column is zero.
This contradicts the original assumption about the j-th column of A.
Note that the program is a search over finitely many matrices, using iterated
matrix products. Thus, it can be formalized in LAP. Since j > 1 and i ≥ 0,

p(PAP t)[n+j−i]((PAP t)[n + j − i]) �= 0

implies ¬CH(PAP t, n + 1).

This ends the two cases and the proof of (6).

Theorem 1. ∃PLAP proves the CHT, i.e., ∃PLAP � pA(A) = 0.

Proof. From (6) we can easily obtain:

(∃P ≤ r(A))¬CH(PAP t, n) ⊃ (∃P ≤ r(A))¬CH(PAP t, n + 1) (8)



P ← I
i← 0
while i < j

if p(P AP t)[n+j−i]((PAP t)[n + j − i]) = 0 then
P ← In+j−i−1P
i← i + 1

else
output P
break

Fig. 1. Program for computing the permutation P .

So now suppose that the CHT theorem fails for some matrix A, so pA(A) �= 0.
Then ¬CH(A, 0), so certainly (∃P ≤ r(A))¬CH(PAP t, 0), where we can take
P = I. This is our basis case, and (6) is our induction step, so we can conclude
by the induction rule that ¬CH(A, r(A) − 1). But that means that the CHT
fails for a 1× 1 matrix. It is easy to show in LAP that the CHT holds for 1× 1
matrices, and so we obtain a contradiction.

The above theorem is also provable with the following induction hypothesis:

(∀P ≤ r(A))¬CH(PAP t, n + 1) ⊃ (∀P ≤ r(A))¬CH(PAP t, n)

and so it follows, as was stated in the first paragraph of this section, that ∀PLAP
proves the CHT as well.

Since ∃PLAP proves the CHT, it follows (by [5, theorem 4.1]) that ∃PLAP
(∀PLAP) also proves hard matrix identities, and, by further results in [5], the
multiplicativity of the determinant.

Corollary 1. ∃PLAP proves hard matrix identities and the multiplicativity of
the determinant.

5 Expressing graph-theoretic properties

In this section we show that the theories ∃PLA and ∀PLA are very well suited
for expressing graph-theoretic properties. In the next section we show that ∀PLA
can actually prove the soundness of the Hajós Calculus. Not surprisingly, ∃PLA
can express NP graph problems, and ∀PLA can express co-NP graph problems.

Recall that Graph Isomorphism (GI) is the decision problem of whether
two graphs G1 = (V, E1) and G2 = (V, E2), on the same set of nodes V , are
isomorphic. That is, whether there is a permutation (i.e., re-labeling) π of the
nodes V such that G2 = π(G1), where π(G1) = (V, {(π(u), π(v))|(u, v) ∈ E1}).
GI is one of the few examples of decision problems that are in NP and not
believed to be in P or NP-complete.

We can express GI succinctly in ∃PLA as follows:

(∃P ≤ r(A))[A = PBP t]



here A and B are the adjacency matrices for graphs G1 and G2 (recall that A
is the adjacency matrix for G = (V, E) if r(A) = c(A) = |V | and e(A, i, j) = 1
iff (i, j) ∈ E). Note that the (i, j)-th entry of PBP t, (PBP t)ij , is given by∑

1≤k,l≤n PikBklP
t
lj =

∑
1≤k,l≤n PikBklPjl (assuming that A, B, P are n × n

matrices). Note that P t
lj = Pjl since for permutation matrices P t = P−1. Since

P is a permutation matrix, it can be regarded as a function P : [n] −→ [n] where
P (i) = j iff Pij = 1. Hence, (PBP t)ij = BP (i)P (j).

We can also express the decision problem Path in ∃PLA. Path on input
(G, s, t, k) decides if there is a path in G from node s to node t of length k. If
there is such a path, then there is a sequence of nodes s = i1, i2, . . . , ik = t such
that (ij , ij+1) ∈ E for all j. Given i1, i2, . . . , ik, there is a re-labeling π of the
nodes so that in π(G) we have π(s) = 1, 2, . . . , k = π(t), and (i, i + 1) is an edge
in π(G). Thus, Path can be expressed in ∃PLA as follows:

(∃P ≤ r(A))[(∀0 < i < k)e(PAP t, i, i + 1) = 1 ∧ Ps = e1 ∧ Pt = ek]

The formula (∀0 < i < k)e(PAP t, i, i+ 1) = 1 in the above expression is stating
that the upper-left k× k corner of PAP t has 1s on the diagonal above the main
diagonal.

Hamiltonian Path (HP) can be stated as:

(∃P ≤ r(A))(∀0 < i < r(A))[e(PAP t, i, i + 1) = 1]

The idea is that we have 1s above the main diagonal, so that for 1 ≤ i ≤ n − 2
there is an edge (i, i + 1) in the re-labeled graph.

For example, in the undirected graph G given in Fig. 2, if we re-label the
nodes according to the permutation P : 1 �→ 1, 2 �→ 5, 3 �→ 4, 4 �→ 3, 5 �→ 2, we
obtain the graph G′ on the right with a HP 1-2-3-4-5 indicated by the arrows.
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Fig. 2. Graph G and its re-labeling G′.

We can express the k-Colorability of graphs in ∃PLA. Let 0k denote the
k × k matrix of zeros. Let G be a graph, and AG its corresponding adjacency
matrix. We can state that G is k-colorable, for any fixed k, as follows:

(∃P ≤ r(AG))(∃i1, i2, . . . , ik ≤ r(AG))[PAGP t =




0i1 ∗ · · · ∗
∗ 0i2 · · · ∗
...

...
. . .

...
∗ ∗ ∗ 0ik


]



The unspecified entries in the above graph (i.e., the entries in the blocks labeled
by “∗”) can be anything. For k = 3, let Non-3-Col(A) be the negation of the
above formula, stating that the graph whose adjacency matrix is A is not 3
colorable. Note that Non-3-Col(A) is a formula in the language of ∀PLA.

Hamiltonian Cycle, Vertex Cover and Clique can also be stated using
similar techniques.

6 The Hajós Calculus

In this section we will show that the theory ∀PLA proves the soundness of the
Hajós calculus. The Hajós calculus is a very simple non-deterministic proce-
dure for building non-3-colorable graphs. It can also be used as a propositional
refutation system, and as such it is p-equivalent to extended Frege—see [3].

The Hajós calculus has the 4-clique as its only axiom: let K4 denote the
4-clique (a complete graph on 4 vertices). ∀PLA can show that K4 is not 3-
colorable, that is ∀PLA � Non-3-Col(AK4). Furthermore, the Hajós calculus
has the following three rules for building bigger non-3-colorable graphs:

1. Addition Rule: Add any number of vertices and/or edges.
2. Join Rule: Let G1 and G2 be two graphs with disjoint sets of vertices.

Let (i1, j1) and (i2, j2) be edges in G1 and G2, respectively. Construct G3

as follows: remove edges (i1, j1) and (i2, j2), and add the edge (j1, j2), and
contract vertices i1 and i2 into the single vertex i1. See Fig. 3 for an example.

�

�

�

�

�
���
�� �

�

�

�

�
���
��

=⇒
�

�

�

��

�

��j1 j2
j1 j2

i1
i1

i2 �
���
�

�
��

�
�

��
��

Fig. 3. The join rule applied to two K4 graphs.

3. Contraction Rule: Contract two nonadjacent vertices into a single vertex,
and remove the resulting duplicated edges. The new vertex can be either of
the two original vertices.

A derivation in the Hajós calculus is a sequence of graphs {G1, G2, . . . , Gn}
such that each Gi is either K4, or follows from previous Gj ’s by one of the three
rules. Gn is the graph being derived, i.e., the conclusion. The Hajós calculus is
both complete (any non-3-colorable graph can be derived in it), and sound
(only non-3-colorable graphs can be derived). See [3] for proofs of completeness
and soundness.

Lemma 5. ∀PLA proves the soundness of the rules of the Hajós Calculus.



Before giving the proof, note that a formula stating the completeness of the Hajós
calculus would have to be a ∀X∃Y -formula (for any A, if Non-3-Col(A), then
there exists a derivation (i.e., there exists a long matrix encoding a derivation)
of A). Thus, completeness cannot be expressed in ∀LA. (Furthermore, a matrix
encoding a derivation is not going to be a permutation matrix in general.) We
conjecture that the stronger theory ∃LA can prove completeness.

Proof (of lemma 5). For the addition rule, let G′ be G with new vertices/edges.
This can be stated as follows:

r(AG) ≤ r(AG′) ∧ (∀i, j ≤ r(AG))[e(i, j, AG) = 1 ⊃ e(i, j, AG′) = 1]

So, AG′ contains AG in its upper-left corner, with, possibly, certain 0s replaced by
1s, and so it is easy to derive the sequent Non-3-Col(AG) → Non-3-Col(AG′).

For the join rule, let G1 and G2 be the two graphs as in the statement of
the rule, and AG1 and AG2 the corresponding adjacency matrices. Suppose that
e(AG1 , i1, j1) = e(AG2 , i2, j2) = 1. Then AG is given by a constructed matrix
with r(AG1) + r(AG2) − 1 rows (and columns), and of the form:




AG1 [i1|i1] D1

AG2 [i2|i2] D2

Dt
1 Dt

2 0


 (9)

where A[i|j] is standard notation for a matrix with row i and column j removed,
and D1 is a column vector with a 1 in position j iff e(AG1 , i1, j) = 1, and D2 is
a column vector with a 1 in position j iff e(AG2 , i2, j) = 1. Matrix (9) can be
given as a constructed matrix over LA. It is not difficult to derive the sequent:

Non-3-Col(AG1) ∧ Non-3-Col(AG2) → Non-3-Col(AG)

The soundness of the contraction rule can be shown in a similar way.

There are two versions of the Hajós calculus: with labeled and un-labeled
graphs. The two versions are p-equivalent. In fact, this can be shown in ∀PLA,
as we can derive (∀Q ≤ r(A))Non-3-Col(QAQt) from Non-3-Col(A) (this
derivation is very easy, practically by definition of Non-3-Col).

Theorem 2. ∀PLA proves the soundness of the Hajós Calculus.

Proof. A derivation in the Hajós Calculus is given by a sequence of graphs
{G1, G2, . . . , Gn}, where Gn is the conclusion, and each Gi is either K4 or fol-
lows from previous Gj ’s by the application of one of the three rules. We can
encode the derivation as a long matrix [AG1AG2 . . .AGn

]. Using induction on
n, lemma 5, and the observation that ∀PLA � Non-3-Col(AK4), we can show
Non-3-Col(AGn

).



7 Quantified Permutation Frege

Permutation Frege is a well studied propositional proof system where, besides the
usual Frege rules for propositional consequence, we have a restricted substitution
rule α � απ which allows us to permute the variables of α (according to π) to
obtain απ. As the permutation rule is a kind of restricted substitution, we know
that Permutation Frege can be p-simulated by extended Frege. It remains an
interesting open problem whether Permutation Frege and extended Frege are in
fact p-equivalent, or whether Permutation Frege is strictly weaker.

We introduce a novel propositional proof system, which we call Quantified
Permutation Frege (QPF). As the name suggests, QPF allows quantification
over permutations, just as Quantified Frege ([2, §4.6]) allows quantification over
variables.

In this paper we shall consider two fragments of QPF, namely ∃σ-Frege
and ∀σ-Frege. In ∃σ-Frege we allow propositional formulas plus formulas of the
form ∃σSα, where α is a propositional formula without any quantifiers. Here σS

denotes an automorphism (permutation) of the variables in the finite set S, and
σS |Sc = id. Similarly, ∀σ-Frege consists of propositional formulas plus formulas
of the form ∀σSα. Note that the restriction on quantification is strict in the
sense that we allow one quantifier in prenex form only. (Since S can consist
of any finite number of variables, we can always express a block of existential
(universal) permutation quantifiers with one existential (universal) permutation
quantifier.)

The semantic of ∃σSα is as follows: given a truth value assignment t, t � ∃σSα
iff there exists a permutation of the variables in S such that tσS � α, where
tσS (x) = t(σS(x)). The semantic of ∀σSα is defined analogously.

The rules of ∃σ-Frege and ∀σ-Frege are the usual Frege rules plus the follow-
ing four sequent rules for introducing permutation quantifiers:

Γ → ∆, α

Γ → ∆, ∃σSαπS

α, Γ → ∆

∃σSαπS , Γ → ∆

Γ → ∆, α

Γ → ∆, ∀σSαπS

α, Γ → ∆

∀σSαπS , Γ → ∆

where πS is some permutation of the variables in S, and απS is α with the
variables permuted according to πS . There are the following restrictions: α may
not contain any (permutation) quantifiers, and for ∃σS introduction left and ∀σS

introduction right, the variables in S are not free in the bottom sequent. The
variables in a finite set S are not free in a given formula β if either they do
not occur in β at all, or β is of the form ∃σQγ (or ∀σQγ), with γ having no
quantifiers, and S ⊆ Q.

It is easy to check that the four rules are sound. It is an open question
whether, with the given definition of restriction, the system is complete (i.e.,
can we prove all true ∃σ and ∀σ sequents?). However, here we use ∃σ-Frege
and ∀σ-Frege to prove propositional formulas without quantifiers, and for these
formulas completeness follows from the completeness of Frege. The permutation
quantifiers allow us to (apparently) shorten the proofs considerably.

We leave it as future research the definition of a general QPF system, where
we allow arbitrary alternations of quantifiers, with a restriction that renders it



complete. We conjecture that a well defined QPF system should be equivalent
to the general Quantified Frege (called G in [2, §4.6]).

Define ∃σ-Frege∗ and ∀σ-Frege∗ to be the same as ∃σ-Frege and ∀σ-Frege,
but with the additional requirement that the proofs have to be tree-like (i.e.,
each sequent in the proof occurs at most once). Theorem 2 allows us to prove
the following interesting corollary.

Corollary 2. ∃σ-Frege∗ and ∀σ-Frege∗ are p-equivalent to extended Frege.

Proof. ∃σ-Frege∗ and ∀σ-Frege∗ can be simulated by G∗
1 which is p-equivalent

to extended Frege ([2, section 4.6]). Conversely, extended Frege and the Hajós
calculus are p-equivalent ([3]), and by theorem 2, ∀PLA proves the soundness of
the Hajós calculus. On the other hand, the proof of theorem 2 can be translated
into ∀σ-Frege∗ (and ∃σ-Frege∗), as can be seen by noting that the theorems
of LA translate into AC0[2]-Frege (by lemma 1), and by noting that universal
permutation quantifiers occur in the form (∀P ≤ n)α(PAP t), and so they can
be easily translated into ∀σA‖α(A)‖σ′ . (Note that σ and σ′ are different objects;
one is permutation quantification, and the other a translation parameter.) It
follows that ∀σ-Frege∗ (and ∃σ-Frege∗) can simulate the Hajós calculus, and
hence extended Frege.

8 Open Problems

Is there an LAP proof of the CHT? A related question is: can we prove hard
matrix identities in LAP? Can we show that hard matrix identities are inde-
pendent of LA? What would be a natural definition of QPF (one that ensures
soundness and completeness)? Is (a good definition of) QPF p-equivalent to G?
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