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Abstract. We show that Shuffle(x, y, w), the problem of determining
whether a string w can be composed from an order preserving shuffle of
strings x and y, is not in AC0, but it is in AC1. The fact that shuffle
is not in AC0 is shown by a reduction of parity to shuffle and invoking
the seminal result [FSS84], while the fact that it is in AC1 is implicit
in the results of [Man82a]. Together, the two results provide a strong
complexity bound for this combinatorial problem.
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1 Introduction

Given three strings over the binary alphabet, it is a natural question to ask
whether the third string can be composed from a “shuffle” of the first two.
That is, can we compose the third string by weaving together the first two,
while preserving the order within each string? For example, given 000, 111, and
010101, we can obviously answer in the affirmative. [Man82a] shows that a clever
dynamic programming algorithm can determine Shuffle(x, y, w) in time O(|w|2),
and the same paper poses the question of determining a lower bound.

In this paper we show a strong upper and lower bound for the shuffling
problem in terms of circuit complexity. We show that: (i) bounded depth circuits
of polynomial size cannot solve shuffle, but that (ii) logarithmic depth circuits
of polynomial size can do so. In the nomenclature of circuit complexity this can
be stated as follows: Shuffle 6∈ AC0 but Shuffle ∈ AC1, which provides a good
characterization of the circuit complexity of shuffle.

As a side remark, we also show a lower bound for shuffle on single-tape Turing
machines; for this model of computation, we can show that a number of steps
in the order of Ω(n2) is necessary to solve the problem. Both lower bounds,
the one in terms of bounded depth circuits, and the one in terms of single tape
Turing machines, are obtained by reductions. In the former case, the reduction
is from the “parity problem” and in the latter case, the reduction is from the
“palindromes problem.”
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This paper is structured as follows: in section 2 we give the background on
circuit complexity; in section 3 we give an upper bound and in section 4 we give
the lower bound on the complexity of shuffle. The bounds are summarized in
Theorem 1 in the conclusion, and we finish with some open problems.

Formal definition of shuffle If x, y, and w are strings over an alphabet Σ,
then w is a shuffle of x and y provided there are (possibly empty) strings xi and
yi such that x = x1x2 · · ·xk and y = y1y2 · · · yk and w = x1y1x2y2 · · ·xkyk. Note
that |w| = |x| + |y| is a necessary condition for the existence of a shuffle. Also
note that [Man82a] gives a different but equivalent definition.

A shuffle is sometimes instead called a “merge” or an “interleaving”. The
intuition for the definition is that w can be obtained from u and v by an operation
similar to shuffling two decks of cards. In this paper we assume the binary
alphabet, i.e., x, y, w ∈ {0, 1}∗.

The predicate Shuffle(x, y, w) holds iff w is a shuffle of x, y, as described in
the above paragraph. We are going to present circuits and Turing machines that
compute the Shuffle(x, y, w), and so they must take the three binary strings
x, y, w as input. We let 〈x, y, w〉 denote the encoding of the three strings; this
encoding can be just a concatenation of the strings, so that for a properly formed
input, where |x| = |y| = n, we have |〈x, y, w〉| = 4n, and the n can be extracted
by the machine. We can also use demarcation of the strings, by encoding 0
with 00, and 1 with 01, and use 11 as separators. In that case, a well formed
input where |x| = m, |y| = n, |w| = m + n, would be such that |〈x, y, w〉| =
2m+ 1 + 2n+ 1 + 2(m+ n). The point is that it does not matter how we do it,
as long as we do it “reasonably.”

History Following the presentation of the history of shuffle in [BS13], we men-
tion that the initial work on shuffles arose out of abstract formal languages.
Shuffles were later motivated by applications to modeling sequential execution of
concurrent processes. The shuffle operation was first used in formal languages by
Ginsburg and Spanier [GS65]. Early research with applications to concurrent pro-
cesses can be found in Riddle [Rid73,Rid79] and Shaw [Sha78]. A number of au-
thors, including [Gis81,GH09,Jan81,Jan85,Jed99,JS01,JS05,MS94,ORR78,Sho02]
have subsequently studied various aspects of the complexity of the shuffle and
iterated shuffle operations in conjunction with regular expression operations and
other constructions from the theory of programming languages.

In the early 1980’s, Mansfield [Man82b,Man83] and Warmuth and Haus-
sler [WH84] studied the computational complexity of the shuffle operator on its
own. The paper [Man82b] gave a polynomial time dynamic programming algo-
rithm for deciding Shuffle(x, y, w). In [Man83], this was extended to give poly-
nomial time algorithms for deciding whether a string w can be written as the
shuffle of k strings u1, . . . , uk, for a constant integer k. The paper [Man83] further
proved that if k is allowed to vary, then the problem becomes NP-complete (via
a reduction from Exact Cover with 3-Sets). Warmuth and Haussler [WH84]



gave an independent proof of this last result and went on to give a rather strik-
ing improvement by showing that this problem remains NP-complete even if the
k strings u1, . . . , uk are equal. That is to say, the question of, given strings u
and w, whether w is equal to an iterated shuffle of u is NP-complete. Their proof
used a reduction from 3-Partition.

In [BS13] we show that square shuffle, i.e., the problem of determining
whether some string w is a shuffle of some x with itself, that is, ∃xShuffle(x, x, w),
is NP-hard.

2 Background on complexity

A Boolean circuit can be seen as a directed, acyclic, connected graph in which
the input nodes are labeled with variables xi and constants 1, 0 (or T,F), and
the internal nodes are labeled with standard Boolean connectives ∧,∨,¬, that
is, AND,OR,NOT, respectively. We often use x̄ to denote ¬x, and the circuit
nodes are often called gates.

The fan-in (i.e., number of incoming edges) of a ¬-gate is always 1, and the
fan-in of ∧,∨ can be arbitrary, even though for some complexity classes (such
as SAC1 defined below) we require that the fan-in be bounded by a constant.
The fan-out (i.e., number of outgoing edges) of any node can also be arbitrary.
Note that when the fan-out is restricted to be exactly 1, circuits become Boolean
formulas. Each node in the graph can be associated with a Boolean function in
the obvious way. The function associated with the output gate(s) is the function
computed by the circuit. Note that a Boolean formula can be seen as a circuit
in which every node has fan-out 1 (and ∧,∨ have fan-in 2, and ¬ has fan-in 1).

The size of a circuit is its number of gates, and the depth of a circuit is the
maximum number of gates on any path from an input gate to an output gate.

A family of circuits is an infinite sequence C = {Cn} = {C0, C1, C2, . . .} of
Boolean circuits where Cn has n input variables. We say that a Boolean predicate
P has polysize circuits if there exists a polynomial p and a family C such that
|Cn| ≤ p(n), and ∀x ∈ {0, 1}∗, x ∈ P iff C|x|(x) = 1. In order to make this more
concrete, note that in the case of shuffle, the family C computes it if

Shuffle(x, y, w) = 1 ⇐⇒ C|〈x,y,w〉|(〈x, y, w〉) = 1.

Note that |〈x, y, w〉| only depends on the length of the inputs x, y, w and so the
same circuit decided all the inputs of a given fixed length.

Let P/poly be the class of all those predicates which have polysize circuits. It
is a standard result in complexity that all predicates in P have polysize circuits;
that is, if a predicate has a polytime Turing machine, it has polysize circuits. The
converse of the above does not hold, unless we put a severe restriction on how
the n-th circuit is generated; as it stands, there are undecidable predicates that
have polysize circuits. The restriction that we place here is that there is a Turing
machine that on input 1n computes {Cn} in space O(log n). This restriction
makes a family of circuits C uniform. All our circuit results hold with and
without the condition of uniformity.



Those predicates (or Boolean functions) that can be decided with polysize,
constant fan-in, and depth O(logi n) circuits, form the class NCi. The class
ACi is defined in the same way, except we allow unbounded fan-in. We set
NC =

⋃
i NCi, and AC =

⋃
i ACi, and while it is easy to see that the uniform

version of NC is in P, it is an interesting open question whether they are equal.

We have the following standard result: for all i,

ACi ⊆ NCi+1 ⊆ ACi+1.

Thus, NC = AC. Finally, SACi is just like ACi, except we restrict the ∧ fan-
in to be at most two. Recall that NC1 ⊆ L ⊆ NL ⊆ NC2, where L and NL
are deterministic and non-deterministic logarithmic space, respectively. It is not
known whether any of these containments are strict. For more details see any
complexity textbook; for example [Pap94,Sip06,Sol09].

3 Upper bound

In this section we show a circuit upper bound for shuffle — that is, we show
that Shuffle ∈ SAC1, which means that shuffle can be decided with a polysize
family of circuits of logarithmic depth (in the size of the input), where all the
∧-gates have fan-in 2. This result relies on the dynamic programming algorithm
given in [Man82a] and the complexity result of [Sud78,Ven91] which shows that
NL ⊆ SAC1.

In order to show that Shuffle ∈ NL, we show that shuffle can be reduced (in
low complexity) to the graph reachability problem. We start with an example:
consider Figure 1. On the left we have a shuffle of 000 and 111 that yields
010101, and on the right we have a shuffle of 011 and 011 that yields 001111.
The left instance has a unique shuffle; there is a unique path from (0, 0) to (3, 3).
On the right, there are several possible shuffles — in fact, eight of them, each
corresponding to a distinct path from (0, 0) to (3, 3).

Fig. 1. On the left we have a shuffle of 000 and 111 that yields 010101, and on the
right we have a shuffle of 011 and 011 that yields 001111. The dynamic programming
algorithm in [Man82a] computes partial solutions along the red diagonal lines.



The number of paths is always bounded by:(
|x|+ |y|
|x|

)
and this bound is achieved for 〈1n, 1n, 12n〉. Thus, the number of paths can be
exponential in the size of the input, and so an exhaustive search is not feasible
in general.

Lemma 1 Shuffle ∈ NL.

Proof. The dynamic programming algorithm proposed in [Man82a] works by
reducing shuffle to directed graph reachability. The graph is an (n+ 1)× (n+ 1)
grid of nodes, with the lower-left corner labeled (0, 0), and the upper-right corner
labeled (n, n). For any i ≤ n and j ≤ n, we have edge{

((i, j), (i+ 1, j)) if xi+1 = wi+j+1

((i, j), (i, j + 1)) if yj+1 = wi+j+1.

Note that both edges may be present, which is what introduces the element of
non-determinism.

The correctness of the reduction follows from the assertion that given the
edges of the grid, defined as in the paragraph above, there is a path from (0, 0)
to (i, j) if and only if the first i + j bits of w can be obtained by shuffling the
first i bits of x and the first j bits of y. Thus, node (n, n) can be reached from
node (0, 0) if and only if Shuffle(x, y, w) is true.

Thus Shuffle ∈ NL. ut

Corollary 1 Shuffle ∈ SAC1

Proof. Since NL ⊆ SAC1 (see [Sud78,Ven91]) it follows directly from Lemma 1
that Shuffle ∈ SAC1 ⊆ AC1. ut

Note that since the graph resulting from the shuffle reduction is planar, it
follows that Shuffle ∈ UL. [BTV07] shows that directed planar reachability is
in the class UL (for “Unambiguous Logarithmic Space”; this class is just like
NL except that we can design a non-deterministic log-space bounded machine
such that “no” instances of the problem have no accepting paths, while “yes”
instances have exactly one accepting path).

Note that Shuffle ∈ UL does not mean that there is a unique path from
(0, 0) to (n, n); rather, there exists a machine deciding the problem in log-space
such that, while the machine is non-deterministic, at most one computational
path accepts. Further, the planar graph in the proof of Lemma 1 is layered —
and such graphs have been studied in [ABC+09]. It would be interesting to know
whether the results contained therein could improve the upper bound for shuffle.
In particular, can this be used to show that Shuffle ∈ NC1, and hence shuffle
can be decided with a polysize family of Boolean formulas? The fact that NC1

circuits are computationally equivalent to Boolean formulas follows from Spira’s
theorem (see [Sol09, Theorem 6.3]).



4 Lower bound

In this section we show a circuit lower bound for shuffle — that is, we show
that Shuffle 6∈ AC0, which means that shuffle cannot be decided with a polysize
family of circuits of constant depth where all the ∧,∨-gates may have arbitrary
fan-in. This result relies on the seminal complexity result showing that parity is
not in AC0, due to [FSS84]. A very accessible presentation of this result can be
found in [SP95, Chapters 11 & 12]; many of the details of that presentation are
made explicit in [Sol09, section 5.3]. We also show that shuffle requires Ω(n2)
steps on a single-tape Turing machines.

Circuit lower bound We start with a definition: let #(x)s be the number of
occurrences of a symbol s in the string x. Obviously, Shuffle(0#(x)0 , 1#(x)1 , x) is
always true. We can use this observation in order to reduce parity to shuffle,
where the reduction itself is AC0.

Intuitively, what we claim is the following: suppose that we have a “black-
box” that takes 〈x, y, w〉 as input bits and computes Shuffle(x, y, w). We could
then construct a circuit for parity with the standard gates ∧,∨,¬, plus black-
boxes for computing shuffle. If the black-boxes for shuffle were computable with
AC0 circuits, we would then obtain an AC0 circuit for parity, giving us a con-
tradiction. The details are given in Lemma 2 below and in Figure 2.

Lemma 2 Parity ∈ AC0[Shuffle].

Proof. In order to compute the parity of x, run the following algorithm: for all
odd i ∈ {0, . . . , |x|}, check if Shuffle(0|x|−i, 1i, x) is true; if it is the case for at
least one i, then the parity of x is 1. Note that if it is true for at least one i, it
is true for exactly one i. In terms of circuits, this can be expressed as follows:

Parity(x) =
∨

0 ≤ i ≤ |x|
i is odd

Shuffle(0|x|−i, 1i, x), (1)

which gives us an AC0 circuits with “black-boxes” for shuffle, and hence the
claim follows. See Figure 2. ut

Corollary 2 Shuffle 6∈ AC0.

Proof. Since by [FSS84] Parity 6∈ AC0, and by Lemma 2 we know that parity
AC0-reduces to shuffle, it follows that shuffle is not in AC0. ut

Turing machine lower bound The string x is a palindrome if it reads the same
backward as forward. If xR is the reverse of x, i.e., xR = xnxn−1 . . . x1, then x is a
palindrome if and only if x = xR. It is a folklore result in complexity that given a
single tape Turing machine as the model of computation, testing for palindromes



n−i

i=1 i=3 i=5 i=n

0 x 1 1 10 0 0x x x1
ii n−i i in−i n−i

Fig. 2. Parity of x computed in terms of Shuffle; note that we assume that n is odd in
this Figure. If n were even the last “black box” for shuffle would be for i = n− 1.

requires Ω(|x|2) many steps. This result uses Kolmogorov complexity and the
“crossing sequences technique.” The interested reader can check, for example,
[SP95, Chapter 9] or [Sol09, §1.3].

We can use this lower bound for palindromes in order to show that shuffle also
requires Ω(n2) many steps on a single tape Turing machine. Let Palindrome(x)
be the eponymous predicate and note that we can use shuffle to express that a
string is a palindrome as follows:

Palindrome(x) ⇐⇒ Shuffle(ε, x, xR). (2)

As the first string is empty, shuffle will hold iff xi = xn+1−i, for i ∈ [n], which is
true iff x = xR.

Lemma 3 Shuffle takes Ω(n2) many steps on a single-tape Turing machine.

Proof. Suppose that a single-tape Turing machine can decide, on input 〈x, y〉
whether Shuffle(ε, x, y). Then, the same machine can decide on input

〈w1 . . . wbn2 c, wn . . . wdn2 e+1〉

whether w, where n = |w|, is a palindrome. As palindromes require Ω(n2) steps
(in the worst-case), so does Shuffle(ε, x, y). As Shuffle(ε, x, y) is a special case of
the general shuffle problem, the Lemma follows. ut

Other reductions to shuffle It is interesting that several different string
predicates reduce to shuffle in a natural way. We have (1) which gives a reduction
of parity to shuffle; we have that equality of strings reduces to shuffle: x = y ⇐⇒
Shuffle(ε, x, y); we have (2) which shows that palindromes reduce to shuffle.



We end by showing that concatenation reduces to shuffle. Let p0, p1 be
“padding” functions on strings defined as follows:

p0(x) = p0(x1x2 . . . xn) = 00x100x200 . . . 00xn00

p1(x) = p1(x1x2 . . . xn) = 11x111x211 . . . 11xn11

that is, pb, b ∈ {0, 1} pads the string x with a pair of b’s between any two bits
of x, as well as a pair of b’s before and after x. Now note that

w = u·v ⇐⇒ Shuffle(p0(u), p1(v), p0(w1w2 . . . w|u|)·p1(w|u|+1w|u|+2 . . . w|u|+|v|)),

where “·” denotes concatenation of strings. The direction “⇒” is easy to see; for
direction “⇐” we use the following notation:

r = p0(u) = 00u100 . . .

s = p1(v) = 11v111 . . .

t = p0(w1w2 . . . w|u|) · p1(w|u|+1w|u|+2 . . . w|u|+|v|) = 00w100 . . .

If t is a shuffle of r, s, i.e., Shuffle(r, s, t), then we must take the first two bits of
r (00) in order to cover the first two bits of t (00). If u1 = w1 = 1, then we could
ostensibly take the first bit of s (1), but the bit following w1 is 0, and u1 = 1
and the second bit of s is 1; so taking the first bit of s leads to a dead end. Thus,
we must use u1 to cover w1. We continue showing that we must first take all of
r, and then take all of s in order to cover t. This argument can be formalized
with induction.

It follows that Shuffle(r, s, t) implies t = r · s, which in turn implies w = u · v.

5 Conclusion

Putting everything together we have the following Theorem.

Theorem 1 Shuffle 6∈ AC0, but Shuffle ∈ SAC1 ⊆ AC1. Also, shuffle requires
Ω(n2) many steps on a single tape Turing machine.

The significance of this result is that shuffle cannot be decided with bounded
depth circuits of polynomial size. On the other hand, shuffle can be decided with
polynomial size circuits of unbounded fan-in and logarithmic depth — which
in turn implies that shuffle can be decided in the class NC2. In general, the
classes NCi capture those problems that can be solved with polynomially many
processors in poly-logarithmic time, which are problems that have fast parallel
algorithms. See [Coo85] for a discussion of NC2.

6 Open problems

It follows from the results of [Man82a] that shuffle can be decided in SAC1. Can
shuffle be decided in NC1? We know that NC1 ⊆ SAC1 ⊆ NC2, and SAC1



is almost the same as NC1 except that SAC1 allows unbounded fan-in for the
∨-gates (and bounded fan-in for the ∧-gates), whereas NC1 has bounded fan-in
for all gates. If shuffle were in NC1 it would mean that shuffle can be decided
with a polysize family of Boolean formulas, which would be a very interesting
result.
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