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Abstract

The Complexity of Derivations of Matrix Identities
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Doctor of Philosophy

Graduate Department of Mathematics

University of Toronto

2001

In this thesis we are concerned with building logical foundations for Linear Algebra,

from the perspective of proof complexity. As the cornerstone of our logical theories,

we use Berkowitz’s parallel algorithm for computing the coefficients of the characteristic

polynomial of a matrix.

Standard Linear Algebra textbooks use Gaussian Elimination as the main algorithm,

but they invariably use the (very infeasible) Lagrange expansion to prove properties of

this algorithm.

The main contribution of this thesis is a (first) feasible proof of the Cayley-Hamilton

Theorem, and related principles of Linear Algebra (namely, the axiomatic definition of the

determinant, the cofactor expansion formula, and multiplicativity of the determinant).

Furthermore, we show that these principles are equivalent, and the equivalence can be

proven feasibly.

We also show that a large class of matrix identities, such as:

AB = I → BA = I

proposed by S.A. Cook as a candidate for separating Frege and Extended Frege proposi-

tional proof systems, all have feasible proofs, and hence polynomially-bounded Extended

Frege proofs. We introduce the notion of completeness for these matrix identities.

As the main tool to prove our results, we design three logical theories:

LA ⊂ LAP ⊂ ∀LAP
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LA is a three-sorted quantifier-free theory of Linear Algebra. The three sorts are indices,

field elements and matrices. This is a simple theory that allows us to formalize and

prove all the basic properties of matrices (roughly the properties that state that the set

of matrices is a ring). The theorems of LA have polynomially-bounded Frege proofs.

We extend LA to LAP by adding a new function, P, which is intended to denote matrix

powering, i.e., P(n, A) means An. LAP is well suited for formalizing Berkowitz’s algorithm,

and it is strong enough to prove the equivalence of some fundamental principles of Linear

Algebra. The theorems of LAP translate into quasi-polynomially-bounded Frege proofs.

We finally extend LAP to ∀LAP by allowing induction on formulas with ∀ matrix

quantifiers. This new theory is strong enough to prove the Cayley-Hamilton Theorem,

and hence (by our equivalence) all the major principles of Linear Algebra. The theorems

of ∀LAP translate into polynomially-bounded Extended Frege proofs.
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Chapter 1

Introduction

Proof Theory is the area of mathematics which studies the concepts of mathematical proof

and mathematical provability ([Bus98]). Proof Complexity is an area of mathematics and

theoretical computer science that studies the length of proofs in propositional logic. It

is an area of study that is fundamentally connected both to major open questions of

computational complexity theory and practical properties of automated theorem provers

([BP98]).

A propositional formula φ is a tautology if φ is true under all truth value assignments.

For example, φ given by:

p ∨ ¬p

is a tautology. Let TAUT be the set of all tautologies. A propositional proof system is a

polytime predicate P ⊆ Σ∗ × TAUT such that:

φ ∈ TAUT ⇐⇒ ∃xP (x, φ)

P is poly-bounded (i.e., polynomially bounded) if there exists a polynomial p such that:

φ ∈ TAUT ⇐⇒ ∃x(|x| ≤ p(|φ|) ∧ P (x, φ))

The existence of a poly-bounded proof system is related to the fundamental question:

P
?
= NP

In 1979 Cook and Reckhow ([CR79]) proved that NP = co-NP iff there is a poly-bounded

proof system for tautologies. On the other hand, if P = NP then NP = co-NP. Thus, if

there is no poly-bounded proof system, then NP %= co-NP, and that in turn would imply

that P %= NP.

1



Chapter 1. Introduction 2

There is a one million $ cash prize offered by the Clay Mathematical Institute for set-

tling the P
?
= NP problem; see the Millennium Prize Problems on the web site of the CMI

at www.claymath.org/index.htm. Also see [Coo00b], a manuscript prepared by Cook for

the CLI for the Millennium Prize Problems, available at www.cs.toronto.edu/~sacook.

Thus, considerable effort goes into proving lower bounds (and separations) for propo-

sitional proof systems. The program is to show lower bounds for standard proof systems

of increasing complexity.

But the P
?
= NP problem is not the only motivation for finding lower bounds for

Propositional Proof Systems (PPS):

• PPS are (mathematically) interesting in their own right.

• Applications to Automated Reasoning (Artificial Intelligence).

• We can use lower bounds for PPS, to prove lower bounds for decision procedures

(for SAT). A good example of this is the exponential lower bound for resolution,

which gives us an exponential lower bound for the Davis-Putnam procedure for

satisfiability. The idea behind the correspondence is very simple: each instance of

the Davis-Putnam procedure on a particular set of clauses can be viewed (“upside

down”) as a resolution refutation. Thus, if all resolution refutations on a family

of clauses must be of a certain size, so must be all instances of the Davis-Putnam

procedure on that family of clauses. (See [BP96] for the resolution lower bound).

See Figure 1.1 for a table of the principal propositional proof systems. Exponential

lower bounds exist for the proof systems below the line. The strongest propositional proof

system (Quantified Frege) is shown in the top, and the weakest (Truth Tables) is shown

in the bottom. Each system can simulate the one below. The systems Frege and PK are

equivalent in the sense that they p-simulate each other (see below for p-simulation).

In this thesis we are concerned with all four types of Frege proof systems. There

is a separation between Bounded Depth Frege and Frege, and there exist lower bounds

for Bounded Depth Frege, but no such results exist for the remaining Frege systems.

By a separation we mean that there exists a family of tautologies τn, such that Frege

proves τn efficiently (i.e., in polysize), but Bounded Depth Frege does not (i.e., there is no

polynomial p(n) such that Bounded Depth Frege can prove τn with derivations of length

at most p(n)). The Pigeonhole Principle (PHP) is the standard tautology for separating

Bounded Depth Frege and Frege (see [Pit92], [BIP93] and [BIK+92]).
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Quantified Frege

Extended Frege, Substitution Frege, Renaming Frege

Permutation Frege

Frege, PK

Bounded Depth (BD) Frege

Resolution

Truth Tables

Table 1.1: Propositional proof systems

Note that even though we mention Frege, in practice in this thesis we use the sequent

calculus proof system PK. Thus we have Bounded Depth PK, PK, Extended PK, and

Quantified PK. It is easy to show that Frege and PK p-simulate each other, and hence

they can be used interchangeably.

The (alleged) separation between Frege and Extended Frege is a fundamental open

problem. The matrix identity AB = I → BA = I was originally proposed by Cook in the

context of separating Frege and Extended Frege (private communication; in [BBP94] the

authors give examples of tautology families, such as the “Odd Town Theorem”, that seem

to depend on linear algebra for their proofs, and it was this paper that inspired Cook to

think of AB = I → BA = I). The separation between Extended Frege and Quantified

Frege (again, if there is one), seems to be completely out of reach at the moment.

A fundamental notion that appears throughout this thesis is that of a feasible proof

(and feasible computation, or polytime computation). Feasible proofs were introduced by

Cook in [Coo75], and they formalize the idea of tractable reasoning; a theorem can be

proven feasibly, if all the computations involved in the proof are polytime computations,

and the induction can be unwound feasibly.

Cook’s system PV is the original system for polytime reasoning (see [CU93]). Samuel

R. Buss formalized polytime reasoning with the system S1
2 in [Bus86]. The importance

of the Extended Frege propositional proof system stems from the fact that first order

theorems which have feasible proofs correspond to propositional tautologies which have

uniform polysize Extended Frege proofs.

Another fundamental notion throughout this thesis is that of a p-simulation. We say

that a proof system P p-simulates a proof system P ′ if there exists a function f and

a polynomial p such that every proof x in P ′ corresponds to a proof f(x) in P , and
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|f(x)| ≤ p(|x|). In other words, all the proofs of P ′ can be “reproduced” in P with a

small increase in size. Thus, coming back to the separations discussed above, for example,

Frege p-simulates Bounded Depth Frege, but Bounded Depth Frege does not p-simulate

Frege. It is not known if Frege can p-simulate Extended Frege.

1.1 Motivation

The motivation for the research presented in this thesis is establishing the complexity

of the concepts involved in proving standard theorems in Linear Algebra. We want to

understand where do standard theorems of Linear Algebra stand with respect to the Frege

proof systems (Bounded Depth Frege, Frege, Extended Frege, and Quantified Frege). In

particular, we are interested in the complexity of the proofs of the following principles:

• Standard theorems of Linear Algebra, such as the Cayley-Hamilton Theorem, the

axiomatic definition of the determinant, the cofactor expansion formula, and the

multiplicativity of the determinant.

• Universal matrix identities such as AB = I → BA = I.

Thus, we are concerned with building logical foundations for Matrix Algebra, from

the perspective of the complexity of the computations involved in the proofs. We use

Berkowitz’s parallel algorithm as the main tool for computations, and most results are

related to proving properties of this algorithm. Berkowitz’s algorithm computes the

coefficients of the characteristic polynomial of a matrix, by computing iterated matrix

products.

Standard Linear Algebra textbooks use Gaussian Elimination as the main algorithm,

but they invariably use the (very infeasible) Lagrange expansion to prove properties of

the determinant. Berkowitz’s algorithm is a fast parallel algorithm, Gaussian Elimination

is poly-time, and the Lagrange expansion is n! (where the parameter for all three is the

size of the matrix).

We have chosen Berkowitz’s algorithm as the cornerstone of our theory of Linear

Algebra because it is the fastest known algorithm for computing inverses of matrices,

and it has the property of being field independent (and hence all the results of this thesis

are field independent). Furthermore, we show that we can feasibly prove properties of

the determinant using Berkowitz’s algorithm, while we do not know how to prove them
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feasibly using Gaussian Elimination, or any other algorithm (granted that for this thesis,

we did concentrate our research on Berkowitz’s algorithm).

In order to carry out our proofs based on Berkowitz’s algorithm, we developed a new

approach to proving matrix identities by induction on the size of matrices.

1.2 Contributions

In Section 8.2 we present the main contribution of this thesis: a feasible proof of the

Cayley-Hamilton Theorem. It seems that we give the first such proof1; in fact we present

three feasible proofs. The first is based on interpreting the ∀LAP proof of the C-H

Theorem in the polytime theory in Ṽ1(Σ, P), Section 8.2.3. This proof relies on results

spread throughout the thesis, so we summarize it in Section 8.2.4. The second proof

is based on interpreting the ∀LAP proof of the C-H Theorem in poly-bounded uniform

Permutation Frege (a propositional proof system), Section 8.2.5. The ∀LAP proof itself

is given in Section 8.2.1. The third proof is based on Quantified Frege, Section 8.2.6.

Note that many of the proofs given in this thesis are substantially more difficult than

the corresponding proofs in an average Linear Algebra text book. An extreme example

of this is the proof of multiplicativity of the determinant. In [DF91, page 364] the

proof of the multiplicativity of the determinant takes one line; this proof relies on the

Lagrange Expansion of the determinant. Our proof of multiplicativity of the determinant

from the Cayley-Hamilton Theorem takes over six pages (see Section 6.4). The proof

of the Cayley-Hamilton Theorem takes several sections spread throughout the thesis.

However, our proofs are feasible; we can prove the propositional tautologies asserting

the multiplicativity of the determinant, with Extended Frege, for matrices which have

106 × 106 entries. With the Lagrange Expansion which has n! terms (n is the size of the

matrices involved), it is impossible to prove multiplicativity for matrices of size 20× 20

(using Extended Frege).

In Chapter 6 we show that the C-H Theorem is equivalent to the axiomatic definition

of the determinant, and to the cofactor expansion, and that these equivalences can be

shown in the theory LAP. The theory LAP formalizes reasoning in POW (the class of

problems “easily” reducible to powers of matrices). In Section 6.4 we show that the

multiplicativity of determinant implies (also in LAP) the C-H Theorem, and we show

1In Section 8.1 we present, briefly, two typical infeasible proofs of the C-H Theorem.
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that the C-H implies (feasibly, but we do not know if in LAP) the multiplicativity of the

determinant. The conclusion is that all these major principles of Linear Algebra have

feasible proofs.

In Section 5.3 we show that AB = I → BA = I, and hence (by the results in Sec-

tion 3.2) many matrix identities, follows, in LAP, from the Cayley-Hamilton Theorem.

Since we give a feasible proof of the C-H Theorem, it follows that these identities also

have feasible proofs.

We compute the determinant of a matrix with Berkowitz’s algorithm. Since the

Cayley-Hamilton Theorem states that the characteristic polynomial of a matrix is an

annihilating polynomial (i.e. pA(A) = 0), the Cayley-Hamilton Theorem implies the

following:

det(A) %= 0 =⇒ A is invertible

On the other hand, we also give a feasible proof (based on Gaussian Elimination, but

still for the determinant as defined by Berkowitz’s algorithm) that:

det(A) = 0 =⇒ A is not invertible

Therefore, we give a feasible proof of the fact that a matrix is invertible iff its determinant

is not zero.

We define the correctness of Berkowitz’s algorithm to be the following property: it

computes an annihilating polynomial of the given matrix. Thus, we can look at the

central result of this thesis as being a feasible proof of the correctness of Berkowitz’s

algorithm; the feasible proof of Berkowitz’s algorithm is the mechanism that makes a

feasible proof of the Cayley-Hamilton Theorem possible.

In Chapter 2 we design a three-sorted quantifier-free theory of Linear Algebra, and

we call it LA. The three sorts are indices, field elements and matrices. LA is field

independent, and matrix identities can be expressed very naturally in its language.

LA is a fairly weak theory, which nevertheless allows us to prove all the basic properties

of matrices (roughly the properties that state that the set of matrices is a ring). We

show this in Chapter 3, where we prove, in LA, properties such as the associativity

of matrix multiplication, A(BC) = (AB)C, or the commutativity of matrix addition,

A + B = B + A, i.e., the ring properties of the set of matrices.

In Chapter 7 we show that all the theorems of LA can be translated into poly-

bounded families of propositional tautologies, with poly-bounded Frege proofs. Thus,

LA is strong enough to prove basic properties of matrices, but at the same time the
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truth of any theorem of LA can be verified with poly-bounded Frege. In fact, we prove

a tighter result since we show that bounded-depth Frege proofs with MOD p gates suffice,

when the underlying field is Zp.

We identify two classes of matrix identities: basic and hard. The basic matrix iden-

tities are those which can be proven in LA, and, as was mentioned above, they roughly

correspond to the ring properties of the set of matrices. Hard matrix identities, intro-

duced in Section 3.2, are those which seem to require computing matrix inverses in their

derivations; the prototypical example of a hard matrix identity is AB = I → BA = I,

suggested by Cook in the context of separating Frege and Extended Frege. Hard matrix

identities are more difficult to define, and their definition is related to the definition of

completeness of matrix identities. Roughly, we can say that hard matrix identities are

those which can be proven from AB = I → BA = I using basic reasoning, i.e., LA.

One of the nicer results of this thesis is identifying equivalent matrix identities, where

the equivalence can be proven in LA, hence with basic matrix properties, while the

identities themselves are believed to be independent of LA. We refer to:

AB = I, AC = I → B = C I

AB = I → AC %= 0, C = 0 II

AB = I → BA = I III

AB = I → AtBt = I IV

presented in Section 3.2. This suggests a notion of completeness for matrix identities,

which we try to make precise. We discuss the notion of completeness for matrix identities

in Section 9.2, but we do not yet have a satisfactory definition.

In Chapter 4 we design an extension of LA, called LAP. This new theory is just LA

with a new function symbol: P. The intended meaning of P(n, A) is An. The addition

of P increases considerably the expressive power of LA (however, we have no separation

result between LA and LAP—for all we know LAP might be conservative over LA, but

we conjecture otherwise). Having added matrix powering, we can now compute products

of sequences of matrices, so LAP is ideally suited for formalizing Berkowitz’s algorithm;

we express the characteristic polynomial, computed by Berkowitz’s algorithm, as a term

of LAP in Section 4.2.3.

Berkowitz’s algorithm is a fast parallel algorithm for computing the characteristic

polynomial of a matrix. It has the great advantage of being field independent, and
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therefore all our results (e.g. the Cayley-Hamilton Theorem) hold irrespectively of the

underlying field; fields are never an issue in our proofs. We discuss Berkowitz’s algorithm

in depth in Section 4.2.

In Section 7.4 we show that all the theorems of LAP translate into quasi-poly-

bounded Frege proofs.

In Chapter 6 we use Berkowitz’s algorithm to show that LAP proves the equivalence

of several important principles of Linear Algebra:

• the Cayley-Hamilton Theorem

• the axiomatic definition of the determinant

• the cofactor expansion formula

Furthermore, we show that LAP proves that all these principles follow from the multi-

plicativity of the determinant. Thus, by giving a feasible proof of the Cayley-Hamilton

Theorem, we are able to give feasible proofs of the axiomatic definition of determinant

and the cofactor expansion.

To prove the Cayley-Hamilton Theorem we needed induction over formulas with uni-

versal quantifiers for variables of type matrix; thus we designed ∀LAP in Section 8.2.1.

It seems that LAP by itself cannot prove the C-H Theorem, although we have no good

evidence for this conjecture. However, we show in Section 5.2 that LAP is capable of

proving the C-H Theorem, and all the other major principles, for triangular matrices.

In Section 6.4 we show that the Cayley-Hamilton Theorem, together with the iden-

tity det(A) = 0 → AB %= I, imply (in LAP) the multiplicativity of the determinant.

Since in Section 8.3.2 we present a feasible proof of det(A) = 0 → AB %= I (based on

Gaussian Elimination), it follows that there is a feasible proof of the multiplicativity of

determinant from the C-H Theorem. Therefore, the multiplicativity of determinant also

has a feasible proof.

To show that LAP proves the equivalences mentioned above, we developed a new

approach to proving identities that involve the determinant and the adjoint. Since LAP

is a theory that relies mainly on powers of matrices and on induction on terms of type

index, we need a new method for proving properties of the determinant and the adjoint.

The main idea in this new method is to consider the following submatrices:

A =

(
a11 R

S M

)
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where a11 is the (1, 1) entry of A, and R, S are 1 × (n−1), (n−1) × 1 submatrices,

respectively, and M is the principal submatrix of A. So consider for example the property

of multiplicativity of the determinant, det(AB) = det(A) det(B). To prove this property,

we assume inductively that it holds for the principal submatrices of A and B, and show

that it holds for A and B. To accomplish this, we have developed many (perhaps new)

matrix identities, such as for example:

det(SR + M) = det(M) + Radj(M)S

which is identity (6.22) in Chapter 6. Another interesting identity is identity (6.23).

Both identities have feasible proofs (in LAP from the Cayley-Hamilton Theorem) given

at the end of Section 6.4.

To illustrate out method, suppose that we want to prove that det(A) = det(At). We

show that:

det(M) = det(M t) → det(A) = det(At)

(this is the induction step), and we show that since det((a)) = a, the claim also holds in

the basis case. Using induction on the size of matrices we conclude that the claim holds

for all matrices. Basically, we use induction to prove a given claim for bigger and bigger

submatrices, as the picture in Figure 1.1 shows. We can define and parameterize these

submatrices using our constructed terms (i.e., λij〈m, n, t〉).

Figure 1.1: Proving claims by induction on submatrices

In Section 8.3.1 we present a feasible proof of correctness of Gaussian Elimination.

This is an interesting result because it was very difficult to give a proof of correctness of

Berkowitz’s algorithm, so potentially, the correctness of Gaussian Elimination might have

been very problematic as well. Furthermore, we give a proof of correctness of Gaussian

Elimination using poly-time concepts, that is, concepts in the same complexity class as
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the Gaussian Elimination algorithm. We did not manage to give a proof of correctness

of Berkowitz’s algorithm in its own complexity class; while Berkowitz’s algorithm is an

NC2 algorithm, its proof of correctness uses poly-time concepts.

In Section 8.2.1 we extend LAP to ∀LAP by allowing ΠM
1 Induction in our proofs

(that is, induction on formulas with ∀ matrix quantifiers, with bounds on the size of the

matrix). This new theory is strong enough to prove the Cayley-Hamilton Theorem, and

hence all the major principles of Linear Algebra.

Finally, we list open problems in Chapter 9. We discuss each of the seven open

problems presented in some detail.
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1.3 Summary of results

In this section we summarize the main results of this thesis in table format. In Table 1.2

we give brief descriptions of our logical theories LA, LAP, and ∀LAP, summarizing what

are the important properties that can be proved in them. In Table 1.3 we show the

propositional proof systems (and the related complexity classes), that correspond to the

theories LA, LAP, and ∀LAP. In Table 1.4 we conjecture what we expect to be true.

Theory Summary of properties provable in the theory

LA Ring properties of matrices (with the usual matrix addition and

multiplication); for example, associativity of matrix products:

A(BC) = (AB)C, or commutativity of matrix addition

A + B = B + A.

It can also prove equivalences of hard matrix identities.

LAP It extends LA by adding a new function symbol, P, for computing

powers of matrices.

Berkowitz’s algorithm can be defined in this theory (as a term in

the language of LAP), and it is strong enough to prove

equivalences of the Cayley-Hamilton Theorem, the axiomatic

definition of the determinant, and the cofactor expansion formula.

It can also prove that the multiplicativity of the determinant

implies the Cayley-Hamilton Theorem.

∀LAP It extends LAP by allowing universal quantifiers over variables of

type matrix; in particular, it allows induction over formulas of this

type.

It is strong enough to prove the Cayley-Hamilton Theorem and

related principles, while it is still feasible.

Table 1.2: Summary of theories
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Theory Propositional Proof System; corresponding complexity class

LA fields Zp: polybounded Bounded Depth Frege with MOD p gates; AC0[p]

field Q: polybounded Frege; NC1

LAP quasi-polybounded Frege; DET ⊆ NC2

∀LAP polybounded Extended Frege; P/poly

Table 1.3: Summary of translations

Theory Related conjecture

LA LA ! AB = I → BA = I; LA does not prove any of the hard

matrix identities.

In fact, we conjecture something stronger: AB = I → BA = I

does not have polybounded Frege proofs, but it has

quasi-polybounded Frege proofs.

LAP LAP 2 AB = I → BA = I, that is, LAP proves hard matrix

identities; we are also going to make the following bold conjecture:

LAP proves the Cayley-Hamilton Theorem. We make this

conjecture because we think that it is reasonable to assume that

we can prove properties of the characteristic polynomial, as

computed by Berkowitz’s algorithm, within the complexity class

of Berkowitz’s algorithm.

∀LAP Captures polytime reasoning

Table 1.4: Summary of conjectures



Chapter 2

The Theory LA

In this chapter we define a quantifier-free theory of Linear Algebra (of Matrix Algebra),

and call it LA. Our theory is strong enough to prove basic properties of matrices, but

weak enough so that all the theorems of LA translate into propositional tautologies with

short Frege proofs.

We want LA to be just strong enough to prove all the ring properties of the set of

matrices; for example, the associativity of matrix multiplication: A(BC) = (AB)C, or

the commutativity of matrix addition: A + B = B + A.

We have three sorts of object: indices, field elements, and matrices. We define the

theory LA to be a set of sequents. We use sequents, rather than formulas, for two

reasons: (i) sequents are convenient for expressing matrix identities (see, for example,

the four hard matrix identities in Section 3.2, page 40), and (ii) we use the sequent

calculus proof system to formalize propositional derivations.

We define LA as the set of sequents which have derivations from the axioms A1–33,

given below, using: rules for propositional consequence, the induction (on indices) rule,

and a rule for concluding equality of matrices. Of course, all the details will be given

below.

Note that LA is a quantifier-free theory, but all the sequents are implicitly universally

quantified.

2.1 Language

We use i, j, k, l as metasymbols for indices, a, b, c as metasymbols for field elements, and

A, B, C as metasymbols for matrices. We use x, y, z as meta-metasymbols; this is useful,

13
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for example, in axiom A2 given below where x can be a variable of any sort. We use

primes or subscripts when we run out of letters.

Definition 2.1.1 The language of LA, denoted LLA, has the function and predicate

symbols given in Table 2.1 below. The indices are intended to range over natural numbers.

We have 0 and 1 indices, we also have the usual addition and multiplication of indices,

but subtraction (“−”) is intended to be “cut-off subtraction”; that is, if i > j, then j− i

is intended to be 0. The functions div and rem are intended to be the standard quotient

and reminder functions. Then we also have field elements, with 0 and 1, and addition

and multiplication, and multiplicative inverses (where we define 0−1 to be 0). Finally,

we have ≤ and = for indices, and = for field elements and matrices. Below we give the

details more formally.

0index, 1index, +index, ∗index,−index, div, rem, condindex

0field, 1field, +field, ∗field,−field,
−1, condfield

r, c, e,Σ

≤index, =index, =field, =matrix

Table 2.1: Function and predicate symbols in LLA

Intended meaning of the symbols:

• 0index, 1index and 0field, 1field are constants (i.e. 0-ary function symbols), of type index

and field, respectively.

• +index, ∗index are 2-ary function symbols for addition and multiplication of indices,

and +field, ∗field are 2-ary function symbols for addition and multiplication of field

elements.

• −index is a 2-ary function symbol that denotes cut-off subtraction of index elements.

−field and −1 are 1-ary function symbols denoting the additive and multiplicative

inverse, respectively, of field elements. Again, we intend 0−1 to be 0.
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• div, rem are the quotient and reminder 2-ary functions, respectively. That is, for

any numbers m, n, we have:

m = n · div(m, n) + rem(m, n) where 0 ≤ rem(m, n) < m (2.1)

We want m, n ≥ 0, and when we incorporate equation (2.1) as axioms of LA, we

make sure that n %= 0 to avoid division by zero.

These two functions are not really used in LA, but become very important in

Chapter 4, where they are used to compute products of sequences of matrices with

the powering function P.

• condindex and condfield are 3-ary function symbols, whose first argument is a formula,

and the two other arguments are indices (in condindex) or field elements (in condfield).

The intended meaning is the following:

cond(α, term1, term2) =





term1 if α is true

term2 otherwise

• r and c are 1-ary function symbols whose argument is of type matrix, and whose

output is of type index. r(A) and c(A) are intended to denote the number of rows

and columns of the matrix A, respectively.

• e is a 3-ary function symbol, where the first argument is of type matrix, and the

other two are of type index, and e(A, i, j) is intended to denote Aij, i.e. the (i, j)-th

entry of A. Sometimes we will use Aij instead of e(A, i, j) to shorten formulas. It

is important to realize one technical point which is going to play a role later on;

a matrix is a finite array, and therefore, we are going to encounter the following

problem: what if we access an entry out of bounds? That is, suppose that A is a

3 × 3 matrix. What is e(A, 4, 3)? We make the convention of defining all out of

bounds entries to be zero. Thus, we can view matrices as infinite arrays, with only

a finite upper-left portion being non-zero.

• Σ is a 1-ary function whose argument is of type matrix, and the intended meaning

is that Σ adds up all the entries of its argument.

We will usually omit the type subscripts index, field and matrix, for the sake of readability.

This is not a problem as the type will be clear from the context and the names of the

metavariables involved.
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2.2 Terms, formulas and sequents

2.2.1 Inductive definition of terms and formulas

We define inductively the terms and formulas over the language LLA. It is customary to

define terms and formulas separately, but we define them together as the terms condindex

and condfield take a formula as an argument.

We use the letters n, m for terms of type index, t, u for terms of type field, and T, U

for terms of type matrix.

Base Case: 0index, 1index, 0field, 1field and variables of all three types, are all terms.

Induction Step:

1. If m and n are of type index, then (m+index n),(m−index n), (m∗index n), div(m, n),

and rem(m, n) are all of type index.

2. If t and u are of type field, then (t +field u) and (t ∗field u) are of type field.

3. If t is a term of type field, then −t and t−1 are terms of type field.

4. If T is of type matrix, then r(T ) and c(T ) are of type index, and Σ(T ) is of type

field.

5. If m and n are of type index, and T is of type matrix, then e(T, m, n) is of type

field.

6. If m and n are of type index, and t is of type field, then λij〈m, n, t〉 is a constructed

term of type matrix. There is one restriction:

i, j do not occur free in m and n (2.2)

The idea behind constructed terms is to avoid having to define a whole spectrum of

matrix functions (matrix addition, multiplication, subtraction, transpose, inverse,

etc.). Instead, since matrices can be defined in terms of their entries (for example,

matrix addition is just addition entry by entry), we use functions of type field

to define matrix functions; the λ operator allows us to do this. For example,

suppose that A and B are 3× 3 matrices. Then, A + B can be defined as follows:

λij〈3, 3, e(A, i, j)+e(B, i, j)〉. Incidentally, note that there is nothing that prevents

us from constructing matrices with zero rows or zero columns, i.e., empty matrices.
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7. If m, n, t, u, T, U are terms, then:

m ≤index n

m =index n

t =field u

T =matrix U

are formulas (called atomic formulas).

8. If α is a formula, so is ¬α, and if α and β are formulas so are (α ∧ β) and (α ∨ β).

9. Suppose α is a formula where all atomic subformulas have the form m ≤index n

or m =index n, where m and n are terms of type index. Then, if m′, n′ are terms

of type index, then condindex(α, m′, n′) is a term of type index, and if t and u are

terms of type field, then condfield(α, t, u) is a term of type field.

This finishes the inductive definition of terms and formulas.

The λ is the λ-operator, and in our case it just indicates that the variables i, j are

bound. From now on, we say that an occurrence of a variable is free if it is not an index

variable i or j in a subterm of λij〈. . .〉 (so in particular all field and matrix variables are

always free), and it is bound otherwise. Note that the same index variable might occur

in the same term both as a free and a bound variable.

We let α ⊃ β abbreviate ¬α ∨ β, and α ≡ β abbreviate α ⊃ β ∧ β ⊃ α.

2.2.2 Definition of sequents

We follow the presentation of Samuel R. Buss in [Bus98, Chapter 1]. As we mentioned in

the introduction, LA is a theory of sequents, rather than a theory of formulas, because

sequents are more appropriate for expressing matrix identities.

A sequent is written in the form:

α1, . . . , αk → β1, . . . , βl (2.3)

where the symbol → is a new symbol called the sequent arrow, and where each αi and

βj is a formula. The intuitive meaning of the sequent is that the conjunction of the

αi’s implies the disjunction of the βj ’s. Thus, a sequent is equivalent in meaning to the

formula:
k∧

i=1

αi ⊃
l∨

j=1

βj (2.4)
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We adopt the convention that an empty conjunction (k = 0 above) has value True, and

that an empty disjunction (l = 0 above) has value False. Thus the sequent → α has the

same meaning as the formula α, and the empty sequent → is false. A sequent is defined

to be valid or a tautology iff its corresponding formula is.

The sequence of formulas α1, . . . , αk is called the antecedent of the sequent displayed

above; β1, . . . , βl is called its succedent . They are both referred to as cedents .

The semantic equivalence between (2.3) and (2.4) holds regardless of whether the α’s

and the β’s are propositional formulas, or formulas over the language LLA. However,

as was mentioned in the introduction, all sequents are implicitly universally quantified,

hence (2.3) is really equivalent in meaning to the formula:

∀x1 . . . xn

(
k∧

i=1

αi ⊃
l∨

j=1

βj

)

where x1, . . . , xn is the list of all the free variables that appear in the sequent (2.3).

2.2.3 Defined terms, formulas and cedents

We use “:=” to define new objects. For example:

max{i, j} := cond(i ≤ j, j, i)

denotes that max{i, j} stands for cond(i ≤ j, j, i). This way we can simplify formulas

over LLA by providing meaningful abbreviations for complicated terms. Of course, these

abbreviations are there only to make derivations more human-readable, and they are not

part of the language LLA (for example, max is not a function symbol in LLA).

Since we can construct new matrix terms with λij〈m, n, t〉, we can avoid including

many operations (such as matrix addition) as primitive operations by defining them

instead. For example, we can define the addition of two matrices A and B as follows:

A + B := λij〈max{r(A), r(B)}, max{c(A), c(B)}, Aij + Bij〉 (2.5)

In the above definition of addition of matrices, we used “+” instead of “+field” on the

right-hand side, and on the left hand side “+” should be “+matrix”, but all this is clear

from the context.

We now define standard matrix functions. Let A by a variable of type matrix. Then,

scalar multiplication is defined by:

aA := λij〈r(A), c(A), a ∗ Aij〉 (2.6)
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and the transpose by:

At := λij〈c(A), r(A), Aji〉 (2.7)

The only requirement is that if A is replaced by a constructed matrix term T , then i and

j are new index variables which do not occur free in T .

The zero matrix and the identity matrix are defined by:

0kl := λij〈k, l, 0〉 and Ik := λij〈k, k, cond(i = j, 1, 0)〉 (2.8)

respectively, where cond(i = j, 1, 0) expresses that Ik is 1 on the diagonal and it is zero

everywhere else. Sometimes we will just write 0 and I when the sizes are clear from the

context.

We define the trace function by:

tr(A) := Σλij〈r(A), 1, Aii〉 (2.9)

Note that λij〈r(A), 1, Aii〉 is a column vector consisting of the diagonal entries of A, and

that i, j are new index variables which do not occur free in T , if T replaces A.

We let the dot product of two matrices, A, B, be A ·B, and we want it to be the sum

of the products of corresponding entries of A and B. Formally, we define the dot product

by:

A · B := Σλij〈max{r(A), r(B)}, max{c(A), c(B)}, Aij ∗Bij〉 (2.10)

where i, j do not occur free in T, U , if T, U replace A, B.

With the dot product we can define matrix multiplication by letting the (i, j)-th entry

of A ∗B be the dot product of the i-th row of A and the j-th column of B. Formally:

A ∗B := λij〈r(A), c(B), λkl〈c(A), 1, e(A, i, k)〉 · λkl〈r(B), 1, e(B, k, j)〉〉 (2.11)

where i, j do not occur freely in T, U , if T, U replace A, B.

Finally, as was mentioned in the introduction, the following decomposition of an n×n

matrix A is going to play a prominent role in this thesis:

A =

(
a11 R

S M

)

where a11 is the (1, 1) entry of A, and R, S are 1 × (n−1), (n−1) × 1 submatrices,

respectively, and M is the principal submatrix of A, i.e., M = A[1|1]. In general, A[i|j]
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indicates that row i and column j have been deleted from A. Therefore, we make the

following precise definitions:

R(A) := λij〈1, c(A)− 1, e(A, 1, i + 1)〉

S(A) := λij〈r(A)− 1, 1, e(A, i + 1, 1)〉

M(A) := λij〈r(A)− 1, c(A)− 1, e(A, i + 1, j + 1)

(2.12)

2.2.4 Substitution

Suppose that term is a term. We can indicate that a variable x occurs in term by writing

term(x). If term′ is also a term, of the same type as the variable x, then term(term′/x)

denotes that the free occurrences of the variable x have been replaced throughout term by

term′, and we say that term(term′/x) is a substitution instance of term. If α is a formula,

then α(term′/x) is defined analogously.

However, the existence of bound variables complicates things, and substitution is

not always as straightforward as the above paragraph would suggest. Thus, to avoid

confusion, we give a precise definition of substitution, by structural induction on term:

Basis Case: term is just a variable x; in this case x(term′/x) =synt term′. Note that

term′ must be of the same type as the variable x.

Induction Step: We examine items 1–9. For example, if term is of the form (m + n),

then (m + n)(term′/x) is simply (m(term′/x) + n(term′/x)). All cases, except item 6 and

item 9, are just as straightforward, so we only present item 6 and item 9:

Suppose that term is of the form λij〈m, n, t〉. If x is i or j, then the substitution has

no effect, as we cannot replace bound variables. So we assume that x is neither i nor j.

If term′ does not contain i or j, then λij〈m, n, t〉(term′/x) is just:

λij〈m(term′/x), n(term′/x), t(term′/x)〉 (2.13)

If, on the other hand, term′ contains i or j, then, if we substituted carelessly as in (2.13),

the danger arises that x might occur in m or n, and we would violate restriction (2.2).

Furthermore, if x also occurs in t, then the i and j from term′ would “get caught” in the

scope of the λ-operator, and change the semantics of t in an unwanted way.

Thus, if term′ contains i or j, then, to avoid the problems listed in the above para-

graph, we rename i, j in λij〈m, n, t〉 to new index variables i′, j′, and carry on as in (2.13).
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A detailed exposition of substitution and λ calculus can be found, for example,

in [HS86].

Suppose that term is of the form condindex(α, m, n). Then the result of replacing x by

term′ is simply:

condindex(α(x/term′), m(term′/x), n(term′/x))

Note that the only worry is whether α(term′/x) continues to be a boolean combination of

atomic formulas with terms of type index (see item 9 above). But this is not a problem

as we require term′ to be of the same type as the variable x, so, and this can be proven

by induction, substitution does not change the type of the term.

Lemma 2.2.1 Every substitution instance of a term is a term (of the same type). Simi-

larly, every substitution instance of a formula is a formula, and every substitution instance

of a sequent is a sequent.

Proof. Immediate from the above inductive definition of substitution. !

We end this section with some more terminology: if term, term1, . . . , termk are terms,

and x1, . . . , xk are variables, where xi is of the same type as termi, then:

term(term1/x1, . . . , termk/xk)

denotes the simultaneous substitution of termi for xi. On the other hand,

term(term1/x1) . . . (termk/xk)

denotes a sequential substitution, where we first replace all instances of x1 by term1, then

we replace all instances of x2 in term(term1/x1) by term2, and so on. We have analogous

conventions for formulas and sequents.

2.2.5 Standard models

In this section we define standard models for formulas over LLA; we follow the terminology

and style of [Bus98, chapter 2.1.2.]. We do not define general models as we do not need

them. A standard model is a structure where the universe for terms of type index is N,

the universe for terms of type field is F, for some fixed field F, and the universe for terms

of type matrix is M(F) =
⋃

m,n∈N Mm×n(F) and Mm×n(F) is the set of m × n matrices

over the field F. The standard model is denoted by SF. All operations are given the
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standard meaning by SF (“−index” is cut-off subtraction). We define 0−1 to be 0, and

div(i, j) and rem(i, j) are undefined when j = 0.

If α is a formula over LLA without free variables, i.e. α is a sentence, then we write

SF " α to denote that α is true in the structure SF. However, formulas over LLA may

have free variables in them. Thus, to give meaning to a general formula α we not only

need a structure SF, but also an object assignment , which is a mapping τ from the set of

variables (at least the ones free in α) to the universe of SF. That is, τ assigns values from

N to all the free index variables, values from F to all the field variables, and matrices

over F to all the matrix variables.

We write SF " α[τ ] to denote that α is true in the structure SF with the given

object assignment τ . To give a formal definition of SF " α[τ ], we first need to define the

interpretation of terms, i.e. we need to formally define the manner in which arbitrary

terms represent objects in the universe of SF. To this end, we define termS [τ ], for a given

S = SF, by structural induction:

Basis Case: term is a variable of one of the three sorts, or a constant. For example, if

term is i, then iS [τ ] is just τ(i) ∈ N.

Induction Step: Suppose that term is of the form (m+index n). Then, (m+index n)S [τ ] =

mS [τ ] + nS [τ ], where “+” denotes the usual addition of natural numbers. Similarly we

can deal with multiplication, and the basic operations of field elements.

Suppose that term is of the form r(T ). Then (r(T ))S [τ ] is the number of rows of

T S [τ ], which is the number of rows of τ(A) if T is the matrix variable A, and it is mS [τ ],

if T is of the form λij〈m, n, t〉.
Suppose that term is of the form e(T, m, n). Then (e(T, m, n))S [τ ] is the entry

(mS [τ ], nS [τ ]) of the matrix T S [τ ] (and it is zero if one of the parameters is out of

bounds).

All other cases can be dealt with similarly.

Since all free variables in a formula α are implicitly universally quantified, we say that

α is true in the standard model, denoted SF " α, if SF " α[τ ] for all object assignments

τ .
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2.3 Axioms

In this section we present all the axioms of the theory LA. The axioms are divided into

four groups: equality axioms (section 2.3.1), the axioms for indices which are the axioms

of Peano’s Arithmetic without induction (section 2.3.2), the axioms for field elements

(section 2.3.3), and the axioms for matrices (section 2.3.4). We have the following axiom

convention:

All substitution instances of axioms are also axioms. (2.14)

Thus, our axioms are really axiom schemas.

2.3.1 Equality Axioms

We have the usual equality axioms. The symbol “=” is a metasymbol for one of the three

equality symbols, and the variables x, y are meta-metavariables, that is, they stand for

one of the three types of standard metavariables. The function symbol f in A4 is one of

the function symbols of LLA, given in Table 2.1, and n is the corresponding arity.

A1 → x = x

A2 x = y → y = x

A3 (x = y ∧ y = z) → x = z

A4 x1 = y1, . . . , xn = yn → fx1 . . . xn = fy1 . . . yn

A5 i1 = j1, i2 = j2, i1 ≤ i2 → j1 ≤ j2

Table 2.2: Equality axioms

Example 2.3.1 A particular instance of A4 would be:

i1 = i2, j1 = j2, A = B → e(A, i1, j1) = e(B, i2, j2)

Here f = e, and since e has arity 3, n = 3.
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2.3.2 Axioms for indices

The axioms for indices are the usual axioms of Peano’s Arithmetic without induction1,

with A15 for cut-off subtraction definitions, (note that i " j abbreviates ¬(i ≤ j)), A16

for the quotient and reminder function definitions, and A17 for the conditional function

definitions (recall that α has to satisfy the restriction of item 9 given in Section 2.2.1).

A6 → i + 1 %= 0

A7 → i ∗ (j + 1) = (i ∗ j) + i

A8 i + 1 = j + 1 → i = j

A9 → i ≤ i + j

A10 → i + 0 = i

A11 → i ≤ j, j ≤ i

A12 → i + (j + 1) = (i + j) + 1

A13 i ≤ j, j ≤ i → i = j

A14 → i ∗ 0 = 0

A15 i ≤ j, i + k = j → j − i = k and i " j → j − i = 0

A16 j %= 0 → rem(i, j) < j and j %= 0 → i = j ∗ div(i, j) + rem(i, j)

A17 α→ cond(α, i, j) = i and ¬α→ cond(α, i, j) = j

Table 2.3: Axioms for indices

1Thus, the index fragment of LA does not correspond to Peano Arithmetic, since LA has no quantifiers,
and the induction (introduced later in this chapter as a rule) is on quantifier-free formulas.
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2.3.3 Axioms for field elements

The axioms for the field elements are the usual field axioms, plus A27 for the condi-

tional function definition (recall that α has to satisfy the restriction of item 9 given in

Section 2.2.1).

A18 → 0 + a = a

A19 → a + (−a) = 0

A20 → 1 ∗ a = a

A21 a %= 0 → a ∗ (a−1) = 1

A22 → a + b = b + a

A23 → a ∗ b = b ∗ a

A24 → a + (b + c) = (a + b) + c

A25 → a ∗ (b ∗ c) = (a ∗ b) ∗ c

A26 → a ∗ (b + c) = a ∗ b + a ∗ c

A27 α→ cond(α, a, b) = a and ¬α→ cond(α, a, b) = b

Table 2.4: Axioms for field elements

2.3.4 Axioms for matrices

In this section we define the last six axioms which govern the behavior of matrices. Axiom

A28 states that e(A, i, j) is zero when i, j are outside the size of A. Axiom A29 defines

the behavior of constructed matrices. Axioms A30–A33 define the function Σ recursively

as follows:

• First, A30 and A31, we define Σ for row vectors, that is for matrices of the form:

A =
(

a1 a2 . . . an

)

If n = c(A) = 1, so A = (a), then Σ((a)) = a. Suppose r(A) = 1 ∧ c(A) > 1. In

that case we define Σ as follows:

Σ(A) = Σ
(

a1 . . . an

)
= Σ

(
a1 . . . an−1

)
+ an

• If A is a column vector, A32, then At is a row vector, and so Σ(A) = Σ(At) which

is already defined.
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• In A33, we extend Σ to all matrices. Suppose that r(A) > 1 and c(A) > 1, that is:

A =

(
a11 R

S M

)

Then, Σ is defined recursively as follows:

Σ(A) = a11 + Σ(R) + Σ(S) + Σ(M) (2.15)

Note that throughout m < n is an abbreviation for (m ≤ n ∧ m %= n), and, of course,

m %= n is an abbreviation for ¬(m = n). Finally, see (2.7) for the precise definition of At

in A32, and see (2.12), page 20, for definitions of the terms R(A), S(A), M(A) in A33.

A28 (i = 0 ∨ r(A) < i ∨ j = 0 ∨ c(A) < j) → e(A, i, j) = 0

A29 → r(λij〈m, n, t〉) = m and → c(λij〈m, n, t〉) = n and

1 ≤ i, i ≤ m, 1 ≤ j, j ≤ n → e(λij〈m, n, t〉, i, j) = t

Ea r(A) = 0 ∨ c(A) = 0 → ΣA = 0

A30 r(A) = 1, c(A) = 1 → Σ(A) = e(A, 1, 1)

A31 r(A) = 1, 1 < c(A) → Σ(A) = Σ(λij〈1, c(A)− 1, Aij〉) + A1c(A)

A32b c(A) = 1 → Σ(A) = Σ(At)

A33c 1 < r(A), 1 < c(A) → Σ(A) = e(A, 1, 1)+Σ(R(A))+Σ(S(A))+Σ(M(A))

aThe axiom E(mpty) is necessary to take care of empty matrices—matrices with zero rows
or zero columns. There is nothing that prevents us from construction a matrix λij〈0, 3, t〉,
for example, and we want Σ of such a matrix to be 0field, regardless of t.

bSee page 19 for the definition of At.
cSee page 20 for the definitions of R, S, M.

Table 2.5: Axioms for matrices
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2.4 Rules of inference and proof systems

We start by defining the propositional sequent calculus proof system PK, following loosely

the presentation in [Bus98, Chapter 1].

A PK proof consists of an ordered sequence of sequents {S1, . . . , Sn}, where Sn is the

endsequent and it is the sequent proved by the proof. All sequents in {S1. . . . , Sn} are

either initial sequents of the form α→ α, for any formula α, or follow by one of the rules

for propositional consequence (defined below) from previous sequents in the proof.

Definition 2.4.1 A rule of inference is denoted by a figure:

S1

S

S1 S2

S

S1 S2 S3

S

indicating that the sequent S may be inferred from S1, or from the pair S1 and S2, or

from the triple S1 and S2 and S3. The conclusion, S, is called the lower sequent of the

inference; each hypotheses is an upper sequent of the inference.

Definition 2.4.2 The rules in Tables 2.6, 2.7, and 2.8, are the PK rules for propositional

consequence. These rules are essentially schematic, in that α and β denote arbitrary

formulas and Γ,∆ denote arbitrary cedents.

exchange-left:
Γ1, α, β,Γ2 → ∆

Γ1, β, α,Γ2 → ∆
exchange-right:

Γ → ∆1, α, β,∆2

Γ → ∆1, β, α,∆2

contraction-left:
α, α,Γ→ ∆

α,Γ→ ∆
contraction-right:

Γ→ ∆, α, α

Γ → ∆, α

weakening-left:
Γ → ∆

α,Γ→ ∆
weakening-right:

Γ→ ∆

Γ → ∆, α

Table 2.6: Weak structural rules

Γ→ ∆, α α,Γ→ ∆

Γ → ∆

Table 2.7: Cut rule

The PK system, as a propositional proof system, is sound and complete, that is to

say, any PK-provable sequent is a propositional tautology, and every propositionally valid
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¬-left:
Γ→ ∆, α

¬α,Γ→ ∆
¬-right:

α,Γ→ ∆

Γ → ∆,¬α

∧-left:
α, β,Γ→ ∆

α ∧ β,Γ→ ∆
∧-right:

Γ → ∆, α Γ → ∆, β

Γ → ∆, α ∧ β

∨-left:
α,Γ→ ∆ β,Γ→ ∆

α ∨ β,Γ→ ∆
∨-right:

Γ→ ∆, α, β

Γ → ∆, α ∨ β

Table 2.8: Rules for introducing connectives

sequent (tautology) has a PK-proof. For a proof of this, see theorems 1.2.6 and 1.2.8

in [Bus98, Chapter 1].

We now define the sequent calculus proof system PK-LA. Besides the rules for propo-

sitional consequence, we need a rule for induction on indices, and a rule for concluding

equality of matrices.

Definition 2.4.3 Recall that α(term/x) denotes that every occurrence of the variable

x in α is replaced by the term term (note that term must be of the same type as the

variable x). Thus we define the induction rule as in Table 2.9; note that i must be an

Γ, α(i) → α(i + 1/i),∆

Γ, α(0/i) → α(n/i),∆

Table 2.9: Induction Rule

index variable (as we only allow induction on indices), and n is any term of type index.

We have induction on indices because we want to prove matrix identities by induction

on the size of the matrices involved.

Definition 2.4.4 The matrix equality rules are defined in Table 2.10; the only restriction

left:
r(T ) = r(U), c(T ) = c(U), e(T, i, j) = e(U, i, j),Γ→ ∆

T =U,Γ→ ∆

right:
Γ → ∆, e(T, i, j) = e(U, i, j) Γ→ ∆, r(T ) = r(U) Γ → ∆, c(T ) = c(U)

Γ→ ∆, T =U

Table 2.10: Equality Rules

is that i, j do not occur free in the bottom sequent of Equality right. Note that three



Chapter 2. The Theory LA 29

types of equalities appear in this rule: equality of indices, field elements, and matrices.

(As usual, for the sake of readability, we omit the corresponding subscripts). Note that

we have the “reverse” of the equality rule by using axiom A4.

Definition 2.4.5 We define the proof system PK-LA to be a system of sequent calculus

proofs, where all the initial sequents are either of the form α → α (for any formula α

over LLA), or are given by one of the axiom schemas A1–33, and all the other sequents (if

any) follow from previous sequents in the proof by one of the PK rules for propositional

consequence, or by Ind, or by Eq.

Thus, a PK-LA proof of a sequent S consists of an ordered sequence of sequents

{S1, . . . , Sn}, where each Si is either of the form α→ α, or is given by one of the axiom

schemas A1–33, or follows from previous Sj ’s by a PK rule for propositional consequence,

or by Ind, or by Eq. The endsequent, Sn is S. The length of this derivation is n.

Definition 2.4.6 The theory LA is the set of sequents over LLA which have PK-LA

derivations.

Note that, in particular, all the sequents given by the axiom schemas A1–33 are in

LA.

Definition 2.4.7 The substitution rule is given in Table 2.11; S is any sequent, and

Subst:
S(x1, . . . , xk)

S(term1/x1, . . . , termk/xk)

Table 2.11: The derived Substitution Rule

S(x1, . . . , xk) indicates that x1, . . . , xk are variables in S. Recall that the expression

S(term1/x1, . . . , termk/xk) indicates that the terms term1, . . . , termk replace all free oc-

currences of the variables x1, . . . , xk in S, simultaneously. Here, xi has any of the three

types, and the term termi has the same type as xi.

Lemma 2.4.1 LA is closed under the substitution rule.

Proof. We prove the lemma by induction on the length of a derivation of the sequent S.

Basis Case: If S is an axiom of LA, then by the axiom convention (2.14) in section 2.3,

all the substitution instances of S are also axioms of LA.
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Induction Step: S is derived by one of the rules (by one of the rules for propositional

consequence, by Ind, or by Eq). Suppose S is obtained by Ind. Then S =synt Γ →
α(n/i),∆, and it is obtained as follows:

Γ, α(0/i), α(i) → α(i + 1/i),∆

Γ → α(n/i),∆
(2.16)

and x1, . . . , xk is a list of variables that occur in Γ → α(n/i),∆. The first thing we do is

replace i in the premiss of (2.16) by a new variable i′. Note that this can be done by our

induction hypothesis. Now we can present the derivation of Γ, α(n/i) → ∆ as follows:

Γ, α(0/i′), α(i′) → α(i′ + 1/i′),∆

Γ → α(n/i′),∆
(2.16′)

Note that (2.16′) is still a valid induction rule. Now we replace x1, . . . , xk in (2.16′) by

term1, . . . , termk. Note that since i′ is a new variable, it was not replaced by any of the

terms term1, . . . , termn. Thus, we obtained a derivation of:

(Γ → α(n/i′),∆)(term1/x1, . . . , termk/xk)

which is just S(term1/x1, . . . , termk/xk).

Suppose S is of the form Γ → ∆, T = U and it is obtained by the equality rule. We

proceed similarly to the induction rule case: we replace i, j by two new variables i′, j′

which do not occur in x1, . . . , xk. Again, we can do this by the induction hypothesis.

Then, we replace x1, . . . , xk throughout in the rule by term1, . . . , termk, and we are done.

Finally, if S is obtained by a rule for propositional consequence, then we just replace

x1, . . . , xk throughout the rule by term1, . . . , termk. !
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The Theorems of LA

In this chapter we will show that all the basic properties of matrices can be proven in

LA. More precisely, we will show that all the matrix identities which state that the set

of n× n matrices is a ring, and all the matrix identities that state that the set of m× n

matrices is a module over the underlying field, are theorems of LA.

The conclusion is that all the basic matrix manipulations can be proven correct in LA.

By “basic” we mean for example the associativity of matrix multiplication. However, LA

is apparently not strong enough to prove matrix identities which require arguing about

inverses; thus, it seems that LA is not strong enough to prove AB = I → BA = I.

One approach to show the independence of AB = I → BA = I from LA is by

constructing a model M of LA that does not satisfy AB = I → BA = I. A less

promising approach would be to show that AB = I → BA = I has no short Frege proofs

(whereas all the theorems of LA have short Frege proofs; see Chapter 7). In any case,

the independence of AB = I → BA = I from LA is stated as open problem 9.1.

In Section 3.2 we show that LA proves the equivalence of several hard matrix identi-

ties. This is an interesting result, as LA seems too weak to prove the identities themselves.

We also show that LA can prove combinatorial results (The Odd Town Theorem is given

here) that rely on “linear-independence results” from hard matrix identities.

3.1 LA proofs of basic matrix identities

We will use the following strategy to prove that T = U : we first show that r(T ) = r(U)

and c(T ) = c(U), and then we show e(T, i, j) = e(U, i, j), from which we can conclude

that T = U invoking the equality rule. Thus, we are showing equality of two matrices

31
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by showing that they have the same size and the same entries. We will omit the proof of

c(T ) = c(T ) as in all cases it is analogous to the proof of r(T ) = r(U).

For the sake of readability we will omit “∗” (the multiplication symbol), as it will

always be clear from the context when does multiplication apply, and what type of

multiplication is being used (product of indices, field elements or of matrices).

Recall that the formula α is equivalent in meaning to the sequent → α. Therefore,

we can omit the arrow, but formally LA is a theory of sequents, and so the arrow is

there. Also, our derivations are informal; recall that a sequent S is in LA iff it has a

PK-LA derivation. However, providing complete PK-LA derivations would be tedious

and unnecessary, so we derive all theorems below informally, sometimes giving informal

justifications in the right margin, but we keep in mind that these informal derivations

can be formalized in PK-LA.

3.1.1 Ring properties

T1 A + 0r(A)c(A) = A

Proof. r(A + 0r(A)c(A)) = max{r(A), r(0r(A)c(A))} = max{r(A), r(A)} = r(A), and the

entries: e(A + 0r(A)c(A), i, j) = Aij + 0 = Aij . !

T2 A + (−1)A = 0r(A)c(A)

Proof. r(A + (−1)A) = max{r(A), r((−1)A)} = max{r(A), r(A)} = r(A) = r(0r(A)c(A)),

and the entries: e(A + (−1)A, i, j) = Aij + (−1)Aij = 0. !

To prove the commutativity and associativity of matrix addition we need to prove

two properties of max; hence T3 and T5.

T3 max{i, j} = max{j, i}

Proof. We have to prove that cond(i ≤ j, j, i) = cond(j ≤ i, i, j). We introduced the

following abbreviation: i < j stands for i ≤ j ∧ i %= j. Then, by A11, we have that

i < j ∨ i = j ∨ j < i

To see this just note that i ≤ j propositionally implies (i ≤ j ∧ i %= j) ∨ i = j.

We now consider each of the three cases in i < j ∨ i = j ∨ j < i separately. If i = j,

then by A13, i ≤ j and j ≤ i, so cond(i ≤ j, j, i) = j and cond(j ≤ i, i, j) = i, where
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we used A17, but since i = j, using the equality axioms we have that cond(i ≤ j, j, i) =

cond(j ≤ i, i, j), and we are done.

Consider the case i < j. Then i ≤ j, so, by A17, cond(i ≤ j, j, i) = j. Now, if i < j,

then ¬j ≤ i. To see this, suppose that i < j ∧ j ≤ i. Then, i ≤ j ∧ i %= j ∧ j ≤ i, so,

by A13, i = j ∧ i %= j, contradiction. Thus ¬j ≤ i. From this we have, by A17, that

cond(j ≤ i, i, j) = j, and again, by equality axioms we are done.

The case j < i can be done similarly, and we are done. !

Now we can prove the commutativity of matrix addition:

T4 A + B = B + A

Proof. r(A + B) = max{r(A), r(B)} and by T3, this is equal to max{r(B), r(A)} =

r(B + A). Since addition of field elements is commutative (A22), we can conclude that:

e(A + B, i, j) = Aij + Bij = Bij + Aij = e(B + A, i, j). !

T5 max{i, max{j, k}} = max{max{i, j}, k}

T6 A + (B + C) = (A + B) + C

Proof. r(A + (B + C)) = max{r(A), r(B + C)} = max{r(A), max{r(B), r(C)}} and

by T5, max{r(A), max{r(B), r(C)}} = max{max{r(A), r(B)}, r(C)}, which is equal to

r((A + B) + C). Since addition of field elements is associative (A22), we have that:

e(A + (B + C), i, j) = Aij + (Bij + Cij) = (Aij + Bij) + Cij = e((A + B) + C, i, j) !

Before we prove the next theorem, we outline a strategy for proving claims about

matrices by induction on their size. The first thing to note is that it is possible to define

empty matrices (matrices with zero rows or zero columns), but we consider such matrices

to be special. Our theorems hold for this special case, by axioms A28 and E on page 26,

so we will always implicitly assume that it holds. Thus, the Basis Case in the inductive

proofs that will follow, is when there is one row (or one column). Therefore, instead of

doing induction on i (see page 28 for the Induction Rule), we do induction on j, where

i = j + 1.

Also note that the size of a matrix has two parameters: the number of rows, and the

number of columns. We deal with this problem as follows: suppose that we want to prove
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something for all matrices A. We define a new (constructed) matrix M(i, A) as follows:

first let d(A) be:

d(A) := cond(r(A), c(A), r(A) ≤ c(A))

that is, d(A) = min{r(A), c(A)}. Now let:

M(i, A) := λpq〈r(A)− d(A) + i, c(A)− d(A) + i, e(A, d(A)− i + p, d(A)− i + q)〉

that is, M(i, A) is the i-th principal submatrix of A. For example, if A is a 3× 5 matrix,

then M(1, A) is a 1× 3 matrix, with the entries from the lower-right corner of A.

To prove that a property P holds for A, we prove that P holds for M(1, A) (Basis

Case), and we prove that if P holds for M(i, A), it also holds for M(i + 1, A) (Induction

Step). From this we conclude, by the induction rule, that P holds for M(d(A), A), and

M(d(A), A) is just A. Note that in the Basis Case we might have to prove that P holds

for a row vector or a column vector, which is a k × 1 or a 1× k matrix, and this in turn

can also be done by induction (on k).

T7 Σ0kl = 0field

Proof. We prove this theorem in considerable detail, making use of the induction strategy

outlined above. Recall that 0kl abbreviates λpq〈k, l, 0field〉, so r(0kl) = k and c(0kl) = l,

and so d(0kl) is just min{k, l}. The matrix M(i, 0kl) is given by:

λpq〈k −min{k, l} + i, l −min{k, l} + i, e(0kl, min{k, l} − i + p, min{k, l} − i + q)〉

Since for all p, q we have e(0kl, min{k, l} − i + p, min{k, l} − i + q) = 0field, using the

equality rule we can show that M(i, 0kl) = 0(k−min{k,l}+i)(l−min{k,l}+i). Therefore, we now

want to show by induction on i that:

Σ0(k−min{k,l}+i)(l−min{k,l}+i) = 0field

Basis Case: i = 1. Depending on whether or not k ≤ l, 0(k−min{k,l}+i)(l−min{k,l}+i)

is a row vector of zeros, or a column vector of zeros. Assume first that k ≤ l, and

show that Σ01j = 0field, by induction on j. The Basis Case is j = 1, in which case

r(01j) = c(01j) = 1, so we can use A30 to conclude that Σ01j = e(01j , 1, 1) = 0field. For

the Induction Step, assume that Σ01j = 0field is true, for j ≥ 1. By A31, and making use

of the equality rule, we have that:

Σ01(j+1) = Σ01j + 0field
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By the induction hypothesis, Σ01j = 0field, and by A18, 0field +0field = 0field, and therefore

Σ01(j+1) = 0field. Now, with the induction rule we can conclude that Σ01j = 0field holds

for j = l − min{k, l} + 1. If k > l, we can prove the result with A32 (by simply taking

the transpose of 01j to prove that Σ0j1 = 0field).

Induction Step: Assume that Σ0(k−min{k,l}+i)(l−min{k,l}+i) = 0field holds for i ≥ 1, and

show that it holds for i + 1. To show this we use the equality axioms (to show that

λpq〈k − 1, l − 1, e(0kl, p, q)〉 = 0(k−1)(l−1)), and A33. Thus:

Σ0(k−min{k,l}+i+1)(l−min{k,l}+i+1) = Σ01(l−min{k,l}+i) + Σ0(k−min{k,l}+i)1

+ Σ0(k−min{k,l}+i)(l−min{k,l}+i)

The first two terms of the RHS are 0field by the Basis Case. The last term of the RHS is

0field by the induction hypothesis. Thus, by A18, Σ0(k−min{k,l}+i+1)(l−min{k,l}+i+1) = 0field.

Now using the induction rule, we conclude that Σ0(k−min{k,l}+i)(l−min{k,l}+i) = 0field holds

for i = min{k, l}, and therefore Σ0kl = 0field. !

The next theorems show that Ik has the required properties, i.e. it is indeed the

identity for matrix multiplication.

T8 AIc(A) = A and Ir(A)A = A

Proof. We just derive AIc(A) = A. First note that r(AIc(A)) = r(A). Now:

e(AIc(A), i, j) = λkl〈c(A), 1, Aik〉 · λkl〈r(Ic(A)), 1, (Ic(A))kj〉

= Σλpq〈max{c(A), r(Ic(A))}, 1, Aip(Ic(A))pj〉

= Σλpq〈c(A), 1, Aipcond(p = j, 1, 0)〉

Now we show that:

Aij = Σλpq〈c(A), 1, Aipcond(p = j, 1, 0)〉 (3.1)

Consider two cases: in the first case [i = 0 or r(A) < i or j = 0 or c(A) < j]. Then,

Aij = 0 and Aipcond(p = j, 1, 0) = 0, and by T7, we have that Σλpq〈c(A), 1, 0〉 = 0.

In the second case we assume [1 ≤ i ≤ r(A) and 1 ≤ j ≤ c(A)], and we prove

equation (3.1) by induction on c(A):

Basis Case: c(A) = 1. Then, by A30, the RHS of equation (3.1) is given by Ai1cond(1 =

j, 1, 0) which is just Aij , since if 1 ≤ j ≤ c(A) = 1, then j = 1.
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Induction Step: λpq〈c(A), 1, Aipcond(p = j, 1, 0)〉 is a column vector, and its transpose

is the row vector given by λqp〈1, c(A), Aipcond(p = j, 1, 0)〉. Now, using A31 and A32,

we can rewrite equation (3.1) as:

Aij = Σλqp〈1, c(A)− 1, Aipcond(p = j, 1, 0)〉+ Aic(A)

If j = c(A) we are done, and if not, we apply the Induction Hypothesis to Aij =

Σλqp〈1, c(A)− 1, Aipcond(p = j, 1, 0)〉. !

The next four theorems are auxiliary to proving the associativity of matrix multiplica-

tion (which is theorem T13 below). The main idea behind the derivation of associativity

of matrix multiplication is that we can sum all the entries of a matrix by summing along

the rows first, or, by summing along the columns first, and in both cases we obtain the

same result.

T9 Σ(cA) = cΣ(A)

T10 Σ(A + B) = Σ(A) + Σ(B)

In the next theorem we show that we can “fold” a matrix into a column vector, that

is, if we take Σ of each row, then the Σ of the resulting column vector is the same as

the Σ of the original matrix. Using standard matrix notation this can be expressed as

follows:

Σ





a11 . . . a1n

...
...

an1 . . . ann



 = Σ





Σ( a11 . . . a1n )
...

Σ( an1 . . . ann )





and formally, this can be stated as follows:

T11 ΣA = Σλij〈r(A), 1,Σλkl〈1, c(A), Ail〉〉

Proof. We prove this theorem by induction on the number of rows of A, that is by

induction on r(A). In the basis case, A has just one row, so we immediately have

Σ(A) = Σ((Σ(A))) by A30. Now the induction step. Suppose the claim holds for

r(A) < n. Then:

Σ





a11 . . . a1n

...
...

an1 . . . ann



 = Σ

(
a11 R

S M

)

= a11 + Σ(R) + Σ(S) + Σ(M)
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where we used (2.15). By the induction hypothesis:

Σ(M) = Σ





Σim1i

...

Σimni





Using linearity we combine a11 and Σ(R), and obtain

Σ
(

a11 r1 . . . rn

)
(3.2)

and we combine Σ(S) and Σ(M) to obtain

Σ





s1 + Σim1i

...

sn + Σimni



 (3.3)

and now, we use linearity one more time on (3.2) and (3.3) to obtain

Σ





a11 + Σiri

s1 + Σim1i

...

sn + Σimni




=





Σia1i

...

Σiani





which finishes the proof of the theorem. !

Now, the “folding” theorem above (T11), together with T12 below, can express the

fact that we can add up all the entries of a matrix by adding them along the rows first,

or, along the columns first, and obtain the same result.

T12 Σ(A) = Σ(At)

Proof. We prove it by induction on r(A). The proof is quite easy: By (2.15), Σ(At) =

a11 + Σ(St) + Σ(Rt) + Σ(M t). By A32, Σ(St) = Σ(S) and Σ(Rt) = Σ(R). Finally, by

the induction hypothesis, Σ(M t) = Σ(M), so indeed Σ(A) = Σ(At). !

We are finally ready to prove associativity of matrix multiplication, but first we intro-

duce some new notation to make the derivation more readable: instead of Σλij〈m, n, t〉
we will write

∑

i≤m,j≤n

t.

T13 A(BC) = (AB)C
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Proof. First note that: r(A(BC)) = r(A) = r(AB) = r((AB)C). Now, e(A(BC), i, j) is

given by:

λkl〈c(A), 1, e(A, i, k)〉︸ ︷︷ ︸
i

· λkl〈r(BC), 1, e(BC, k, j)〉︸ ︷︷ ︸
ii

and max{r(i), r(ii)} = max{c(A), r(BC)} = max{c(A), r(B)} and also max{c(i), c(ii)} =

max{1, 1} = 1. From this we have that e(A(BC), i, j) is given by:

∑

p≤max{c(A),r(B)},q≤1

Aip(BC)pj

and the (p, j)-th entry of BC is given by
∑

r≤max{c(B),r(C)},s≤1 BprCrj, which, by T12, is

equal to: ∑

s≤1,r≤max{c(B),r(C)}

BprCrj

So putting everything together we have that e(A(BC), i, j) is given by:

∑

p≤max{c(A),r(B)},q≤1

Aip




∑

s≤1,r≤max{c(B),r(C)}

BprCrj





and now using T9 we can put Aip inside the second Σ, and then “unfolding” (T11), we

obtain:

=
∑

p≤max{c(A),r(B)},r≤max{c(B),r(C)}

Aip(BprCrj)

and by associativity of multiplication of field elements (A25), and T12, we obtain:

=
∑

r≤max{c(B),r(C)},p≤max{c(A),r(B)}

(AipBpr)Crj

and “folding” back (T11 again), we obtain:

=
∑

r≤max{c(B),r(C)},q≤1

∑

s≤1,p≤max{c(A),r(B)}

(AipBpr)Crj

using T9 and commutativity of field multiplication (A23) we obtain:

=
∑

r≤max{c(B),r(C)},q≤1




∑

s≤1,p≤max{c(A),r(B)}

AipBpr



Crj

=
∑

r≤max{c(B),r(C)},q≤1

(AB)irCrj
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Which is just e((AB)C, i, j), and we are done. !

Finally, we show left and right distributivity, but first we need one more theorem for

the defined function max:

T14 max{i, max{j, k}} = max{max{i, j}, max{i, k}}

T15 A(B + C) = AB + AC

Proof. First note that r(A(B +C)) = r(A) = max{r(A), r(A)}, and since r(A) = r(AB)

and r(A) = r(AC), we have that this is equal to: max{r(AB), r(AC)} = r(AB + AC).

Now, e(A(B + C), i, j) is given by:

λkl〈c(A), 1, e(A, i, k)〉 · λkl〈r(B + C), 1, e(B + C, k, j)〉

=Σλrs〈max{c(A), r(B + C)}, 1, Air(B + C)rj〉

Now, using the distributivity of field multiplication (A26), we obtain:

=Σλrs〈max{c(A), max{r(B), r(C)}}, 1, AirBrj + AirCrj〉

we use T14 to show that:

max{c(A), max{r(B), r(C)}} = max{max{c(A), r(B)}, max{c(A), r(C)}}

and also T10 to conclude:

=Σλrs〈max{c(A), r(B)}, 1, AirBrj〉+ Σλrs〈max{c(A), r(C)}, 1, AirCrj〉

=e(AB, i, j) + e(AC, i, j)

and we are done. !

T16 (B + C)A = BA + CA

Similar to the derivation of left distributivity given above (T15).

3.1.2 Module properties

T17 (a + b)A = aA + bA

T18 a(A + B) = aA + aB

T19 (ab)A = a(bB)



Chapter 3. The Theorems of LA 40

3.1.3 Inner product

The following theorems show that our dot product is in fact an inner product:

T20 A · B = B · A

T21 A · (B + C) = A · B + A · C

T22 aA · B = a(A · B)

3.1.4 Miscellaneous theorems

T23 a(AB) = (aA)B ∧ (aA)B = A(aB)

T24 (AB)t = BtAt

T25 I t
k = Ik ∧ 0t

kl = 0lk

T26 (At)t = A

3.2 Hard matrix identities

In this section we present four matrix identities which we call hard matrix identities. They

are hard in the sense that they seem to require computing inverses in their derivations,

and therefore appear not to be provable in the theory LA.

AB = I, AC = I → B = C I

AB = I → AC %= 0, C = 0 II

AB = I → BA = I III

AB = I → AtBt = I IV

Identity I states that right inverses are unique, identity II states that units are not zero-

divisors, and identity III states that a right inverse is an inverse. Identity III was proposed

by Cook as a candidate for the separation of Frege and Extended Frege propositional proof

systems.

We conjecture that the identities I–IV are hard for Frege, however, it might be easier

to prove a weaker statement: the identities I–IV are independent of LA.
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It is interesting to note that matrix products cannot be expressed feasibly in bounded-

depth Frege (directly, without extension variables). This is essentially because the parity

function is hard for bounded-depth circuits1, and computing the (i, j)-th entry of AB

over Z2 is the same as computing PARITY(ai1b1j , . . . , ainbnj).

It is an open problem whether these identities can be proven in poly-bounded Frege

or even poly-bounded NCi-Frege, for any i. In Section 8.3 we show that hard matrix

identities can be proven in poly-bounded P/poly-Frege (i.e., in poly-bounded Extended

Frege).

It turns out that it is enough to show that one of these identities (we always choose

AB = I → BA = I) can be proven in poly-bounded Extended Frege, to conclude that all

four can be proven in poly-bounded Extended Frege. The reason is that their equivalence

can be shown with poly-bounded Frege proofs (in fact, as Theorem 3.2.1 below shows,

they can be proven equivalent in LA).

Theorem 3.2.1 LA proves the equivalence I ⇔ II ⇔ III ⇔ IV.

Proof. We show that I ⇒ II ⇒ III ⇒ IV ⇒ I.

I ⇒ II Assume AB = I ∧ AC = 0. By A4, AB + AC = I + 0, and by T1 and T15,

A(B + C) = I. Using I, B = B + C, so by T2, C = 0.

II ⇒ III Assume AB = I. By A1 and A4, (AB)A = IA, by T2, (AB)A + (−1)IA = 0,

by T13 and T23, A(BA) + A(−1)I = 0, and by T15, A(BA + (−1)I) = 0. By II,

BA + (−1)I = 0, and by T2, BA = I.

III ⇒ IV Assume AB = I. By III, BA = I, and by A29 and Eq, (BA)t = I t. By T24,

we obtain AtBt = I.

IV ⇒ I Assume AB = I∧AC = I. By T2 AB+(−1)AC = 0, by T23, AB+A(−1)C = 0,

by T15, A(B + (−1)C) = 0, by T13, (BA)(B + (−1)C) = 0. Now, using transpose

property T24, we get (B + (−1)C)t(BA)t = 0, and since AB = I, by IV, AtBt = I, so

by T24 again, (BA)t = I, so we obtain that (B + (−1)C)t = 0, so B + (−1)C = 0, so

B = C. !

Consider now the following identity due to C. Rackoff:

λij〈1, c(B), Bij〉 = 01c(B) → AB %= Ir(A) V

1See [SP95, Chapter 11] for a good presentation of the lower bound for the parity function due to
Furst, Saxe and Sipser. The original is in [FSS84, pp. 13–27].
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This identity states that if the top row of a matrix is zero, then the matrix cannot have

a left inverse, that is:

A





0 0 . . . 0


 %= I

Using the rank function (where rank(A) is the largest number of linearly independent

rows/columns of A), identity V can be proven as follows:

rank(AB) = min{rank(A), rank(B)}

Since B has the top row of zeros, rank(B) < c(B), so that rank(AB) < c(B). But

c(B) = r(A), so rank(AB) < rank(I), where I is the r(A)× r(A) identity matrix.

Lemma 3.2.1 LA proves that III implies V.

Proof. Suppose the top row of B is zero. Then the top row of BA is zero. If AB = I,

then by III, BA = I, so AB %= I. !

It is an open question whether III follows from V in LA, and it is also an open

question whether LA can prove V, which, somehow, seems to be a “weaker” identity

than the four identities above. Interestingly, it can be shown in LA that the Odd Town

Theorem follows from V.

The Odd Town Theorem2 states the following: Suppose a town has n citizens, and

that there is a set of clubs, each consisting of citizens, such that each club has an odd

number of members, and such that every two clubs have an even number of members in

common. Then there is no more than n clubs.

Lemma 3.2.2 LA proves that V implies the “Odd Town Theorem”.

Proof. We want the underlying field to be Z2, so we need the condition that a = 0∨a = 1.

Let A be the incidence matrix for the Odd Town problem, defined as follows: r(A) is

the number of clubs in Odd Town, and c(A) is the number of citizen in Odd Town, and,

if the assumption is true (i.e. each club has an odd number of members, and every two

clubs have an even number of members in common), then the (i, j)-th entry of AAt is

δij , so that AAt = Ir(A).

2See [BF92, page 9] for the “Odd Town Theorem” and many related combinatorial principles. Also
see [BBP94, page 5] for a discussion of hard combinatorial candidates for Frege from examples based on
Linear Programming—the authors mention the “Odd Town Theorem”.
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Suppose that r(A) > c(A). Then we can pad A with r(A)− c(A) columns of zeros,

and call the result A′. Then the first r(A)− c(A) rows of (A′)t consist of zeros. However

the (i, j) entry of (A′)(A′)t is the same as the (i, j) entry of AAt, i.e. (A′)(A′)t = Ir(A),

which according to V is a contradiction. This finishes the proof. !



Chapter 4

LA with Matrix Powering

In this chapter we expand LA by adding to it a new function, P, for computing powers of

matrices. We call the new theory LAP, and we give its precise definition in section 4.1.

Expressing powers of matrices allows us to define Berkowitz’s algorithm in the new

theory. Berkowitz’s algorithm, which we present in section 4.2, computes the coefficients

of the characteristic polynomial of a matrix A via iterated matrix product. That is,

Berkowitz’s algorithm computes the coefficients of the polynomial pA(x) = det(xI −A).

From pA(x) we can immediately obtain the adjoint of A, adj(A), and the determinant

of A, det(A). Therefore, Berkowitz’s algorithm allows us to compute and argue about

inverses.

Berkowitz’s algorithm is the fastest known algorithm1 for computing inverses and

determinants (it is an NC2 algorithm, while, for example, Gaussian Elimination is a

sequential polytime algorithm), and it yields itself to a natural and simple formalization

in our theory.

4.1 The theory LAP

4.1.1 Language

We have the same language as for LA, except for the new function symbol P, which is a

2-ary function where the first argument is of type index, and the second argument is of

1There are two other parallel algorithms for computing the coefficients of the char polynomial of a
matrix: Chistov’s algorithm and Csanky’s algorithm. Chistov’s algorithm is more difficult to formalize,
and Csanky’s algorithm works only for fields of characteristic 0; see [vzG93, section 13.4] for all the
details.

44
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type matrix. The intended meaning of P(m, A) is Am. We denote this new language by

LLAP.

4.1.2 Terms and formulas

We expand the definition of terms and formulas in LA given in section 2.2.1. The basis

case remains the same. In the induction step we add the following case:

10. If m is a term of type index, and T is a term of type matrix, then P(m, T ) is a term

of type matrix.

4.1.3 Axioms

We have the same axioms as in LA, that is A1–33, but we also add two new axioms that

define the behavior of P: A34 and A35, stated below.

In the definition of P we consider two cases: first we assume that m = 0, in which

case we want P(m, T ) to be the identity (axiom A34). In the second case, we assume

that m > 0, and compute P(m, T ) recursively (axiom A35).

A34 m = 0 → P(m, A) = Ir(A)

A35 → P(m+1, A) = P(m, A)∗A

Table 4.1: Axioms for P

We now define PK-LAP analogously to PK-LA. Since both definitions are so similar,

some explanatory details are omitted this time; see section 2.4 for more explanations.

Definition 4.1.1 We define the proof system PK-LAP to be a system of sequent calculus

proofs, where all the initial sequents are either of the form α → α (for a formula α over

LLAP), or are given by one of the axiom schemas A1–35, and all the other sequents (if

any) follow from their predecessor(s) in the tree by one of the rules for propositional

consequence, or by Ind, or by Eq.

Definition 4.1.2 The theory LAP is the set of sequents over LLAP which have PK-LAP

derivations.

Lemma 4.1.1 LA ⊆ LAP
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Proof. Immediate from the definitions of PK-LA and PK-LAP. !

4.2 Berkowitz’s algorithm

For a given matrix A, Berkowitz’s algorithm computes the coefficients of the characteristic

polynomial, pA(x), of A. In the context of the theory LAP, given an n× n matrix A, pA

is an (n + 1)× 1 column vector containing the coefficients of the char poly of A, that is

pA is
(

pn pn−1 . . . p0

)t
. The pi’s are the coefficients of the n-th degree polynomial

given by det(xI − A), but we will not prove this in our theories; we will prove the

properties of the char poly directly from the definition given by Berkowitz’s algorithm

(See definitions 4.2.2 and 4.2.3). We will also denote the coefficients of the char poly of

a matrix A by (pA)i, to avoid ambiguities.

The theory LAP has three types: indices, field elements, and matrices. Thus, it is not

possible to write a polynomial p(x) with an indeterminate x. So, we denote polynomials

by matrix variables, where the correspondence is the following:

polynomial p(x) = pnxn + pn−1x
n−1 + · · ·+ p0 ←→ column vector p =





pn

pn−1

...

p0





We can evaluate the polynomial p at field element or a matrix, using the dot product

(see (2.10) on page 19, for a definition of the dot product). So, p(a) is given by:

Σ(p · λij〈n + 1, 1, an+1−i〉)

(see (4.11), page 54, for the definition of an+1−i), and p(A) (where A is assumed to be

n× n, but this is not a crucial assumption) is given by:

λij〈n, n, e(p · λkl〈n, 1, e(P(n− k, A), i, j)〉, i, j〉

The usual properties of polynomials, for example (p + q)(a) = p(a) + q(a) or (c · p)(a) =

c · (p(a)), are easy to prove in LAP.

Berkowitz’s algorithm is based on Samuelson’s identity, and we present the construc-

tion of Berkowitz’s algorithm from Samuelson’s identity (and Lemma 4.2.2 due to Paul

Beame) in the next section. This construction relies on the cofactor expansion, and the
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definition of the char poly given by pA(x) = det(xI − A). This construction provides

a proof of correctness, which unfortunately is infeasible; it is infeasible because it relies

on an infeasible proof of the cofactor expansion of the determinant, and on an infeasible

proof of the Cayley-Hamilton Theorem (in order to prove Lemma 4.2.2).

4.2.1 Samuelson’s identity

We follow Berkowitz’s paper ([Ber84]), but we make some modifications (for example,

we define the char poly to be det(xI − A) rather than det(A − xI)). The main idea

behind Berkowitz’s algorithm is Samuelson’s identity, which relates the char polynomial

of a matrix to the char polynomial of its principal submatrix. Thus, the coefficients of

the char polynomial of an n×n matrix A below are computed in terms of the coefficients

of the char polynomial of M :

A =

(
a11 R

S M

)

where R, S and M are 1×(n−1), (n−1)×1 and (n−1)×(n−1) submatrices, respectively.

Lemma 4.2.1 (Samuelson’s Identity) Let p(x) and q(x) be the char polynomials of

A and M , respectively. Then:

p(x) = (x− a11)q(x)− R ∗ adj(xI −M) ∗ S

Recall that the adjoint of a matrix A is the transpose of the matrix of cofactors of A; that

is, the (i, j)-the entry of adj(A) is given by (−1)i+j det(A[j|i]). Also recall that A[k|l] is

the matrix obtained from A by deleting the k-th row and the l-th column. We also make

up the following notation: A[−|l] denotes that only the l-th column has been deleted.

Similarly, A[k|−] denotes that only the k-th row has been deleted, and A[−|−] = A.

Proof.

p(x) = det(xI −A)

= det

(
x− a11 −R

−S xI −M

)

using the cofactor expansion along the first row:

= (x− a11) det(xI −M) +
n−1∑

j=1

(−1)j(−rj) det(−S(xI −M)[−|j]︸ ︷︷ ︸
(∗)

)
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where R = (r1r2 . . . rn−1), and the matrix indicated by (∗) is given as follows: the first

column is S, and the remaining columns are given by (xI − M) with the j-th column

deleted. We expand det(−S(xI−M)[−|j]) along the first column, i.e., along the column

S = (s1s2 . . . sn−1)T :

= (x− a11)q(x) +
n−1∑

j=1

(−1)j(−rj)
n−1∑

i=1

(−1)i+1(−si) det(xI −M)[i|j]

and rearranging:

= (x− a11)q(x)−
n−1∑

i=1

(
n−1∑

j=1

rj(−1)i+j det(xI −M)[i|j]
)

si

= (x− a11)q(x)− R ∗ adj(xI −M) ∗ S

and we are done. !

Lemma 4.2.2 Let q(x) = qn−1xn−1 + · · · + q1x + q0 be the char polynomial of M , and

let:

B(x) =
n∑

k=2

(qn−1M
k−2 + · · · + qn−k+1I)xn−k (4.1)

Then B(x) = adj(xI −M).

Example 4.2.1 If n = 4, then

B(x) = Iq3x
2 + (Mq3 + Iq2)x + (M2q3 + Mq2 + Iq1)

Proof. First note that:

adj(xI −M) ∗ (xI −M) = det(xI −M)I = q(x)I

Now multiply B(x) by (xI − M), and using the Cayley-Hamilton Theorem, we can

conclude that B(x) ∗ (xI −M) = q(x)I. Thus, the result follows as q(x) is not the zero

polynomial; i.e., (xI −M) is not singular. !

From Lemma 4.2.1 and Lemma 4.2.2 we have that:

p(x) = (x− a11)q(x)−R ∗B(x) ∗ S (4.2)
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4.2.2 Expressing the char poly as a product of matrices

Using (4.2), we can express the char poly of a matrix as iterated matrix product. Again,

suppose that A is of the form: (
a11 R

S M

)

Definition 4.2.1 We say that an n×m matrix is Toeplitz if the values on each diagonal

are the same. We say that a matrix is upper triangular if all the values below the main

diagonal are zero. A matrix is lower triangular if all the values above the main diagonal

are zero.

If we express equation (4.2) in matrix form we obtain:

p = C1q (4.3)

where C1 is an (n +1)×n Toeplitz lower triangular matrix, and where the entries in the

first column are defined as follows:

ci1 =






1 if i = 1

−a11 if i = 2

−(RM i−3S) if i ≥ 3

(4.4)

Example 4.2.2 If A is a 4× 4 matrix, then p = C1q is given by:





p4

p3

p2

p1

p0





=





1 0 0 0

−a11 1 0 0

−RS −a11 1 0

−RMS −RS −a11 1

−RM2S −RMS −RS −a11









q3

q2

q1

q0





Berkowitz’s algorithm consists in repeating this for q, and so on, and eventually

expressing p as a product of matrices:

p = C1C2 · · ·Cn

Definition 4.2.2 (Berkowitz’s algorithm) Let A be an n × n matrix. Berkowitz’s

algorithms computes an (n + 1)× 1 column vector pA as follows:
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Let Cj be an (n + 2 − j) × (n + 1 − j) Toeplitz and lower-triangular matrix, where

the entries in the first column are define as follows:





1 if i = 1

−ajj if i = 2

−RjM
i−3
j Sj if 3 ≤ i ≤ n + 2− j

(4.5)

where Mj is the j-th principal submatrix, so M1 = A[1|1], M2 = M1[1|1], and in general

Mj+1 = Mj [1|1], and Rj and Sj are given by:
(

aj(j+1) aj(j+2) . . . ajn

)
and

(
a(j+1)j a(j+2)j . . . anj

)t

respectively (see Figure 4.1). Then pA = C1C2 · · ·Cn.

M j

jR

jS

jja

Figure 4.1: ajj, Rj, Sj, Mj

Note that Berkowitz’s algorithm is field independent (there are no divisions in the com-

putation of pA), and therefore, since Berkowitz’s algorithm is a cornerstone of our theory

of Linear Algebra, all our results are field independent.

The following definitions (characteristic polynomial, adjoint, and determinant), are

definitions in terms of Berkowitz’s algorithm. We will show later that the adjoint and the

determinant, defined from Berkowitz’s algorithm, correspond to the usual definitions of

the adjoint and the determinant. Corollary 6.3.1 states that LAP proves, from the cofactor

expansion, that the usual definition of the adjoint (as a matrix of cofactors) corresponds

to the definition of the adjoint from Berkowitz’s algorithm. Since the cofactor expansion

formula follows from the Cayley-Hamilton Theorem (see Chapter 6 for all these results),

and we give a feasible proof of the Cayley-Hamilton Theorem (Chapter 8), we also have

a feasible proof of the fact that the usual definition of the adjoint corresponds to the

definition in terms of Berkowitz’s algorithm. Same comments apply to the determinant.
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Definition 4.2.3 (Characteristic polynomial) We want to define the characteristic

polynomial (char poly) in terms of Berkowitz’s algorithm. To be precise, we define

the coefficients of the char poly, for a given matrix A, to be the output of Berkowitz’s

algorithm, i.e., to be the entries of the column vector pA = C1C2 · · ·Cn. We define the

char poly, for a given matrix A, to be the polynomial whose coefficients are the output

of Berkowitz’s algorithm. In practice we do not make this distinction, and when we say

char poly, we mean both the column vector of coefficients given by Berkowitz’s algorithm,

and the polynomial pA(x) with these coefficients.

This definition of the char polynomial corresponds to the true char polynomial in the

following sense: the output of Berkowitz’s algorithm is a column vector p, given by:

(
pn pn−1 . . . p0

)t

where pi is the coefficient of xi in det(xI −A).

Definition 4.2.4 (Adjoint) Let p be the char poly of A. Then the adjoint of A, denoted

adj(A), is defined as follows:

adj(A) := (−1)n−1(pnAn−1 + pn−2A
n−3 + . . . + p1I) (4.6)

Note that this definition of the adjoint is equivalent to the usual definition of the adjoint

in terms of determinants of minors; see Lemma 6.3.2, where we show that LAP proves

(from the C-H Theorem) that our adjoint is equal to the adjoint given by the transpose

of the matrix of cofactors.

Definition 4.2.5 (Determinant) Let p be the char poly of A. Then the determinant

of A, denoted det(A), is defined as follows:

det(A) := (−1)np0 (4.7)

This definition of the determinant is equivalent to the usual definition given in terms

of the cofactor expansion formula; see Section 6.1 where we show that our definition of

the determinant satisfies the axiomatic definition of the determinant, and hence the det

function computed by Berkowitz’s algorithm is the true det function.

When proving results by induction on the size of matrices, we will often use the

following identity:

det(A) = a11 det(M)− Radj(M)S (4.8)
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We prove this identity in Lemma 5.1.3 (in fact, we show that LAP can prove this identity).

This identity is just Samuelson’s Identity (Lemma 4.2.1) with x replaced by zero, however,

Samuelson’s Identity uses the “traditional” definition of the adjoint in terms of cofactors,

and equation (4.8) uses our definition of the adjoint (as in Definition 4.2.4). At this

point we do not have a feasible proof of Samuelson’s Identity (we will have it when we

prove the Cayley-Hamilton feasibly in Chapter 8), so at this point we cannot conclude

(feasibly) equation (4.8) by letting x = 0 is Samuelson’s identity.

4.2.3 Expressing the char poly in LAP

The point of introducing the new symbol P into LA is that we can now express iterated

matrix products. Let A1, A2, . . . , Am, be a sequence of square matrices of equal size (if

they are not of equal size they can be padded with zeros, and the actual product can be

extracted from the product of the padded matrices at the end). To compute the iterated

matrix product A1A2 · · ·Am, we place these matrices into a single big matrix C, above

the main diagonal of C. More precisely, assume that the Ai’s are n× n matrices. Then,

C is a (m + 1)n× (m + 1)n matrix of the form:





0 A1 0 · · · 0

0 0 A2 · · · 0

0 0 0
. . . 0

0 0 0 · · · Am

0 0 0 · · · 0





Now, compute Cm. The product A1A2 . . . Am is the n× n upper-right corner of Cm.

Given a matrix A, we compute its char poly pA as follows:

pA := λij〈n + 1, 1, e(P(n, D(A)), i, n(n + 1))〉 (4.9)

where n := max{r(A), c(A)} (so in effect, if A is not a square matrix we compute the

char poly of its padded version), and where D(A) is the following matrix:

D(A) :=





0 C(1, A) 0 · · · 0

0 0 C(2, A) · · · 0

0 0 0
. . . 0

0 0 0 · · · C(n, A)

0 0 0 · · · 0




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that is, D consists of (n + 1) × (n + 1) blocks of size (n + 1) × (n + 1) each, and all

these blocks, except those which are above the main diagonal, are zero. Therefore, when

we raise this matrix to the n-th power, we obtain the product of the C(k, A)’s in the

upper-right corner; hence P(n, D(A)) in (4.9).

In the definition of Berkowitz’s algorithm, we see that the matrices C1, . . . , Cn are of

different sizes.

Example 4.2.3 If n = 3 then C1, C2, C3 look as follows:

, ,

We want the C(k, A)’s to be square matrices of the same size to be able to define D(A),

so we pad them with zeros to convert them to (n + 1)× (n + 1) matrices.

Example 4.2.4 After the padding, the matrices from example 4.2.3 look as follows:

0

0

0

0 ,

0 0

0 0

0 0

0 0 0 0 ,

0 0 0

0 0 0

0 0 0 0

0 0 0 0

Formally, C(k, A) := λij〈n + 1, n + 1,

cond(i ≤ k + 1 ∨ j ≤ k,






0 i < j

1 i = j

−Akk i = j + 1

e(−R(A, k) ∗ P(M(A, k), i− 3) ∗ S(A, k), 1, 1) j + 2 ≤ i






, 0〉

Note that the expression between “{” and “}” can be given formally with four nested

conditionals, and the defined matrix terms R, M, and S, are given as follows:

R(A, k) := λij〈n− k, 1, cond(i = 1, e(A, k, k + j), 0)〉

S(A, k) := λij〈n− k, 1, cond(j = 1, e(A, k + i, k), 0)〉

M(A, k) := λij〈n− k, n− k, e(A, k + i, k + j)〉

(4.10)
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In (2.12) we already defined R, S, M, but for the case where k = 1. The new definitions

in (4.10) extend R, S, M to all the values of k.

Example 4.2.5 Suppose that

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33





Then:

R(A, 1) := λij〈2, 1, cond(i = 1, e(A, 1, 1 + j), 0)〉 =
(

a12 a13

)

S(A, 1) := λij〈2, 1, cond(j = 1, e(A, 1 + i, 1), 0)〉 =

(
a21

a31

)

M(A, 1) := λij〈2, 2, e(A, 1 + i, 1 + j)〉 =

(
a22 a23

a32 a33

)

We define D(A) to be a n(n + 1)× n(n + 1) matrix where the (i, j)-th entry is given by:

cond(div(i, n + 1) + 1 = div(j, n + 1), e(C(div(i, n + 1), A), rem(i, n), rem(j, n)), 0)

We used the quotient function div and the reminder function rem to compute the entries

of D(A). Recall that D(A) consists of (n + 1) × (n + 1) blocks, each block of size (n +

1)× (n+1), and that only the blocks above the blocks on the main diagonal are possibly

non-zero. This means that the (i, j)-th entry of D(A) is zero unless

i = (n + 1) ∗ q1 + r1 0 ≤ r1 < n + 1

j = (n + 1) ∗ q2 + r2 0 ≤ r2 < n + 1

and q1 + 1 = q2 (which ensures that we are in the q1-th block above the blocks on the

main diagonal), and in that block we are considering the (r1, r2)-th entry.

4.2.4 Expressing adj and det in LAP

We can define the adjoint and the determinant in LAP. First we define tn for a general

field term t and a general index term n as follows:

tn := e(P(n, λij〈1, 1, t〉), 1, 1) (4.11)
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The idea is that tn is the (only) entry of the n-th power of the matrix (t), i.e. (t)n = (tn).

Now note that the (i, j)-th entry of adj(A) is (−1)n times the dot product of:




pn

pn−1

...

p1




and





e(An−1, i, j)

e(An−2, i, j)
...

e(In, i, j)




(4.12)

where the matrix on the left is just pA (without the last entry, p0), so the adjoint is given

by:

adj(A) := (−1)n−1λij〈n, n, e(pA · λkl〈n, 1, e(An−k, i, j)〉, i, j)〉

and the determinant is simply given by:

det(A) := (−1)ne(pA, n + 1, 1)

where e(pA, n + 1, 1) is p0, i.e. the constant coefficient of the char poly of the matrix A.

4.3 Berkowitz’s algorithm and clow sequences

Clow sequences provide a simple way of understanding the computations in Berkowitz’s

algorithm. It turns out (and this is an observation due to Valiant, see [Val92, Section 3])

that Berkowitz’s algorithm computes sums of restricted clow sequences. Clow sequences

are easy to define (they are just generalized permutations), and it is not difficult to see

how Berkowitz’s algorithm computes sums of clow sequences.

Besides giving us insight into Berkowitz’s algorithm, clow sequences are a potential

tool for proving the Cayley-Hamilton Theorem directly in LAP (thus far, we only have a

polytime proof of the C-H Theorem, given in Chapter 8). This is especially interesting in

light of a dynamic programming algorithm for computing clows, given in [MV97, Table 1].

If we could somehow prove the correctness of this algorithm in LAP, we could use it to

prove the C-H Theorem in LAP. So far this is only speculation, but the point is that

maybe a “clow sequences approach” to the determinant could prove the C-H Theorem

in NC2, rather than in polytime.

A substantial part of the material in the rest of this section comes from [MV97] where

the authors build upon a purely combinatorial interpretation of the Cayley-Hamilton

Theorem given in [Str83]. Unfortunately, the combinatorial proof of the C-H Theorem

given in [Str83] is infeasible.
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Recall the Lagrange expansion for the determinant:

det(A) =
∑

σ∈Sn

sign(σ)a1σ(1) · · ·anσ(n)

The summation is over all permutations on n elements. The sign of a permutation σ,

sign(σ), is defined as follows:

sign(σ) = (−1)number of transpositions in σ

To move to a combinatorial setting, we interpret σ ∈ Sn as a directed graph Gσ on n

vertices.

Example 4.3.1 The permutation given by:

σ =

(
1 2 3 4 5 6

3 1 2 4 6 5

)

corresponds to the directed graph Gσ given by Figure 4.2 below.

1 2 3 4 5 6

Figure 4.2: Gσ

Given a matrix A, define the weight of Gσ, w(Gσ), as the product of aij ’s such that

(i, j) ∈ Gσ. Consider Gσ given by Figure 4.2: w(Gσ) = a13a32a21a44a56a65. Thus, using

this new terminology:

det(A) =
∑

σ∈Sn

sign(σ)w(Gσ)

The Lagrange expression cannot be converted directly into an efficient algorithm for

the determinant, because the summation is over n! monomials.

Any efficient algorithm should implicitly count over all monomials; the bottleneck in

doing so directly is that permutations are not easily “factorizable” to allow for a simple

implementation. We will get around this problem by enlarging the summation from cycle

covers to clow sequences.
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Definition 4.3.1 A clow is a walk (w1, . . . , wl) starting from vertex w1 and ending at

the same vertex, where any (wi, wi+1) is an edge in the graph. Vertex w1 is the least-

numbered vertex in the clow, and it is called the head of the clow. We also require that

the head occur only once in the clow. This means that there is exactly one incoming

edge (wl, w1), and one outgoing edge (w1, w2) at w1, and wi %= w1 for i %= 1. The length

of a clow (w1, . . . , wl) is l.

Example 4.3.2 Consider the clow C given by (1, 2, 3, 2, 3) on four vertices. The head

of clow C is vertex 1, and the length of C is 6. See Figure 4.3.

1 2 3 4 5

Figure 4.3: Clow C

Definition 4.3.2 A clow sequence is a sequence of clows (C1, . . . , Ck) with the following

two properties: (i) The sequence is ordered by the heads: head(C1) < . . . < head(Ck).

(ii) The total number of edges, counted with multiplicity, adds to n; that is, the lengths

of the clows add up to n.

Note that a cycle cover is a special type of a clow sequence.

We will now show how to associate a sign with a clow sequence that is consistent

with the definition of the sign of a cycle cover. The sign of a cycle cover can be shown

to be (−1)n+k, where n is the number of vertices in the graph, and k is the number of

components in the cycle cover.

Definition 4.3.3 We define the sign of a clow sequence to be (−1)n+k where n is the

number of vertices in the graph, and k is the number of clows in the sequence.

Example 4.3.3 We list the clow sequences associated with the three vertices {1, 2, 3}.
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We give the sign of the corresponding clow sequences in the right-most column:

1. (1), (2), (3) (−1)3+3 = 1

2. (1, 2), (3) (−1)3+2 = −1

3. (1, 2, 2) (−1)3+1 = 1

4. (1, 2), (2) (−1)3+2 = −1

5. (1), (2, 3) (−1)3+2 = −1

6. (1, 2, 3) (−1)3+1 = 1

7. (1, 3, 3) (−1)3+1 = 1

8. (1, 3), (3) (−1)3+2 = −1

9. (1, 3, 2) (−1)3+1 = 1

10. (1, 3), (2) (−1)3+2 = −1

11. (2, 3, 3) (−1)3+1 = 1

12. (2, 3), (3) (−1)3+2 = −1

Notice that the number of permutations on 3 vertices is 3! = 6, and indeed, the clow

sequences {3, 4, 7, 8, 11, 12} do not correspond to cycle covers. Notice that we listed these

clow sequences which do not correspond to cycle covers by pairs: {3, 4}, {7, 8}, {11, 12}.
Consider the first pair: {3, 4}. We will later define the weight of a clow (simply the

product of the labels of the edges), but notice that clow sequence 3 corresponds to

a12a22a21 and clow sequence 4 corresponds to a12a21a22, which is the same value; however,

they have opposite signs, so they cancel each other out. Same for pairs {7, 8} and

{11, 12}. We make this informal observation precise with the following definitions, and

in Theorem 4.3.1 we show that clow sequences which do not correspond to cycle covers

cancel out.

We will associate a weight with a clow sequence that is consistent with the contribu-

tion of a cycle cover.

Definition 4.3.4 The weight of a clow C, w(C), is the product of the weights of the

edges in the walk while accounting for multiplicity.

Example 4.3.4 Given a matrix A, the weight of clow C in example 4.3.2 is given by:

w((1, 2, 3, 2, 3)) = a12a
2
23a32a31

Definition 4.3.5 The weight of a clow sequence C = (C1, . . . , Ck) is:

w(C) =
k∏

i=1

w(Ci).
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Theorem 4.3.1

det(A) =
∑

C is a clow sequence

sign(C)w(C)

Proof. The idea of the proof of Theorem 4.3.1 (see [MV97, pp. 5–8]) is that clow sequences

which are not cycle covers cancel out. !

In [Val92, Section 3] Valiant points out that Berkowitz’s algorithm computes sums of

certain clow sequences; it computes the sums of clow sequences whose first head is the

first vertex. Since the heads are ordered, if the first head is not the first vertex, then the

given clow sequence is not a cycle cover (i.e., not a permutation), and hence it cancels

out at the end, so sums of clow sequences with this restriction still compute correctly the

determinant, and other coefficients of the characteristic polynomial.

More precisely, let A be an n×n matrix, and let pn, pn−1, . . . , p0 be the coefficients of

the char poly of A as computed by Berkowitz’s algorithm. Then, pn is the sum of clow

sequences of length 0, pn−1 is the sum of clow sequences of length 1, and in general pn−i

is the sum of clow sequences of length i. In particular, p0 is the determinant of A. Vertex

1 is the first head in the clow sequences computing each pn−i (i > 0), and vertex 2 is the

first head in the clow sequences computing each q(n−1)−j (j > 0), where the q(n−1)−j ’s are

the coefficients of the char polynomial of M = A[1|1], etc.

We illustrate these computations with an example where A is a 3× 3 matrix.

Example 4.3.5 Suppose that A is a 3×3 matrix, M = A[1|1] as usual, and p3, p2, p1, p0

are the coefficients of the char poly of A and q2, q1, q0 are the coefficients of the char poly

or M , computed by Berkowitz’s algorithm. Thus:




p3

p2

p1

p0




=





1 0 0

−a11 1 0

−RS −a11 1

−RMS −RS −a11









q2

q1

q0



=





q2

−a11q2 + q1

−RSq2 − a11q1 + q0

−RMSq2 −RSq1 − a11q0





(4.13)

The coefficients q2, q1, q0 are computed by clow sequences on M , that is, by clow sequences

on vertices {2, 3}, where the head of the first clow is always 2. See Figure 4.4. Since q2

is the sum of clows of length zero (and 1 by default), so is p3. Now consider p2, which by

definition is supposed to be the sum of clow sequences of length one on all three vertices,

where the head of the first clow is vertex 1; see Figure 4.5. But this is the sum of clow

sequences of length one on vertices 2 and 3 (i.e., q1), plus the clow of length one on vertex
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1 2 3

clows on A

clows on M

Figure 4.4: Clows on A and M = A[1|1]

1, which is just a11. All these clows have sign −1, hence the sum is −a11q2 + q1 (again,

q2 = 1).

1 2 3

Figure 4.5: Clows of length one on all three vertices

Consider p1: since p1 = p3−2, it follows that it is the sum of clow sequences of length

two. We are going to show now how the term −RSq2 − a11q1 + q0 computes the sum of

all these clow sequences.

There is just one clow of length two on vertices 2 and 3, it corresponds to q0 and it

is shown in Figure 4.6.

1 2 3

Figure 4.6: The single clow of length two on vertices 2 and 3

There are two clows of length two which include a self loop at vertex 1. These clows

correspond to the term −a11q1. Note that the negative sign comes from the fact that

q1 has a negative value, but the parity of these clows is even. Both clows are shown in

Figure 4.7.

Finally, we consider the clow sequences of length two, where there is no self loop at

vertex 1. Since vertex 1 must be included, there are only two possibilities, both shown
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1 2 3

1 2 3

Figure 4.7: Clows of length two with a self loop at vertex 1

on Figure 4.8. These clows correspond to the term −RSq2 which is equal to:

−
(

a12 a13

)(
a21

a31

)
= −a12a21 − a13a31

since q2 = 1.

1

1

2

2

3

3

Figure 4.8: Clows of length two without a self loop at vertex 1

We do not show how to get p0, but hopefully at this point the idea is clear.



Chapter 5

The Characteristic Polynomial

In Chapter 4 we showed that the char poly can be expressed as a term over LLAP. In this

chapter we study the properties of the char poly that can be proven in LAP. In particular

we show that we LAP proves the Cayley-Hamilton Theorem, and the multiplicativity of

the determinant, for triangular matrices. It is an open question whether LAP can prove

these properties for general matrices1.

In Section 5.1 we prove some basic results in LAP that will be useful later. We

also prove (in LAP) properties of the char poly which do not depend on the matrices

being triangular. In Section 5.3 we show that hard matrix identities follow from the C-H

Theorem (in LAP).

The most important property of the characteristic polynomial (char poly) is stated

by the Cayley-Hamilton Theorem (C-H Theorem) which says the following: if pA is the

char poly of A, then pA(A) = 0. That is, the C-H Theorem states that the characteristic

polynomial of A is an annihilating polynomial of A. In general, we say that p is an

annihilating polynomial of a square matrix A, if:

p(A) = pnAn + pn−1A
n−1 + · · · + p1A + p0I = 0 = the zero matrix

We can also state the C-H Theorem as:

Aadj(A) = adj(A)A = det(A)I (5.1)

given our definition of the adjoint (see (4.6) on page 51).

1In Chapter 6 we show that LAP also proves the equivalence of some of the fundamental principles of
Linear Algebra (for general matrices); see Table 6.1 on page 71. In Chapter 8 we show that the extension
∀LAP of LAP can prove the C-H Theorem (for general matrices), and therefore the C-H Theorem has a
feasible proof, as ∀LAP can be interpreted in a standard poly-time theory.

62



Chapter 5. The Characteristic Polynomial 63

We define the correctness of Berkowitz’s algorithm to be the following property: given

a matrix A, the polynomial obtained from Berkowitz’s algorithm, pA, is an annihilating

polynomial of A. As a small clarification, note that for a matrix A, the output of

Berkowitz’s algorithm is a column vector, so when we say that “pA is obtained from

Berkowitz’s algorithm”, we mean that the coefficients of pA are given by the entries of

this column vector.

Thus, the correctness of Berkowitz’s algorithm is the mechanism for proving the C-H

Theorem; we define the polynomial computed by Berkowitz’s algorithm to be the char

poly, and hence, if we prove that it is an annihilating poly, then we also prove the C-H

Theorem.

Another crucial property of the char poly is the multiplicativity of the determinant,

(the determinant is defined from the constant coefficient of the char poly; see (4.7) on

page 51) given by the identity:

det(AB) = det(A) det(B) (5.2)

The provability of (5.1) and (5.2), and other properties, is the subject of the next chapters.

It turns out that while we can prove (5.1) and (5.2) for triangular matrices (see Section 5.2

of this chapter), we need to extend LAP to ∀LAP (which is LAP with induction on

formulas with universally quantified matrix variables) in order to prove (5.1) and (5.2)

for general matrices.

5.1 Basic properties

In this section we prove some basic results in LAP.

Lemma 5.1.1 LAP proves that anam = an+m and AnAm = An+m.

Proof. Both claims can be proven by induction on n. The Basis Case is when n = 0,

so that n + m = m. Using (4.11) we have that a0 := e(P(0, λij〈1, 1, a〉), 1, 1), and by

A34, we have that P(0, λij〈1, 1, a〉) = Ir(λij〈1,1,a〉) = I1, so that a0 = e(I1, 1, 1) = 1, and

1 · am = am and a0+m = am. For the Induction Step assume that the claim holds for n

and show that it holds for n + 1. Using A35, and the associativity of addition of index

elements, we can easily show that a(n+1)+m = an+ma, and an+1am = anaam = anama,

which is an+ma, by the induction hypothesis. Proving that AnAm = An+m is similar. !
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Lemma 5.1.2 LAP proves that (−1)even power = 1.

Proof. From (4.11) we know that (−1)2n := e(P(2n, λij〈1, 1, (−1)〉), 1, 1). So, we are

going to prove by induction on n that e(P(2n, λij〈1, 1, (−1)〉), 1, 1) = 1. The Basis

Case is n = 0, so using A34, we get P(0, λij〈1, 1, (−1)〉) = Ir(λij〈1,1,(−1)〉) = I1, and

e(I1, 1, 1) = 1. For the Induction Step, suppose that n > 0. Using basic index

operations we have that 2n = 2(n − 1) + 2. Using the IH we have that (−1)2(n−1) = 1,

and by basic arguments we have that (−1)2 = 1. Now using Lemma 5.1.1, we have that

1 = (−1)2(n−1)(−1)2 = (−1)2(n−1)+2 = (−1)2n and we are done. !

Let pA denote (as usual) the char poly of A as computed by Berkowitz’s algorithm.

Let (pA)i denote the i-th coefficient of the char poly pA.

Lemma 5.1.3 LAP proves that for any A, det(A) = a11 det(M)− Radj(M)S.

Proof. We use Definitions 4.2.4 and 4.2.5, that is the definitions of the adjoint and the

determinant given in terms of Berkowitz’s algorithm.

det(A) = (−1)n(pA)0

by definition of the determinant,

= (−1)n(−a11(pM)0 − (−1)n−2Radj(M)S)

from Berkowitz’s algorithm, and the definition of the adjoint—this is how we compute

(pA)0 from pM ,

= a11(−1)n−1(pM)0 − Radj(M)S

by manipulating powers of (−1) and by Lemma 5.1.2, (−1)even power = 1,

= a11 det(M)− Radj(M)S

This argument can be clearly formalized in LAP. !

Lemma 5.1.4 LAP proves that for any A, (pA)n = 1, i.e., pA is a monic polynomial of

degree n.
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Proof. This can be easily proven by induction on n; just note that the top entry of

the first column of any Ci (recall that pA = C1C2 · · ·Cn) is 1, and the Ci’s are lower

triangular. Thus, the top entry of CiCi+1 · · ·Cn is always 1. More formally, suppose that

(pM)n−1 = 1. By Berkowitz’s algorithm, (pA)n = (pM)n−1 and we are done. !

Lemma 5.1.5 LAP proves that for any A, (pA)n−1 = −tr(A) = −
∑n

i=1 aii.

Proof. This can also be proven easily by induction on n. So suppose that the claim

holds for M , that is, (pM)n−2 = −tr(M). From Berkowitz’s algorithm we can see that

(pA)n−1 = −a11 · (pM)n−1 + 1 · (pM)n−2. By Lemma 5.1.4, (pM)n−1 = 1 and by the

induction hypothesis (pM)n−2 = −tr(M), so (pA)n−1 = −a11 − tr(M) = −tr(A). !

The matrix Iij is obtained from the identity matrix by interchanging the i-th and the

j-th rows. The effect of multiplying A on the left by Iij is that of interchanging the i-th

and the j-th rows of A. On the other hand, AIij is A with the i-th and j-th columns

interchanged. We sometimes abbreviate Ii(i+1) by Ii. In Section 6.1 we show that:

Iij = Ii(i+1)I(i+1)(i+2) · · · I(j−1)jI(j−1)(j−2) · · · I(i+1)i

that is: any permutation can be written as a product of transpositions; see proof of the

Corollary 6.1.1.

Lemma 5.1.6 LAP proves that, for i %= j, det(Iij) = −1.

Proof. We prove the lemma by induction on the size of Iij. Suppose first that i, j > 1.

Then:

Iij =

(
1 0

0 I(i−1)(j−1)

)

where I(i−1)(j−1) is of size one less than Iij. By Berkowitz’s algorithm we have that

det(Iij) = det(I(i−1)(j−1)), and by the Induction Hypothesis, det(I(i−1)(j−1)) = −1, so we

are done in this case.

Otherwise, suppose that i = 1, j > 1. From Berkowitz’s algorithm we have that:

det(I1j) = 0 · det(I1j[1|1])− ejadj(I1j [1|1])ej

and adj(I1j [1|1]) is a matrix of zeros, except for the (j, j)-th position where it has a 1.

To show this we argue by induction on the size of I1j[1|1] (it is not a difficult proof using
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the definition of the adjoint, and the fact that I1j [1|1] is a “constant” matrix of 1s on the

diagonal, zeros everywhere else, except for a single zero in the (j, j) position). From this

we have that det(I1j) = −1 as required. !

Lemma 5.1.7 LAP proves that A and At have the same char poly, i.e., pA = pAt .

Proof. The proof is by induction on the size of A. The Basis Case is trivial because

(a)t = (a). Suppose now that A is an n × n matrix, n > 1. By the IH we know that

pM = pM t . Furthermore, if we consider the matrix C1 in the definition of Berkowitz’s

algorithm, we see that the entries 1 and −a11 do not change under transposition of A, and

also, since S(M t)kR is a 1×1 matrix, it follows that S(M t)kR = (S(M t)k)R)t = RMkS,

so in fact C1 is the same for A and At. This gives us the result. !

5.2 Triangular matrices

For the proofs in this section we are going to abuse notation a little bit, and write pA(x)

for the characteristic poly of A, even though technically the char poly in LAP is a column

vector pA containing the coefficients of the char poly of A. This will simplify our proofs.

Also note that in the Lemmas and Corollaries below, we always show that some

property can be proven in LAP. We do this by giving a high-level proof of this property,

where we only indicate what would the formal LAP proof consist of. It would be tedious

and unreadable to give complete LAP proofs in each case. LAP has been designed in

a way that permits us a certain degree of freedom when presenting proofs that can be

formalized in LAP.

Basically we assume that any proof that relies on matrix powering, and induction on

terms of type index, and uses basic matrix properties, can be formalized in LAP.

Lemma 5.2.1 LAP proves that if for all i, Ri = 0 or Si = 0, then pA(A) = 0.

Before we prove this Lemma, note that pA(A) denotes the matrix given by:

(pA)nAn + (pA)n−1A
n−1 + · · ·+ (pA)1A + (pA)0Ir(A)

so in fact, pA(A) = 0 should really be stated as:

r(A) = c(A) → pA(A) = 0r(A)c(A)
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where pA(A) is an abbreviation for the following constructed matrix:

λij〈r(A), c(A), e(pA · λkl〈r(A), 1, e(P(r(A)− k, A), i, j)〉, i, j〉

where pA has been defined on page 52, definition (4.9).

Proof. The proof is by induction on the size of A. The Basis Case is trivial. For the

Induction Step assume that A is of the usual form:

A =

(
a11 R

S M

)

Suppose that S = 0 (the case where R = 0 is analogous). Then, from Berkowitz’s

algorithm, we have that:

pA(x) = (x− a11)pM(x)

so pA(A) = (A− a11I)pM(A), and:

pM(A) =

(
pM(a11) X

0 pM(M)

)

where X is some 1× (n− 1) matrix. Now, using the IH, pM(M) = 0. Thus:

(A− a11I)pA(A) =

(
0 R

0 M − a11I

)(
pM(a11) X

0 0

)
= 0

Thus, pA(A) = 0. !

Corollary 5.2.1 LAP proves the C-H Theorem for triangular matrices.

Proof. By Lemma 5.2.1, pA(A) = 0 if for all i Ri = 0 or Si = 0. If A is triangular, then

Ri = 0 for all i or Si = 0 for all i. !

Lemma 5.2.2 LAP proves that if for all i, Ri = 0 or Si = 0, then det(A) =
∏

i aii.

Proof. First of all, we can express
∏n

i=1 aii in LAP as follows:

e(n + 1, n + 1, P(n, λij〈n + 1, n + 1, cond(e(i, i, A), 0field, j = i + 1)〉) (5.3)

(that is, as the (n + 1, n + 1) entry of the n-th power of the matrix with the aii’s on the

diagonal above the main diagonal, and zeros elsewhere). Suppose now that A is such
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that for all i, Ri = 0 or Si = 0. Then:

pA = C1C2 · · ·Cn, where Ci =





1 0 . . . 0

−a11 1 . . . 0
. . . 1

0 −aii




(5.4)

Now, using induction on n, we can show that the bottom row of pA is equal to (5.3). The

Basis Case is n = 1, and it is easy since the bottom entry of A is just a11, and (5.3)

is just a11 as well. For the Induction Step assume that this holds for n × n matrices,

so that the bottom row of C2C3 · · ·Cn is equal to a22a33 · · ·a(n+1)(n+1). Now multiply

C2C3 · · ·Cn by C1 on the left to get the result. !

Corollary 5.2.2 LAP proves that the determinant of a triangular matrix is the product

of the elements on the diagonal.

Proof. By Lemma 5.2.2 the determinant is the product of the elements on the diagonal

if for all i, Ri = 0 or Si = 0. In the case of a triangular matrix one or the other always

holds. !

Lemma 5.2.3 LAP proves that if A and B are both upper or lower-triangular, then

det(AB) = det(A) det(B).

Proof. Suppose that A, B are both upper triangular matrices (the case of lower triangular

matrices is analogous). Then AB is also an upper triangular matrix. To see this consider

the entry (i, j) of AB where i > j. This entry is given by
∑n

k=1 aikbkj . Since both A, B

are upper triangular, it follows that aikbkj = 0 if i > k or j < k which is always the case

as i < j. Thus the (i, j)-th entry of AB is zero when i < j, so AB is upper triangular.

By Corollary 5.2.2 the determinants of A, B and AB are the products of the elements on

the respective diagonals. It is easy to show that the (i, i) entry of AB is just aiibii (using

the same argument that we did to show that AB is upper triangular). The Lemma now

follows. !
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5.3 Hard matrix identities

In this section we show that AB = I → BA = I, and hence all hard matrix identities,

follow (in LAP) from the Cayley-Hamilton Theorem. It is interesting to note that we

know nothing about the converse; that is, what role do hard matrix identities play in the

proof of the C-H Theorem? Our proof of the C-H Theorem, given in Chapter 8, does not

come anywhere near hard matrix identities.

Theorem 5.3.1 LAP proves that the Cayley-Hamilton Theorem implies hard matrix

identities.

Proof. Suppose that AB = I, and let p be the char poly of A. First note that it can

be proven (in LA in fact) that AB = I → A(BA − I) = 0. To see this note that

AB = I implies that (AB)A = IA = A, and by associativity A(BA) = (AB)A = A, so

A(BA) + (−1)A = 0, so A(BA + ((−1)A)I = 0, so A(BA) + A((−1)I) = 0. Now using

distributivity we obtain A(BA + (−1)I) = 0.

Thus, to show that BA = I, it is enough to show that A has some left inverse C

(which of course turns out to be B) and use the identity AB = I → A(BA − I) = 0 as

follows: C(A(BA− I)) = 0 implies (by associativity) that (CA)(BA− I) = 0, and if C

is the left inverse of A, we obtain I(BA− I) = 0, from which BA = I follows.

We construct the left inverse of A using:

The Cayley-Hamilton Theorem: p(A) = 0 (p = pA)

and the identity: 1 ≤ i, AB = I → AiBi = I

The identity follows in LAP by induction on i; just note that the Basis Case is the claim

AB = I, and the Induction Step can be proven as follows: Ai+1Bi+1 = (AiA)(BBi), and

now using associativity, this is equal to Ai(AB)Bi which is just AiBi, which is I by the

induction hypothesis.

We now concentrate on the characteristic polynomial of A, p. By the C-H Theorem

p(A) = 0. Let pn, pn−1, . . . , p0 be the coefficients of the characteristic polynomial, so that

p(A) = pnAn + pn−1An−1 + · · ·+ p0I = 0. Suppose that p0 is not zero. Then:

(pnAn−1 + pn−1A
n−2 + · · · p1I)A = −p0I

Dividing both sides by −p0 we obtain the left inverse of A as desired.
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Suppose now that p0 = 0. Let i be the largest index such that p0 = p1 = . . . = pi = 0

and pi+1 %= 0. Note that such an i exists, and furthermore, i + 1 ≤ n, since pn = 1 (as

was proven in LAP, by induction on n, in Lemma 5.1.4). Let q be the polynomial with

coefficients pn, pn−1, . . . , pi+1, so that 0 = p(A) = q(A)Ai. Since by the above AiBi = I,

it follows that 0 = 0Bi = q(A)AiBi = q(A)I = q(A). Since the constant coefficient of q

is pi+1 %= 0, we can repeat the above argument to conclude that A has a left inverse. !

In Chapter 8 we give a feasible proof of the C-H Theorem, which, together with

Theorem 5.3.1 gives us a feasible proof of AB = I → BA = I, and hence, by results in

Section 3.2, feasible proofs of hard matrix identities.

Note that the main thing that we need in the above proof is an annihilating poly-

nomial. The C-H Theorem states that the char poly is an annihilating polynomial, so

AB = I → BA = I follows from the C-H Theorem, but any annihilating polynomial

would do.

Since {I, A, A2, . . . , An2} is a linearly dependent set of matrices, for A an n×n matrix,

there are non-zero coefficients that constitute an annihilating polynomial of A; if we could

compute theses coefficients (without using Gaussian Elimination, but rather in NC2), and

show, in LAP, that they form an annihilating polynomial, we would have an LAP proofs

of hard matrix identities without the C-H Theorem; is that possible?



Chapter 6

Equivalences in LAP

In this Chapter we show that LAP proves the following implications:

C-H Theorem =⇒ Axiomatic dfn of det (Section 6.1)

Axiomatic dfn of det =⇒ Cofactor Expansion (Section 6.2)

Cofactor Expansion =⇒ C-H Theorem (Section 6.3)

Multiplicativity of det =⇒ C-H Theorem (Section 6.4)

Table 6.1: Flowchart for Chapter 6

In Section 6.4 we show that LAP also proves the multiplicativity of the determinant

from the C-H Theorem and the following identity:

det(A) = 0 → AB %= I (6.1)

Thus, LAP proves the equivalence of the C-H Theorem, the axiomatic definition of the

determinant, and the cofactor expansion. In Chapter 8 we will give a feasible proof of

identity (6.1) (but not an LAP proof), from which it follows that we can give a feasible

proof of the multiplicativity of the determinant from the C-H Theorem.

It is an open question whether identity (6.1) has an LAP proof, and whether we

can prove, in LAP, that the multiplicativity of the determinant follows from the C-H

Theorem. In fact, our proof of identity (6.1) (see Section 8.3.2) relies on the Gaussian

Elimination algorithm.

71
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6.1 The axiomatic definition of determinant

The axiomatic definition of the determinant states that for any matrix A, the following

three conditions hold:

• det is multilinear in the rows and columns of A

• det is alternating in the rows and columns of A

• if A = I, then det(A) = 1

In this section we show that the axiomatic definition of the determinant follows from the

Cayley-Hamilton Theorem, and that this can be shown in LAP. The condition det(A) = 1

is easy, and multilinearity in the first row (and column) is easy as well. Thus the whole

proof hinges on a LAP proof of alternation from the C-H Theorem. Our final result,

Corollary 6.1.2, shows that alternation for a matrix A follows (in LAP) by applying the

C-H Theorem to minors of permutations of rows and columns of A.

Note that from this it follows that det (as defined in 4.2.5), is the true determinant.

Multilinearity in the first row and column follows immediately from the algorithm;

thus, we will have multilinearity for all rows and columns if we prove alternation. By

Corollary 5.2.2, det(I) = 1 as required. Thus, all we have to prove is alternation, which

is the difficult part of the proof.

It is in fact enough to prove alternation in the rows, as alternation in the columns

will follow from alternation in the rows by det(A) = det(At)—Lemma 5.1.7.

The strategy for showing alternation in the rows is the following: we first show that

for any matrix A, A and I1AI1 have the same char poly (Lemma 6.1.1). Recall that I1

is an abbreviation for I12, which in turn is the matrix obtained from the identity matrix

by permuting the first two rows. In general, Iij is the identity matrix with rows i and

j interchanged. Therefore IijA is A with rows i and j interchanged, and AIij is A with

columns i and j interchanged. Finally, Ii abbreviates Ii(i+1).

Once we prove that A and I1AI1 have the same char poly, we can also show that

A and IiAIi have the same char poly (Lemma 6.1.2). From this we get that A and

IijAIij have the same char poly (as any permutation is a product of transpositions; see

Corollary 6.1.1).

Also in Lemma 6.1.1 we show that det(A) = − det(I1A). From this it follows that

det(A) = − det(I1iA) for all i, since we can bring the i-th row to the second position (via
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I2iAI2i), apply Lemma 6.1.1, and reorder things (by applying I2iAI2i once more). Since

Iij = I1iI1jI1i, this gives us alternation in the rows.

Note that we require the Cayley-Hamilton Theorem in the proof of every Lemma.

Also note that we prove that A and IijAIij have the same char poly, i.e. pIijAIij = pA, to

be able to reorder the matrix to prove alternation.

Lemma 6.1.1 Let A be an n× n matrix, and let M2 be the second principal submatrix

of A (i.e., M2 is A without the first two rows and the first two columns). Then, LAP

proves that pM2(M2) = 0 implies:

• p(I1AI1) = pA (i.e., I1AI1 and A have the same characteristic poly)

• det(A) = − det(I1A)

Proof. The proof consists of Claims 6.1.1 and 6.1.2, given below. !

Since we want to study the effect of interchanging the first two rows and columns of

A, we let A be of the following form:

A =





a b R

c d P

S Q M2





where M2 is an (n−2)×(n−2) matrix, a, b, c, d are entries, and R, P, St, Qt are 1×(n−2)

matrices. We are going to consider I1AI1 and I1A. To this end we define σA := I1AI1

and we define τA := I1A. In terms of entries of A, σ and τ are given as follows:

a, b, c, d
σ9→ d, c, b, a

R, S, P, Q
σ9→ P, Q, R, S

M2
σ9→ M2

a, b, c, d
τ9→ c, d, a, b

R, P
τ9→ P, R

S, Q, M2
τ9→ S, Q, M2

To illustrate the main idea, we show that A and σA have the same char poly, in the

case where M2 is a 1× 1 matrix (so A is a 3× 3 matrix). Let pA = C1C2C3.

From Berkowitz’s algorithm, C1C2 is given by:




1 0 0

−a 1 0

−
(

b R
)(

c

S

)
−a 1

−
(

b R
)(

d P

Q M2

)(
c

S

)

−
(

b R
)(

c

S

)

−a









1 0

−d 1

−PQ −d




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which is: 



1 0

−a− d 1

−bc− RS + ad− PQ −a− d

−bPS − cRQ−RM2S + dRS + aPQ −bc− RS + ad




(6.2)

It is easy to see that all the entries in (6.2), except for those in the last row, remain

invariant under σ.

However, the same is not true for the two entries in the bottom row. If we permute

the first two rows and columns, the left entry of the bottom row is left with −PM2Q in

place of −RM2S, and the right entry is left with −PQ, in place of −RS; neither term

appears before the permutation.

The reason why −PM2Q and −PQ do not matter is because, when we multiply (6.2)

by C3 = ( 1 −M2 )t (which is the char poly of the 1 × 1 matrix M2) these two terms

cancel each other out: −PM2Q + PQM2 = 0.

In general, if A is any n×n matrix, then we can show that all the entries in C1C2 are

invariant under σ, except for the entries in the last row. These entries will be left with

the following terms:

−PMn−2
2 Q −PMn−3

2 Q . . . −PQ (6.3)

which did not appear before we applied σ. However, as before, they do not matter,

because C3C4 · · ·Cn computes the char poly of M2, so when we multiply all the matrices

out, the terms in (6.3) will simply disappear (by the Cayley-Hamilton Theorem).

To prove Lemma 6.1.1 we start by showing that all the entries in C1C2, except those

in the last row, are invariant under σ. This is Claim 6.1.1.

Claim 6.1.1 Let A be an n× n matrix, for some n ≥ 3. Then, LAP proves that all the

entries in C1C2, except for those in the last row, remain invariant under σ.

Proof. Note that (C1C2)[n + 1|−] is a lower-triangular Toeplitz matrix. We consider the

first column of (C1C2)[n + 1|−]. The top three entries of the first column are:

1

−a− d

−
(

b R
)(

c

S

)

+ ad− PQ = −bc− RS + ad− PQ

By inspection, they are all invariant under σ.
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The (k +1)-st entry in the first column, for k ≥ 3, is given by taking the dot-product

of the following two vectors:




1

−a

−
(

b R
)(

c

S

)

−
(

b R
)(

d P

Q M2

)(
c

S

)

...

−
(

b R
)(

d P

Q M2

)k−2 (
c

S

)





,





−PMk−2
2 Q

−PMk−3
2 Q

...

−PQ

−d

1





(6.4)

We are going to prove that this dot-product is invariant under σ, by induction on k. The

Basis Case is k = 3, where the dot product is given by:

−
(

b R
)(

d P

Q M2

)(
c

S

)

+ d
(

b R
)(

c

S

)

+ aPQ− PM2Q (6.5)

and the invariance under σ again follows by inspection.

For the Induction Step, consider the (k + 1)-st entry (k ≥ 3) of the first column of

(C1C2)[n + 1|−]:

(
b R

)(
w X

Y Z

)(
c

S

)

+ aPMk−3
2 Q− PMk−2

2 Q (6.6)

where w, X, Y, Z are given as follows:
(

w X

Y Z

)
= −

(
d P

Q M2

)k−2

+d

(
d P

Q M2

)k−3

+
k−4∑

i=0

PMk−4−i
2 Q

(
d P

Q M2

)i

(6.7)

Assume that (6.6) is invariant under σ (this is our Induction Hypothesis). The (k+2)-nd

entry (k ≥ 3) of the first column of (C1C2)[n + 1|−] is given by:

(
b R

)((
d P

Q M2

)(
w X

Y Z

)

+ (PMk−3
2 Q)I

)(
c

S

)

+ aPMk−2
2 Q− PMk−1

2 Q

(6.8)

We must show that (6.8) is invariant under σ using the Induction Hypothesis. To see

this, first note that the expression:
(

d P

Q M2

)(
w X

Y Z

)

+ (PMk−3
2 Q)I
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in (6.8) is just (6.7) where instead of k− 2, k− 3, k− 4 we have k− 1, k− 2, k− 3. Since

in (6.8) we have aPMk−2
2 Q−PMk−1

2 Q (as opposed to aPMk−3
2 Q−PMk−2

2 Q in (6.6)) it

follows that the symmetry under σ is preserved. This is an elementary argument, using

powers of matrices and induction on indices, and hence it can be formalized in LAP. !

Claim 6.1.2 Let A be an n × n matrix, for some n ≥ 3. Then, LAP proves that

pM2(M2) = 0 implies that the entry in the bottom row of C1C2C3 · · ·Cn remain invariant

under σ and changes sign under τ .

Proof. The bottom row of C1C2 is given by the dot product of the two vectors in (6.4)

without their top rows. Thus, in the bottom row of C1C2, we are missing −PMk−2
2 Q’s

in the summations.

If we add these missing terms accross the bottom row (starting with the left-most),

that is, if we add:

−PMn−2
2 Q,−PMn−3

2 Q, . . . ,−PM2Q,−PQ (6.9)

to the entries in the bottom row, respectively, we can conclude, by the previous claim,

that the result is invariant under σ.

We have that pM2(M2) = 0, so −PpM2(M2)Q = 0, and since pM2 = C3C4 . . . Cn, it

follows that if we multiply the bottom row of C1C2, where the terms listed in (6.9) have

been added, by pM2 = C3C4 · · ·Cn, these terms will disappear.

Hence, to prove the invariance under σ of the bottom entry of C1C2 · · ·Cn, we first

add the extra terms in (6.9) to the bottom row of C1C2, use the previous claim to

conclude the invariance of the resulting bottom row of C1C2 under σ (which does not

affect C3C4 · · ·Cn), and then show that the extra terms disappear by pM2(M2) = 0 (that

is, by the Cayley-Hamilton Theorem applied to M2).

The fact that the bottom row of C1C2C3 · · ·Cn changes sign under τ is also a small

variation of the argument given here and given in the proof of Claim 6.1.1. !

Lemma 6.1.2 Let A be an n×n matrix. Then LAP proves that pMi+1(Mi+1) = 0 implies

p(IiAIi) = pA.

Proof. See Figure 6.1, and note that if i ≥ n− 1 then Mi+1 is not defined, but this is not

a problem, since we do not need the C-H Theorem to prove pIn−1AIn−1 = pA.

The case i = 1 is Lemma 6.1.1, so we can assume that 1 < i < n− 1.
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Using the fact that I2
i = I, we have:

RM jS = R(IiIi)M
j(IiIi)S = (RIi)(IiM

jIi)(IiS) = (RIi)(IiMIi)
j(IiS) (6.10)

Here we use induction on j in the last step. The Basis Case is j = 1, so IiMIi = IiMIi

just by equality axioms. For the Induction Step, note that:

IiM
j+1Ii = IiM

jMIi = IiM
j(IiIi)MIi = (IiM

jIi)(IiMIi)

and by the induction hypothesis, IiM jIi = (IiMIi)j, so we are done.

From Berkowitz’s algorithm we know that the char poly of A is given by the following

product of matrices:

C1C2 · · ·Ci−1Ci · · ·Cn

Let C ′
1C

′
2 · · ·C ′

n be the char poly of IiAIi. As an aside, note that we defined Berkowitz’s

algorithm as a term over LLAP in Section 4.2.3. There, we padded the matrices C1, . . . , Cn

with zeros to make them all of equal size, and we put them in one big matrix C. Then,

by computing the n-th power of C, we obtain the iterated matrix product C1C2 · · ·Cn.

Here, whenever we talk of iterated matrix products, we have this construction in mind.

Using Lemma 6.1.1 and pMi+1(Mi+1) = 0, we know that if we interchange the first

two rows and the first two columns of Mi−1 (which are contained in the i-th and (i+1)-st

rows and columns of A), the char poly of Mi−1 remains invariant. This gives us:

CiCi+1 · · ·Cn = C ′
iC

′
i+1 · · ·C ′

n (6.11)

Now we are going to prove that for 1 ≤ k ≤ i − 1, Ck = C ′
k. To see this, consider

the first column of C ′
k (it is enough to consider the first column as these are Toeplitz

matrices). We are going to examine all the entries in this columns:

• The first entry is 1, which is a constant.

• The second entry is akk, just as in Ck since k ≤ i− 1.

• RkM
j
kSk is replaced by (RkIi+1−k)(Ii+1−kMkIi+1−k)j(Ii+1−kSk), but by (6.10) these

two are equal. (Note that 0 ≤ j ≤ n− k − 1).

Thus, Ck = C ′
k, for 1 ≤ k ≤ i − 1 and so C1C2 · · ·Ci−1 = C ′

1C
′
2 · · ·C ′

i−1. Combining this

with (6.11) gives us:

C1C2 · · ·Cn = C ′
1C

′
2 · · ·C ′

n

and so A and IiAIi have the same char polynomial, i.e., p(IiAIi) = pA. !
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M i+1

i-1M

row i
row i+1

column i
column i+1

Figure 6.1: Matrix A: pMi+1(Mi+1) = 0 =⇒ p(IiAIi) = pA

Corollary 6.1.1 Let A be an n × n matrix, and let 1 ≤ i < j ≤ n. LAP proves, using

the C-H Theorem on (n− 1)× (n− 1) matrices, that pIijAIij = pA.

Proof. First of all, to prove this Corollary to Lemma 6.1.2, we are going to list explicitly

the matrices for which we require the C-H Theorem: we need the following principal

submatrices of A: {Mi+1, . . . , Mj} as well as the matrices {M ′
j−1, . . . , M

′
i+1} which are

obtained from the corresponding principal submatrices, by replacing, in A, the j-th row

by the i-th row, and the j-th column by the i-th column. The details are given in

Figure 6.2.

M j

M
M

M j

M
M

j-2
j-1

j-2
j-1

M’
M’
M’
M’

i-th col in j-th position
i-th row in j-th position

i+1
i+2

i+1
i+2

Figure 6.2: {Mi+1, . . . , Mj} and {M ′
j−1, . . . , M

′
i+1}
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To see why we require the C-H Theorem on precisely the matrices listed above,

we illustrate how we derive p(I13AI13) = pA (see Figure 6.3). Using pM2(M2) = 0 and

Lemma 6.1.2 we interchange the first two rows (and the first two columns, but for clarity,

we do not show the columns). Then, using pM3(M3) = 0 and Lemma 6.1.2, we interchange

rows two and three, so at this point, the original row one is in position. We still need

to take the original row three from position two to position one. This requires the use

of pM ′
2
(M ′

2) = 0 and Lemma 6.1.2. The prime comes from the fact that what used to be

row three, has now been replaced by row one. So using pM ′
2
(M ′

2) = 0, we exchange row

two and one, and everything is in position.

Now the same argument, but in the general case, relies on the fact that:

Iij = Ii(i+1)I(i+1)(i+2) · · · I(j−1)jI(j−1)(j−2) · · · I(i+1)i (6.12)

i.e., any permutation can be written as a product of transpositions. Using Lemma 6.1.2

at each step, we are done. Equation (6.12) can be proven in LAP as follows: first note

that Iij = I1iI1jI1i, so it is enough to prove that I1i is equal to a product of transpositions,

for any i.

We use induction on i. The Basis Case is i = 2, and I12 is a transposition, so there

is nothing to prove. Now the Induction Step. Assume the claim holds for I1i, and show

that it holds for I1(i+1). This follows from the fact that I1(i+1) = I1iIi(i+1)I1i. !

M 2 M 3

M’ 2

Figure 6.3: Example of p(I13AI13) = pA
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Corollary 6.1.2 LAP proves, using the C-H Theorem, that det is alternating in the

rows, i.e., det(A) = − det(IijA).

Proof. Since Iij = I1iI1jI1i, it is enough to prove this for I1j . If j = 2 we are done by

Lemma 6.1.1. If j > 2, then use I2j to bring the j-th row to the second position, and

by Corollary 6.1.1, A and I2jAI2j have the same char polynomials. Now apply I12 with

Lemma 6.1.1, and use I2j once again to put things back in order. !

Example 6.1.1 Suppose that we want to show that det(A) = − det(I15A). Consider:

A
(1)−→ I25AI25

(2)−→ I12I25AI25
(3)−→ I25I12I25AI25I25 = I15A

By Corollary 6.1.1, (1) preserves the char poly, and hence it preserves the determinant.

By Lemma 6.1.1, (2) changes the sign of the determinant. By Corollary 6.1.1 again, (3)

preserves the determinant. Therefore, det(A) = − det(I15A).

6.2 The cofactor expansion

Let A be an n× n matrix. The cofactor expansion formula for A states the following:

for 1 ≤ i ≤ n, det(A) =
n∑

j=1

(−1)i+jaij det(A[i|j]) (6.13)

where A[i|j] denotes the matrix obtained from A by removing the i-th row and the j-th

column. For each i, the RHS of the equation is called the cofactor expansion of A along

the i-th row, and (6.13) states that we obtain det(A) expanding along any row of A.

Note that from (6.13), it follows by Lemma 5.1.7 that we also have the cofactor

expansion along columns.

Lemma 6.2.1 LAP proves that the cofactor expansion formula (6.13) follows from the

axiomatic definition of the determinant.

Proof. We first show that the cofactor expansion of A along the first row is equal to

det(A). Define Aj , for 1 ≤ j ≤ n, to be A, with the first row replaced by zeros, except

for the (1, j)-th entry which remains unchanged. Then, using multilinearity along the

first row of A, we obtain:

det(A) = det(A1) + det(A2) + · · ·+ det(An) (6.14)
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Consider Aj , for j > 1. If we interchange the first column and the j-th column, and then,

with (j − 2) transpositions we bring the first column (which is now in the j-th position)

to the second position, we obtain, by alternation and Lemma 5.1.3, the following:

det(Aj) = (−1)j−1a1j det(A[1|j]) = (−1)1+ja1j det(A[1|j])

From this, and from equation (6.14), we obtain the cofactor expansion along the first

row, that is, we obtain (6.13) for i = 1.

If we want to carry out the cofactor expansion along the i-th row (where i > 1), we

interchange the first and the i-th row, and then we bring the first row (which is now in

the i-th position) to the second row with (i− 2) transposition. Denote this new matrix

A′, and note that det(A′) = (−1)i−1 det(A). Now, expanding along the first row of A′,

we obtain (6.13) for i > 1. !

6.3 The adjoint as a matrix of cofactors

In this section we show that LAP proves the Cayley-Hamilton Theorem from the cofactor

expansion formula (i.e., from (6.13)). To this end, we first show that (6.13) implies the

axiomatic definition of determinant:

Lemma 6.3.1 LAP proves the axiomatic definition of the determinant from the cofactor

expansion formula.

Proof. We want to show that we can get multilinearity, alternation and det(I) = 1

from (6.13). To show multilinearity along row (column) i, we just expand along row

(column) i. To show det(I) = 1 use induction on the size of I; in fact, showing that

det(I) = 1 can be done in LAP without any assumptions—see Corollary 5.2.2.

Alternation follows from multilinearity and from:

If two rows (columns) of A are equal → det(A) = 0

To see that alternation follows from these two things:

0 = det





Ri + Rj

Ri + Rj





= det





Ri

Ri





+ det





Ri

Rj





+ det





Rj

Ri





+ det





Rj

Rj




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using multilinearity on rows Ri and Rj ; note that the first and last expressions on the

RHS are zero, since two rows are equal. So suppose that rows i and j of A are identical.

To show that det(A) = 0, we expand along row i first to obtain:

det(A) =
n∑

k=1

(−1)i+kaik det(A[i|k])

and then we expand each minor A[i|k] along the row that corresponds to the j-th row of

A. Note that we end up with n(n− 1) terms; polynomially many in the size of A. Since

row i is identical to the row j, we can pair each term with its negation; hence the result

is zero, so det(A) = 0. !

The following lemma shows that LAP proves, from the axiomatic definition of det,

that our definition of the adjoint is equivalent to the usual definition of the adjoint as

the transpose of the matrix of cofactors.

Lemma 6.3.2 LAP proves that adj(A) = ((−1)i+j det(A[j|i]))ij , i.e. that adj(A) is the

transpose of the matrix of cofactors of A, from the axiomatic definition of det.

Proof. Consider the following matrix:

C =

(
0 et

i

ej A

)

where ei is a column vector with zeros everywhere except in the i-th position where it

has a 1, and ej is a row vector with a 1 in the j-th position. By Lemma 5.1.3, we have

that:

det(C) = −et
iadj(A)ej = (i, j)-th entry of −adj(A)

On the other hand, from alternation on C, we have that det(C) = (−1)i+j+1 det(A[j|i]).
To see this, note that we need (j + 1) transpositions to bring the j-th row of A to the

first row in the matrix C, to obtain the following matrix:

C ′ =





1 Aj

0 et
i

0 A[j|−]





where Aj denotes the j-th row of A, and A[j|−] denotes A with the j-th row deleted.

Then, by Lemma 5.1.3, we have:

det(C ′) = det

(
et

i

A[j|−]

)
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and now with i transpositions, we bring the i-th column of

(
et

i

A[j|−]

)
to the first

column, to obtain:

(
1 0

0 A[j|i]

)

. Therefore, det(C ′) = (−1)i det(A[j|i]) finishing the

proof of the Lemma. !

Since by Lemma 6.3.1 the axiomatic definition of det follows from the cofactor ex-

pansion formula, we have the following Corollary to Lemma 6.3.2:

Corollary 6.3.1 LAP proves that adj(A) = ((−1)i+j det(A[j|i]))ij from the cofactor

expansion formula.

Note that pA(A) = 0 can also be stated as Aadj(A) = det(A)I, using our definitions

of the adjoint and the determinant (see page 51). Thus, the following Lemma shows that

LAP proves the C-H Theorem from the cofactor expansion formula.

Lemma 6.3.3 LAP proves Aadj(A) = adj(A)A = det(A)I from the cofactor expansion

formula.

Proof. We show first that Aadj(A) = det(A)I. The (i, j)-th entry of Aadj(A) is by

Corollary 6.3.1 equal to:

ai1(−1)j+1 det(A[j|1]) + · · ·+ ain(−1)j+n det(A[j|n]) (6.15)

If i = j, this is the cofactor expansion along the i-th row. Suppose now that i %= j. Let

A′ be the matrix A with the j-th row replaced by the i-th row. Then, by alternation

(which we have by Lemma 6.3.1), det(A′) = 0. Now, (6.15) is the cofactor expansion of

A′ along the j-th row, and therefore, it is 0. This proves that Aadj(A) = det(A)I, and

by definition of the adjoint, adj(A)A = Aadj(A), so we are done. !

6.4 The multiplicativity of the determinant

The multiplicativity of the determinant is the property: det(AB) = det(A) det(B). This

turns out to be a very strong property, from which all other properties (including the

Cayley-Hamilton Theorem) follow readily in LAP.

Lemma 6.4.1 LAP proves that the multiplicativity of the determinant implies the C-H

Theorem.
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Proof. From the multiplicativity of the determinant we have that (by Lemma 5.1.6)

det(I12AI12) = det(I1) det(A) det(I1) = det(A) for any matrix A. Suppose we want to

prove the C-H Theorem for some n× n matrix M . Define A as follows:

A =





a b R

c d P

S Q M



 =





0 0 et
i

0 0 0

ej 0 M





Let C1C2C3 · · ·Cn+2 be the char poly of A (and C3 · · ·Cn+2 the char poly of M). From

Berkowitz’s algorithm it is easy to see that for A defined this way the bottom row of

C1C2 is given by:

et
iM

nej et
iM

n−1ej . . . et
iIej 0

so the bottom row of C1C2C3 · · ·Cn+2 is simply et
ip(M)ej where p is the char poly of M .

On the other hand, using det(A) = det(I12AI12) and Berkowitz’s algorithm, we have

that:

det(A) = det





0 0 0

0 0 et
i

0 ej M



 = 0

so that et
ip(M)ej = 0, and since we can choose any i, j, we have that p(M) = 0. !

What about the other direction? That is, can we prove the following implication in

LAP: C-H Theorem =⇒ Multiplicativity of the determinant? The answer is “yes”, if

LAP can prove the following determinant identity:

det(A) = 0 → AB %= I (6.16)

That is, LAP can prove the multiplicativity of the determinant from the C-H Theorem

and (6.16). We suspect, however, that LAP can prove (6.16) from the C-H Theorem, so

that the C-H Theorem is enough to prove multiplicativity. At this point, we do not have

a LAP proof of (6.16)1 from the C-H Theorem.

Lemma 6.4.2 LAP can prove the multiplicativity of the determinant from the C-H

Theorem and the property given by (6.16).

1However we have a feasible proof of (6.16) based on Gaussian Elimination—see Section 8.3.2. There-
fore, since we have a LAP proof of multiplicativity of det from the C-H Theorem and from (6.16)—see
Lemma 6.4.2, it follows that we have a feasible proof of multiplicativity of det from the C-H Theorem;
Open Problem 9.4: is there a direct LAP proof of multiplicativity of det from the C-H Theorem?
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Proof. We prove the Lemma by induction on the size of the matrices; so assume that

A, B are square n× n matrices. Since we assume the Cayley-Hamilton Theorem, by the

results in the previous sections we also have at our disposal the cofactor expansion and

the axiomatic definition of the determinant.

Suppose first that the determinants of all the minors of A (or B) are zero. Then, using

the cofactor expansion we obtain det(A) = 0. We now want to show that det(AB) = 0

as well.

Suppose that det(AB) %= 0. Then, by the C-H Theorem, AB has an inverse C, i.e.,

(AB)C = I. But then A(BC) = I, so A is invertible, contrary to (6.16). Therefore,

det(AB) = 0, so that in this case det(A) det(B) = det(AB).

Suppose now that both A and B have a minor whose determinant is not zero. We

can assume that it is the principal submatrix whose determinant is not zero (as A and

I1iAI1j have the same determinant, so we can bring any non-singular minor to be the

principal subminor). So assume that MA, MB are non-singular, where:

A =

(
a RA

SA MA

)
B =

(
b RB

SB MB

)

By the Induction Hypothesis we know that det(MAMB) = det(MA) det(MB). Also note

that:

AB =

(
ab + RASB aRB + RAMB

bSA + MASB SARB + MAMB

)

Now using Berkowitz’s algorithm:

det(A) det(B) = (a det(MA)− RAadj(MA)SA)(b det(MB)−RBadj(MB)SB) (6.17)

We want to show that det(AB) is equal to (6.17). Again, using Berkowitz’s algorithm:

det(AB) = (ab + RASB) det(SARB + MAMB)

− (aRB + RAMB)adj(SARB + MAMB)(bSA + MASB)
(6.18)

We now show that the right hand sides of (6.17) and (6.18) are equal.

By Lemma 6.4.3:

det(SARB + MAMB) = det(MAMB) + RBadj(MAMB)SA (6.19)

Using the IH, det(MAMB) = det(MA) det(MB), and using Lemma 6.3.3 and the fact

that det(MA) %= 0 and det(MB) %= 0 we obtain: adj(MAMB) = adj(MB)adj(MA). To
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see this note that by the C-H Theorem (MAMB)adj(MAMB) = det(MAMB)I. We now

multiply both sides of this equation by adj(MA) to obtain, by the C-H Theorem again,

det(MA)MBadj(MAMB) = det(MAMB)adj(MA). Now multiply both sides by adj(MB)

to obtain:

det(MA) det(MB)adj(MAMB) = det(MAMB)adj(MB)adj(MA)

Since det(MAMB) = det(MA) det(MB), and det(MA) det(MB) %= 0, we obtain our result.

Therefore, from (6.19) we obtain:

det(SARB + MAMB) = det(MA) det(MB) + RBadj(MB)adj(MA)SA (6.19′)

Using Lemma 6.4.4 and adj(MAMB) = adj(MB)adj(MA), we obtain:

RBadj(SARB + MAMB) = RBadj(MB)adj(MA)

adj(SARB + MAMB)SA = adj(MB)adj(MA)SA

(6.20)

Finally, we have to prove the following identity:

RAMBadj(SARB+MAMB)MASB =

RASB det(MA) det(MB)−RBadj(MB)SBRAadj(MA)SA

+ (RASB)RBadj(MB)adj(MA)SA

(6.21)

First of all, by Lemma 6.3.3 we have:

(SARB + MAMB)adj(SARB + MAMB) = det(SARB + MAMB)

Using Lemmas 6.4.3 and 6.4.4, we get:

SARBadj(MAMB) + MAMBadj(SARB + MAMB) = (det(MAMB) + RBadj(MAMB)SA)I

We have already shown above that adj(MAMB) = adj(MB)adj(MA) using our Induction

Hypothesis: det(MAMB) = det(MA) det(MB). So, if we multiply both sides of the above

equation by adj(MA) on the left, and by MA on the right, we obtain:

adj(MA)SARBadj(MB) det(MA) + det(MA)MBadj(SARB + MAMB)MA =

det(MA)(det(MA) det(MB) + RBadj(MB)adj(MA)SA)I

Since by assumption det(MA) %= 0, we can divide both sides of the equation by det(MA)

to obtain:

adj(MA)SARBadj(MB) + MBadj(SARB + MAMB)MA =

(det(MA) det(MB) + RBadj(MB)adj(MA)SA)I
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If we now multiply both sides of the above equation, by RA on the left, and by SB on

the right, we obtain (6.21) as desired.

We now substitute (6.19′), (6.20), and (6.21) into (6.18), and we obtain that the right

hand side of (6.18) is equal to the right hand side of (6.17), and we are done. !

Lemma 6.4.3 LAP proves, from the axiomatic definition of det, that:

det(SR + M) = det(M) + Radj(M)S (6.22)

Proof. Consider the matrix:

C =





1 −R

S M





Using Berkowitz’s algorithm (the definition of det given in 4.8), it follows that:

det(C) = det(M) + Radj(M)S

We can add multiples of the first row of C to the remaining rows of C, to clear out S,

and obtain:

C ′ =





1 −R

0 SR + M





Using the axiomatic definition of det, we can conclude that det(C ′) = det(C), and

using (4.8) on C ′ we obtain:

det(C ′) = det(SR + M)

and hence the Lemma follows. !

Lemma 6.4.4 LAP proves, from the Cayley-Hamilton Theorem, that:

Radj(SR + M) = Radj(M)

adj(SR + M)S = adj(M)S
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Proof. By Lemma 6.3.2 we know that adj(A) is the transpose of the matrix of cofactors

of A. From this we can deduce the following identity:

adj(A) =

(
det(M) −Radj(M)

−adj(M)S (1 + a11)adj(M)− adj(SR + M)

)
(6.23)

To see this we are going to consider the four standard submatrices. First of all, the (1, 1)

entry of adj(A) is the determinant of the principal minor of A times (−1)1+1, i.e. det(M).

The remaining entries along the first row are given by (−1)1+i det(A[i|1]), for 2 ≤ i ≤ n.

Note that for 2 ≤ i ≤ n, A[i|1] is given by:

(
R

M [i|−]

)

(6.24)

where M [i|−] denotes M without the i-th row. To compute the determinant of the

matrix given by (6.24) expand along the first row to obtain:
∑n−1

j=1 rj(−1)i+j det(M [i|j]).
This gives us −Radj(M) as desired. In the same way we can show that the entries in the

first column below (1, 1) are given by −adj(M)S.

We now show that the principal submatrix is given by (1+a11)adj(M)−adj(SR+M).

To see this first note that (SR+M)[i|j] = S[i]R[j]+M [i|j], where S[i], R[j] denote S, R

without the i-th row and j-th column, respectively. Now using Lemma 6.4.3 we have

that det((SR + M)[i|j]) = det(M [i|j]) + R[j]adj(M [i|j])S[i]. The (i + 1, j + 1) entry of

adj(A)t, 1 ≤ i, j < n, is given by:

(−1)i+j(a11 det(M [i|j])− R[j]adj(M [i|j])S[i])

as can be seen from Figure 6.4.

Therefore, the (i + 1, j + 1) entry of adj(A)t is given by:

(−1)i+j(a11 det(M [i|j]) + det(M [i|j])− det((SR + M)[i|j]))

and we are done.

By Lemma 6.3.3 we know that:
(

a11 R

S M

)(
det(M) −Radj(M)

−adj(M)S (1 + a11)adj(M)− adj(SR + M)

)

= det(A)I

In particular this means that:

−a11Radj(M) + R(1 + a11)adj(M)− Radj(SR + M) = 0
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R

S M

a
11

column j+1

row i+1

Figure 6.4: Showing that adj(A)[1|1] = (1 + a11)adj(M)− adj(SR + M)

and from this it follows that Radj(SR + M) = Radj(M). Similarly, we can prove the

second identity. !

Corollary 6.4.1 LAP proves, from the C-H Theorem, the anti-multiplicativity of the

adjoint for non-singular matrices, i.e.,

det(A) %= 0, det(B) %= 0 → adj(AB) = adj(B)adj(A)

Proof. The proof is given in the proof of Lemma 6.4.2. !

As a closing remark, note that our proof of multiplicativity of the determinant from

the Cayley-Hamilton Theorem is quite long and complicated. Of course, conceptually the

simplest proof is based on the cofactor expansion, but then we must prove the induction

hypothesis for too many matrices, rendering the proof infeasible. See [DF91, page 364,

Theorem 25] for a simple, yet infeasible, proof of multiplicativity of determinant based

on the Lagrange expansion.



Chapter 7

Translations

In this chapter we will show how to translate theorems of LA and LAP into families of

tautologies with short propositional proofs. These translations are a potential tool for

proving independence results. For example, if we can prove that AB = I → BA = I does

not have efficient proofs in bounded-depth Frege with mod 2 gates, then it will follow

that AB = I → BA = I is not a theorem of LA. See Section 9.1 for more details.

We will show that the theorems of LA can be translated into families of propositional

tautologies which have poly-bounded PK derivations (see Definition 2.4.2 for the system

PK). In fact, we prove a tighter result. We are going to show that the theorems of

LA (when the underlying field is Zp, p a prime) translate into propositional tautologies

with short bounded-depth PK[p] derivations, where PK[p] is PK with MODp,i gates (i.e.,

modular gates, for counting modulo the prime p). In Lemma 7.1.1 we show that PK can

p-simulate PK[a] for any a. We will also show that the theorems of LAP have quasi-poly-

bounded (O(2log2 n)) PK derivations.

The main parameter in the translations is the size of matrices, and the underlying

field plays a minor technical role. In section 7.2, we give a detailed translation for the

case where the underlying field is Z2. This is the simplest case, since the field elements

Z2 = {0, 1} translate directly into boolean values {T, F}. We consider very briefly the

fields Zp, for a general prime p, and Q, in Section 7.3.

Since our theories LA and LAP are field independent, it is no surprise that all the

ideas necessary for the translation occur already in the case Z2. Translating over Zp,

p > 2, and over Q is just a question of finding some representation for the field elements

in terms of several boolean variables. Thus, we concentrate on the technically simplest

case: Z2.

90
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7.1 The propositional proof system PK[a]

The definition and axiomatization of modular connectives that we present in this section

come from [Kra95, Chapter 12.6].

Definition 7.1.1 Let a ≥ 2 be fixed and let i be in {0, . . . , a − 1}. Then, MODa,i is a

propositional connective of unbounded arity such that:

MODa,i(Γ) is true iff |{j : Aj is true}| (mod a) = i

where Γ is a cedent of formulas, that is, Γ = A1, . . . , Ak, and the Ai’s are formulas, and

k ≥ 0. See Table 7.1 for the propositional axioms for MODa,i.

Axiom-1 → MODa,0(∅)

Axiom-2 → ¬MODa,i(∅)
for i in {1, . . . , a− 1}

Axiom-3 → MODa,i(Γ, A) ≡
[
(MODa,i(Γ) ∧ ¬A) ∨ (MODa,i−1(Γ) ∧A)

]

for i in {0, . . . , a−1}, where i−1 means i−1 (mod a), and where,

as above, Γ is a (possibly empty) cedent of formulas.

Table 7.1: Axioms for MODa,i

Definition 7.1.2 The system PK[a] denotes the system PK whose language is extended

by the connectives MODa,i for i in {0, . . . , a− 1}, and that is augmented by the preceding

three axiom schemas.

Lemma 7.1.1 PK p-simulates PK[a] for any a. In other words, there is a polytime

function that given a PK[a] derivation π of a tautology τ (without modular connectives),

outputs a PK proof π′ of τ .

Proof. We are just going to prove this Lemma in the case a = 2. The general case, for

a > 2, can be proven in a similar way. So, in the simulation we want to translate MOD2,1

into a boolean formula over over {∧,∨,¬} with a polynomial increase in size (polynomial

in the size of the arguments of MOD2,1).

Note that the result for MOD2,0 will follow since MOD2,0 = MOD2,1.



Chapter 7. Translations 92

First note that MOD2,1(x1, x2, . . . , xn) can be expressed as a balanced binary tree of

XOR gates, of depth log n, and size n. Now note:

XOR(x, y) ≡ (x ∧ ¬y) ∨ (¬x ∧ y)

XOR(x, y) ≡ (x ∧ y) ∨ (¬x ∧ ¬y)

So each XOR gate can be replaced by such a formula. Since for a given XOR gate in the

above mentioned balanced binary tree we need to provide the input and its negation, in

each case we need to compute XOR and XOR.

In short we obtain a circuit with gates {∧,∨,¬} of depth O(log n) and size O(n), and

hence we get the corresponding poly-size boolean formula. !

The following definitions come from [Kra95, Chapter 4.3].

Definition 7.1.3 The logical depth of a formula A, denoted ldp(A), is the maximum

nesting of connectives in A. More precisely:

1. ldp(F) = ldp(T) = ldp(a) = 0, for any atomic variable a.

2. ldp(¬A) = 1 + ldp(A), for any formula A.

3. ldp(A ◦ B) = 1 + max{ldp(A), ldp(B)} for any formulas A, B and a connective

◦ = ∧,∨.

4. ldp(MODa,i(A1, A2, . . . , Ak)) = 1 + max{ldp(A1), ldp(A2), . . . , ldp(Ak)} for i in the

set {0, . . . , a− 1}.

Definition 7.1.4 The depth of a formula A, denoted dp(A), is the maximum number of

alternations of connectives in A. More precisely:

1. dp(A) = 0 iff ldp(A) = 0.

2. dp(¬¬ · · · ¬A) = dp(A) if the number of negations is even, and it is 1 + dp(A)

otherwise (we are assuming that the outermost connective of A is not “¬”).

3. Fix ◦ to be ∧ or ∨. Then:

(a) dp(A ◦ B) = max{dp(A), dp(B)} if the outermost connective in both A and

B is ◦.
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(b) dp(A◦B) = 1+max{dp(A), dp(B)} if neither A nor B has ◦ as the outermost

connective.

(c) dp(A◦B) = max{1+dp(A), dp(B)} if ◦ is the outermost connective of B but

it is not the outermost connective of A.

(d) dp(A◦B) = max{dp(A), 1+dp(B)} if ◦ is the outermost connective of A but

it is not the outermost connective of B.

4. Consider φ = MODa,i(A1, A2, . . . , Al+k) for i in {0, 1, . . . , a− 1}. Let {A1, . . . , Al} be

the set of Aj ’s whose outermost connective is not MODa,i, and let {Al+1, . . . , Al+k}
be the set of Aj ’s whose outermost connective is MODa,i. Then:

dp(φ) = max{1 + dp(A1), . . . , 1 + dp(Al), dp(Al+1), . . . , dp(Al+k)}

If l or k are zero, then the corresponding sets are empty. However l + k > 0, that

is, they are not both zero.

Definition 7.1.5 Let P be a PK[a] derivation. Then, the logical depth of P , denoted

ldp(P ), is the maximal logical depth over all formulas in P . Similarly, the depth of P ,

denoted dp(P ), is the maximal depth over all formulas in P .

Definition 7.1.6 If A is a propositional formula, we define size(A) to be the number of

variables, connectives and constants (T or F) in A. If P is a PK[a] derivation, we define

size(P ) to be the sum of the sizes of all the formulas in P .

7.2 Translating theorems of LA over Z2

In this section we translate the theorems of LA over the standard model SZ2 , where the

indices are in N and the field elements are in Z2, into families of propositional tautologies

with short PK[2] derivations of bounded depth.

The main idea is the following: given a formula α over the language LLA, we translate

it into a family of “small” propositional formulas ‖α‖σ (where σ indexes the family and

assigns values to all terms of type index in α), such that the following holds true: if

α is true in the standard model, then ‖α‖σ is a propositional tautology for all σ, and

furthermore, if α is a theorem of LA, then, for any σ, ‖α‖σ has a “short” PK[2] derivation

of depth bounded by a constant.
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The procedure for the translation is given in section 7.2.2, and the proof of correctness

of the procedure is given in section 7.2.3.

7.2.1 Preliminaries

We are concerned with standard models (see section 2.2.5) where F = Z2, i.e. with SZ2 .

We say that α is true, if it is true in SZ2 , i.e. if SZ2 " α[τ ] for all object assignments τ .

Given a formula α over LLA, we let σ be a partial object assignment of natural

numbers to all the free index variables in α, and all terms of the form r(A), c(A), for

all A. We define the norm of σ, denoted by |σ|, to be the largest value assignment of

σ, i.e. |σ| = max{σ(i), σ(j), . . . , σ(r(A)), σ(c(A)), . . .}. We define σ(p1/i1) · · · (pn/in) to

be the same as σ, except now the free index variables i1, . . . , in are assigned the values

p1, . . . , pn, respectively.

We also let every field variable a become a boolean variable a (recall that the under-

lying field is Z2, so there is a direct and natural correspondence between field elements

and boolean values). With each matrix variable A we associate the following boolean

variables: A11, A12, . . . , Aσ(r(A))σ(c(A)). Finally, all propositional formulas are over the

connectives {∧,∨,¬, MOD2,0, MOD2,1, T, F}. Note that A ⊃ B is an abbreviation for ¬A∨B,

and A ≡ B is an abbreviation for (¬A ∨B) ∧ (¬B ∨A).

7.2.2 Procedure for the translation

We are given as input a sequent S over LLA, and a partial object assignment σ (of natural

numbers to all the free index variables in S, and to all terms r(A), c(A), for all the matrix

variables in S). The output is the propositional sequent ‖S‖σ.

A few remarks before we present the procedure: sequents are translated by translating

all formulas in the antecedent and succedent. Thus ‖α1, . . . , αk → β1, . . . , βl‖σ becomes:

‖α1‖σ, . . . , ‖αk‖σ → ‖β1‖σ, . . . , ‖βl‖σ

so in the procedure below we only show how to translate formulas.

All terms of type index are translated to natural numbers, that is, if m is a term of

type index, then ‖m‖σ ∈ N. Therefore, all atomic formulas of the form m =index n and

m ≤index n are translated directly into T or F.

All terms of type field are translated into propositional formulas, i.e. ‖t‖σ is a propo-

sitional formula, and all formulas of the form t =field u are translated into ‖t‖σ ≡ ‖u‖σ.
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Finally, all formulas of the form U =matrix T are translated into a conjunction ex-

pressing that T and U are equal entry by entry.

We now define the recursive procedure for the translation, which takes as input a

formula α over LLA and σ, and outputs a propositional formula ‖α‖σ.

If α is given by one of the following:

α1 ∧ α2 α1 ∨ α2 ¬α1

then ‖α‖σ is given by one of the following:

‖α1‖σ ∧ ‖α2‖σ ‖α1‖σ ∨ ‖α2‖σ ¬‖α1‖σ

respectively. Suppose now that α is an atomic formula. Then, α is one of the following:

m = n m ≤ n t = u T = U

Here is what we do in each case:

‖m ≤ n‖σ 9−→





T if ‖m‖σ ≤ ‖n‖σ

F otherwise

‖m = n‖σ 9−→





T if ‖m‖σ = ‖n‖σ

F otherwise

‖t = u‖σ 9−→ (‖t‖σ ≡ ‖u‖σ)

The case ‖T = U‖σ is more complicated. If T and U do not have compatible sizes, that

is, if ‖r(T )‖σ %= ‖r(U)‖σ or ‖c(T )‖σ %= ‖c(U)‖σ, then:

‖T = U‖σ 9−→ F

Suppose now that T and U have compatible sizes, and let r, c be defined as follows:

r := ‖r(T )‖σ = ‖r(U)‖σ

c := ‖c(T )‖σ = ‖c(U)‖σ

Assume that i, j are index variables that do not occur free in T or U . Then:

‖T = U‖σ 9−→
∧

1≤p≤r,1≤q≤c

(‖e(T, i, j)‖σ(p/i)(q/j) ≡ ‖e(U, i, j)‖σ(p/i)(q/j))



Chapter 7. Translations 96

All that is left to do is to show how to translate terms of type index and field. We give

a recursive (sub)procedure for this.

Base Case:

‖0index‖σ 9−→ 0 ∈ N

‖1index‖σ 9−→ 1 ∈ N

‖i‖σ 9−→ σ(i) ∈ N

‖0field‖σ 9−→ F

‖1field‖σ 9−→ T

‖a‖σ 9−→ a

Note that the “a” on the LHS is a field elements, and the “a” on the RHS is a boolean

variable.

Recursive Step: Suppose m, n are terms of type index. Then:

‖m +index n‖σ 9−→ ‖m‖σ + ‖n‖σ

‖m−index n‖σ 9−→ max{‖m‖σ − ‖n‖σ, 0}

‖m ∗index n‖σ 9−→ ‖m‖σ · ‖n‖σ

‖div(m, n)‖σ 9−→
⌊
‖m‖σ

‖n‖σ

⌋

‖rem(m, n)‖σ 9−→ ‖m‖σ −
⌊
‖m‖σ

‖n‖σ

⌋
· ‖n‖σ

‖cond(β, m, n)‖σ 9−→





‖m‖σ if ‖β‖σ

‖n‖σ otherwise
(∗)

where on the right we have the usual +,−, · of N.

Note that in the last rule (the rule marked by (∗)), ‖β‖σ is either F or T because, by

definition of cond(β, m, n) (item 9 in section 2.2.1), all the atomic subformulas of β are

of type index.
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Suppose t, u are terms of type field. Then:

‖t +field u‖σ 9−→ MOD2,1(‖t‖σ, ‖u‖σ)

‖t ∗field u‖σ 9−→ ‖t‖σ ∧ ‖u‖σ

‖ − t‖σ 9−→ ‖t‖σ

‖t−1‖σ 9−→ ‖t‖σ

‖cond(β, t, u)‖σ 9−→





‖t‖σ if ‖β‖σ

‖u‖σ otherwise
(∗∗)

Again, note that ‖β‖σ in rule (∗∗) is either F or T.

We translate r(T ), c(T ) as follows:

‖r(A)‖σ 9−→ σ(r(A))

‖c(A)‖σ 9−→ σ(c(A))

‖r(λij〈m, n, t〉)‖σ 9−→ ‖m‖σ

‖c(λij〈m, n, t〉)‖σ 9−→ ‖n‖σ

With each matrix variable A we associate the following set of σ(r(A))·σ(c(A)) boolean

variables: A11, A12, . . . , Aσ(r(A))σ(c(A)). Thus, we translate e(A, m, n) as follows:

‖e(A, m, n)‖σ 9−→






A‖m‖σ‖n‖σ if
1 ≤ ‖m‖σ ≤ σ(r(A))

1 ≤ ‖n‖σ ≤ σ(c(A))

F otherwise

and we translate constructed terms as follows:

‖e(λij〈m′, n′, t〉, m, n)‖σ 9−→






‖t‖σ(‖m‖σ/i)(‖n‖σ/j) if
1 ≤ ‖m‖σ ≤ ‖m′‖σ

1 ≤ ‖n‖σ ≤ ‖n′‖σ

F otherwise

Finally, we deal with Σ(T ) as follows:

‖Σ(A)‖σ 9−→ MOD2,1(A11, A12, . . . , Aσ(r(A))σ(c(A)))

‖Σ(λij〈m, n, t〉)‖σ 9−→ MOD2,1({‖t‖σ(p/i)(q/j)} 1≤p≤‖m‖σ
1≤q≤‖n‖σ

)

This ends the procedure.
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Example 7.2.1 We translate A + B = B + A where A, B are 3× 3 matrices.

‖r(A + B)‖σ = ‖cond(r(A) ≤ r(B), r(B), r(A))‖σ

=





‖r(B)‖σ if ‖r(A) ≤ r(B)‖σ

‖r(A)‖σ otherwise

=





σ(r(B)) if σ(r(A)) ≤ σ(r(B))

σ(r(A)) otherwise

= 3

Similarly: ‖r(B+A)‖σ = ‖c(A+B)‖σ = ‖c(B+A)‖σ = 3. Thus, from ‖A+B = B+A‖σ

we obtain: ∧

1≤p≤3
1≤q≤3

(‖e(A + B, i, j)‖σ(p/i)(q/j) ≡ ‖e(B + A, i, j)‖σ(p/i)(q/j))

and from ‖e(A + B, i, j)‖σ(p/i)(q/j) we obtain:

9−→ ‖e(A, i, j) + e(B, i, j)‖σ(p/i)(q/j)

9−→ MOD2,1(‖e(A, i, j)‖σ(p/i)(q/j), ‖e(B, i, j)‖σ(p/i)(q/j))

9−→ MOD2,1(A‖i‖σ(p/i)(q/j)‖j‖σ(p/i)(q/j)
, B‖i‖σ(p/i)(q/j)‖j‖σ(p/i)(q/j)

)

9−→ MOD2,1(Apq, Bpq)

We do the same for e(B + A, i, j), and we obtain:

∧

1≤p≤3
1≤q≤3

MOD2,1(Apq, Bpq) ≡ MOD2,1(Bpq, Apq)

which is what we expected.

7.2.3 Correctness of the procedure

Recall that |σ|, the norm of σ, is the largest value assignment of σ. We state the

correctness of the translating procedure in the form of the following two theorems:

Theorem 7.2.1 If S is a sequent over LLA, then, there exists a polynomial pS and a

constant dS such that for every σ, size(‖S‖σ) is bounded by pS(|σ|), and dp(‖S‖σ) is

bounded by dS. Furthermore, if S is a true sequent then, the propositional sequent ‖S‖σ

is a tautology.
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Theorem 7.2.2 If S is a sequent over LLA, and S is a theorem of LA, then, there

exists a polynomial qS and a positive integer dS such that for every σ, ‖S‖σ has a PK[2]

derivation PS,σ such that size(PS,σ) is bounded by qS(|σ|) and dp(PS,σ) is bounded by

the constant dS.

Proof. (of theorem 7.2.1) Since sequents are made of (finitely many) formulas, it is

enough to prove the theorem for formulas: If α is a formula over LLA, then α is a boolean

combination of atomic formulas of the form m = n, m ≤ n, t = u, and T = U . The first

two translate into T or F, for any σ, so size(‖m = n‖σ) = size(‖m ≤ n‖σ) = 1, regardless

of σ, and hence they are trivially bounded.

The atomic formula t = u translates into ‖t‖σ ≡ ‖u‖σ, and the atomic formula T = U

translates into: ∧

1≤p≤r
1≤q≤c

(‖e(T, i, j)‖σ(p/i)(q/j) ≡ ‖e(U, i, j)‖σ(p/i)(q/j))

where r := σ(r(A)) = σ(r(B)) and c := σ(c(A)) = σ(c(B)). If the sizes are not compat-

ible, then T = U simply translates into F, in which case size(‖T = U‖σ) = size(F) = 1,

so it is trivially bounded regardless of σ.

We need the following two claims to finish the proof:

Claim 7.2.1 Given any term m of type index, there exists a polynomial pm such that

for any σ, ‖m‖σ is bounded by pm(|σ|).

Proof. The proof of this claim is straightforward. !

Claim 7.2.2 Given any term t of type field, there exists a polynomial pt such that for

any σ, size(‖t‖σ) is bounded by pt(|σ|).

Proof. The proof is by structural induction on t.

Basis Case: t is of the form 0, 1 or a, for some field variable a. Then, t translates to F,

Tor a, respectively, and therefore size(‖t‖σ) = 1, regardless of σ.

Induction Step: we consider all the possible ways to form a term of type field; we

consider the cases that define terms of type field in the inductive definition of terms and

formulas (see section 2.2.1):

case 2. Consider t + u. Since ‖t + u‖σ 9−→ MOD2,1(‖t‖σ, ‖u‖σ), we have that:

size(‖t + u‖σ) = size(‖t‖σ) + size(‖u‖σ) + 1
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and by the IH:

≤ pt(|σ|) + pu(|σ|) + 1

The case t ∗ u is the same as t + u, except we have the connective ∧ instead of

MOD2,1.

case 3. Consider −t and t−1 . Since ‖ − t‖σ, ‖t−1‖σ 9−→ ‖t‖σ, it follows that:

size(‖ − t‖σ) = size(‖t−1‖σ) = size(‖t‖σ)

Now we apply the IH to t.

case 4. Consider Σ(T ). The translation depends on whether T is a matrix variable, or a

constructed term:

‖Σ(A)‖σ 9−→ MOD2,1(A11, A12, . . . , Aσ(r(A))σ(c(A)))

‖Σ(λij〈m, n, t〉)‖σ 9−→ MOD2,1({‖t‖σ(p/i)(q/j)} 1≤p≤‖m‖σ
1≤q≤‖n‖σ

)

In the first case:

size(‖Σ(A)‖σ) = size(MOD2,1(A11, A12, . . . , Aσ(r(A))σ(c(A))))

= 1 + σ(r(A))σ(c(A)) ≤ 1 + |σ|2

In the second case:

size(‖Σ(λij〈m, n, t〉)‖σ) = size(MOD2,1({‖t‖σ(p/i)(q/j)} 1≤p≤‖m‖σ
1≤q≤‖n‖σ

))

= 1 +
∑

1≤p≤‖m‖σ
1≤q≤‖n‖σ

size(‖t‖σ(p/i)(q/j))

But by the IH size(‖t‖σ(p/i)(q/j)) is bounded by pt(|σ(p/i)(q/j)|), and by claim 7.2.1:

1 ≤ p ≤ ‖m‖σ ≤ pm(|σ|) and 1 ≤ q ≤ ‖n‖σ ≤ pn(|σ|). Thus:

pt(|σ(p/i)(q/j)|) ≤ pt(|σ| + pm(|σ|) + pn(|σ|)) ≤ p′t(|σ|)

and we are done.

case 5. Consider e(T, m, n). If T is just a matrix variable, then:

size(‖e(A, m, n)‖σ) = size(A‖m‖σ‖n‖σ) = 1
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If T is a constructed matrix, then:

size(‖e(λij〈m′, n′, t〉, m, n)‖σ) = size(‖t‖σ(‖m‖σ/i)(‖n‖σ/j)) (7.1)

if 1 ≤ ‖m‖σ ≤ ‖m′‖σ and 1 ≤ ‖n‖σ ≤ ‖n′‖σ, and otherwise:

size(‖e(λij〈m′, n′, t〉, m, n)‖σ) = size(F) = 1

in which case we are done.

So suppose that equation (7.1) is the case. Then, by the IH, we know that

size(‖t‖σ(‖m‖σ/i)(‖n‖σ/j)) is bounded by pt(|σ(‖m‖σ/i)(‖n‖σ/j)|), and by claim 7.2.1,

‖m‖σ ≤ pm(|σ|) and ‖n‖σ ≤ pn(|σ|), so we are done.

case 9. Consider cond(α, t, u). Since:

‖cond(α, t, u)‖σ 9−→





‖t‖σ if ‖α‖σ

‖u‖σ otherwise

it follows that:

size(‖cond(α, t, u)‖σ) ≤ max{size(‖t‖σ), size(‖u‖σ)}

≤ size(‖t‖σ) + size(‖u‖σ)

and the claim now follows by the IH.

This finishes the proof of claim 7.2.2, and of the first part of the theorem. !

We still have to prove that if SZ2 " α, then, for any σ, the propositional formula ‖α‖σ

is a tautology.

Suppose that SZ2 " α. Let σ be a fixed partial assignment to the free index variables

in α, and to all the terms of the form r(A) and c(A) for all matrix variables A in α. We

define τσ to be an object assignment where τσ(i) = σ(i) if i is a free index variable in

α, and τσ(r(A)) = σ(r(A)) and τσ(c(A)) = σ(c(A)) if A is a matrix variable in α; τσ

extends σ. Since SZ2 " α, it follows that SZ2 " α[τσ], for all object assignment τσ.

There is a natural correspondence between object assignments τσ to the field and

matrix variables in α, and truth value assignments τ ′σ to the propositional variables in
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‖α‖σ, namely:

τσ(a) = 1 ∈ Z2 ⇐⇒ τ ′σ(a) = T

τσ(A) =





a11 a12 . . . a1n

a21 a22 . . . a2n

...

am1 am2 . . . amn




∈ Mm×n(Z2) ⇐⇒ τ ′σ(Aij) = aij ∈ {T, F}

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Now, the rest of the proof will follow from the next

claim:

Claim 7.2.3 Suppose that SZ2 " α. Let σ be a fixed partial object assignment to the

free index variables in α, and to the index terms of the form r(A) and c(A), for all matrix

variables A in α. If τσ and τ ′σ are any object assignments, defined as in the paragraphs

above, then:

SZ2 " (m = n)[τσ] iff ‖m = n‖σ 9−→ T

SZ2 " (m ≤ n)[τσ] iff ‖m ≤ n‖σ 9−→ T

SZ2 " (t = u)[τσ] iff τ ′σ(‖t = u‖σ) = T

SZ2 " (T = U)[τσ] iff τ ′σ(p/i)(q/j)(‖e(T, i, j) = e(U, i, j)‖σ(p/i)(q/j)) = T

for all 1 ≤ p ≤ r and 1 ≤ q ≤ c, where r := τσ(r(T )) = σ(r(T )) = σ(r(U)) and

c := τσ(c(T )) = σ(c(T )) = σ(c(U)).

Proof. Let S = SZ2 , and consider the first statement: S " (m = n)[τσ] iff ‖m = n‖σ 9−→
T. S " (m = n)[τσ] iff mS [τσ] = nS [τσ]. It is easy to show, by structural induction on

terms m of type index, that mS [τσ] = ‖m‖σ. Therefore, mS [τσ] = nS [τσ] iff ‖m‖σ = ‖n‖σ

iff ‖m = n‖σ 9−→ T.

The second statement, S " (m ≤ n)[τσ] iff ‖m ≤ n‖σ 9−→ T, can be proven similarly.

Consider S " (t = u)[τσ] iff τ ′σ(‖t = u‖σ) = T. S " (t = u)[τσ] iff tS [τσ] = uS [τσ].

Again, it is easy to show, by structural induction on terms t of type field, that tS [τσ] =

1 ∈ Z2 iff τ ′σ(‖t = u‖σ) = T. Therefore, tS [τσ] = uS [τσ] iff τ ′σ(‖t‖σ ≡ ‖u‖σ) = T iff

τ ′σ(‖t = u‖σ) = T.

The last statement follows from the definition of ‖T = U‖σ, and from the previous

statement. This ends the proof of claim 7.2.3. !

This ends the proof of theorem 7.2.1. !
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We need the following four results for the proof of theorem 7.2.2:

Lemma 7.2.1 PK[a] derivations have the substitution property; that is, if P is a PK[a]

derivation of α(x), where x is an atom, then P [β/x] is a proof of α(β/x). (Here α

and β are propositional formulas, and x is a propositional variable. Since LA has the

(derived) substitution rule, we need an analogous thing for PK[a] in order to carry out

the translations.)

Proof. This is a straightforward proof by induction on the length of the derivation. The

Basis Case is when α(x) is an axiom, in which case α(β/x) is also an axiom (note that

β does not have modular gates, as PK[a] is a proof system for the classical tautologies).

In the Induction Step we consider all the rules (and the modular axioms), and we show

that if the property holds for the top sequent(s) it holds for the bottom. !

Lemma 7.2.2 If α(a) is a formula over LLA (and a is a field variable), then:

‖α(t/a)‖σ =synt ‖α(a)‖σ(‖t‖σ/a) (7.2)

for any term t of type field.

Proof. This is a straightforward proof by structural induction on the formula α. The

Basis Case is when α(a) is an atomic formula: t = u, t ≤ u. We now prove this by

structural induction on t and u; in the inductive step of this second argument, we consider

all the steps in the procedure for translating terms of type field. The main Induction

Step is proving the result for boolean combinations of atomic formulas. !

Lemma 7.2.3 If α(i) is a formula over LLA (and i is an index variable), then:

‖α(m/i)‖σ =synt ‖α(i)‖σ(‖m‖σ/i) (7.3)

for any term m of type index.

Proof. Same straightforward idea as in the proof of Lemma 7.2.2, but since in the

translation we actually evaluate terms of type index, in the right hand side of (7.3) we

change (accordingly to the left hand side) the value of σ, rather than the boolean variables

of the formula as in (7.2). !
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Corollary 7.2.1 If S(a, i) is a sequent over LLA, and a = a1, . . . , ak and i = i1, . . . , il

are field and index variables (respectively), then:

‖S(t/a,m/i)‖σ =synt ‖S(a, i)‖σ(‖m‖σ/i)(‖t‖σ/a)

where t = t1, . . . , tk and m = m1, . . . , ml are terms of type field and index (respectively).

Note that t/a denotes t1/a1, . . . , tk/ak.

Proof. Since sequents are cedents of formulas, this Corollary follows directly from (7.2)

and (7.3). !

Proof. (of Theorem 7.2.2) Suppose that S is a theorem of LA. Then, by Defini-

tion 2.4.6, S has a PK-LA derivation π = {S1, S2, . . . , Sn}, where S =synt Sn. We are

going to prove the Theorem by induction on n. There are two cases: the axiom case,

where Si is an axiom, and the rule case, where Si follows by one of the rules from previous

sequents in the derivation π. Note that in the Basis Case of the induction, S1 must be

an axiom. In the Induction Step, Si either follows from previous sequents in π, or it is

also an axiom.

The goal is to produce a PK[2] derivation P of ‖S‖σ, that satisfies the conditions of

the Theorem (it is poly-bounded in |σ| and all formulas have bounded depth). The fact

that these conditions hold is obvious from the proof, so they will not be stated explicitly.

Axiom Case

We will go through the list of the axiom schemas, showing that each axiom translates

into families of propositional tautologies with short PK[2] proofs of bounded depth. Note

that by convention (2.14) — the convention that we made in section 2.3 — all substitution

instances of axioms are also axioms. Corollary 7.2.1 will take care of the case where we

replace variables of type index or field by appropriate terms. We still need to consider

the cases where we replace variables of type matrix by constructed matrices.

A1: Since this is the first axiom that we deal with, we will do it in a little bit more

detail than necessary. Recall that A1 is x = x. If we replace x by a variable i of

type index, then we get i = i. Then, ‖i = i‖σ 9−→ T because ‖i‖σ = ‖i‖σ for any

index variable i, and T has a trivial PK[2] proof.

If x is the field variable a, then ‖a = a‖σ 9−→ a ≡ a, which has a short tree-like

PK[2] proof regardless of σ.
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If x is the matrix variable A, then:

‖A = A‖σ 9−→
∧

1≤p≤σ(r(A))
1≤q≤σ(c(A))

Apq ≡ Apq

and since for each pair p, q, Apq ≡ Apq has a short tree-like PK[2] proof of con-

stant size, the conjunction
∧

1≤p≤σ(r(A))
1≤q≤σ(c(A))

Apq ≡ Apq has a tree-like PK[2] proof of size

polynomial in |σ|.

If x is replaced by a constructed term T =synt λij〈m, n, t〉, then the expression

‖T = T‖σ becomes:

∧

1≤p≤‖m‖σ
1≤q≤‖n‖σ

(‖t‖σ(p/i)(q/j) ≡ ‖t‖σ(p/i)(q/j)) (7.4)

and since each ‖t‖σ(p/i)(q/j) ≡ ‖t‖σ(p/i)(q/j) has a short PK[2] proof, so does the

conjunction.

A2: Easy if x, y are index or field variables. Consider A = B → B = A. If σ(r(A)) =

σ(r(B)) and σ(c(A)) = σ(c(B)), then ‖A = B → B = A‖σ becomes:

∧

1≤p≤σ(r(A))
1≤q≤σ(c(A))

(Apq ≡ Bpq) →
∧

1≤p≤σ(r(A))
1≤q≤σ(c(A))

(Bpq ≡ Apq)

which clearly has a short PK[2] proof. Otherwise, if the sizes are not compatible,

then ‖A = B → B = A‖σ 9−→ F→ F which has a trivial PK[2] proof.

Suppose that x and y are replaced by the constructed terms λij〈m, n, t〉 and

λij〈m′, n′, t′〉. Then we have:

∧

1≤p≤‖m‖σ
1≤q≤‖n‖σ

(‖t‖σ(p/i)(q/j) ≡ ‖t′‖σ(p/i)(q/j))

→
∧

1≤p≤‖m‖σ
1≤q≤‖n‖σ

(‖t′‖σ(p/i)(q/j) ≡ ‖t‖σ(p/i)(q/j))

if the sizes are compatible, that is, if ‖m‖σ = ‖m′‖σ and ‖n‖σ = ‖n′‖σ. If the sizes

are not compatible we get F→ F.

A3: Same idea as A1 and A2.
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A4: It is enough to consider f ∈ {r, c, e,Σ} as it is easy for the other function symbols.

Suppose f = r and consider A = B → r(A) = r(B). Just note that if ‖r(A)‖σ %=
‖r(B)‖σ, then ‖A = B‖σ 9−→ F.

Suppose f = e. Consider:

i1 = i2, j1 = j2, A = B → e(A, i1, j1) = e(B, i2, j2)

Just note that if ‖i1 = i2‖σ 9−→ T and ‖j1 = j2‖σ 9−→ T, then we have σ(i1) = σ(i2)

and σ(j1) = σ(j2).

Finally consider f = Σ. In this case the axiom becomes:

A = B → Σ(A) = Σ(B)

If the sizes are compatible, from ‖A = B → Σ(A) = Σ(B)‖σ we obtain:

9−→ ‖A = B‖σ → ‖Σ(A) = Σ(B)‖σ

9−→
∧

1≤p≤σ(r(A))
1≤q≤σ(c(A))

Apq ≡ Bpq

→ MOD2,1({Apq} 1≤p≤σ(r(A))
1≤q≤σ(c(A))

) ≡ MOD2,1({Bpq} 1≤p≤σ(r(A))
1≤q≤σ(c(A))

)

A5–A17: It is easy to check that each of these axioms is mapped to T for any σ.

A18: ‖ → 0 + a = a‖σ

9−→ → ‖0 + a‖σ ≡ ‖a‖σ

9−→ → MOD2,1(F, a) ≡ a

A19: ‖ → a + (−a) = 0‖σ

9−→ → ‖a + (−a) = 0‖σ

9−→ → ‖a + (−a)‖σ ≡ ‖0‖σ

9−→ → MOD2,1(a, ‖ − a‖σ) ≡ F

9−→ → MOD2,1(a, a) ≡ F
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A20: ‖ → 1 ∗ a = a‖σ

9−→ → ‖1 ∗ a‖σ ≡ ‖a‖σ

9−→ → (‖1‖σ ∧ ‖a‖σ) ≡ ‖a‖σ

9−→ → (T ∧ a) ≡ a

A21: ‖a %= 0 → a ∗ (a−1) = 1‖σ

9−→‖a %= 0‖σ → ‖a ∗ (a−1) = 1‖σ

9−→¬(a ≡ F) → ‖a ∗ (a−1)‖σ ≡ T

9−→¬(a ≡ F) → (a ∧ ‖a−1‖σ) ≡ T

9−→¬(a ≡ F) → (a ∧ a) ≡ T

A22: ‖ → a + b = b + a‖σ

9−→ → ‖a + b‖σ ≡ ‖b + a‖σ

9−→ → MOD2,1(a, b) ≡ MOD2,1(b, a)

A23: ‖ → a ∗ b = b ∗ a‖σ

9−→ → ‖a ∗ b‖σ ≡ ‖b ∗ a‖σ

9−→ → a ∧ b ≡ b ∧ a

A24: ‖ → a + (b + c) = (a + b) + c‖σ

9−→ → ‖a + (b + c)‖σ ≡ ‖(a + b) + c‖σ

9−→ → MOD2,1(a, ‖b + c‖σ) ≡ MOD2,1(‖a + b‖σ, c)

9−→ → MOD2,1(a, MOD2,1(b, c)) ≡ MOD2,1(MOD2,1(a, b), c)
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A25: ‖ → a ∗ (b ∗ c) = (a ∗ b) ∗ c‖σ

9−→ → a ∧ (b ∧ c) ≡ (a ∧ b) ∧ c

A26: ‖ → a ∗ (b + c) = (a ∗ b) + (a ∗ c)‖σ

9−→ → a ∧ MOD2,1(b, c) ≡ MOD2,1(a ∧ b, a ∧ c)

A27: ‖α→ cond(α, a, b) = a‖σ

9−→‖α‖σ → ‖cond(α, a, b) = a‖σ

9−→‖α‖σ → ‖cond(α, a, b)‖σ ≡ a

Suppose ‖α‖σ 9−→ T. Then ‖cond(α, a, b)‖σ 9−→ a, so in this case:

‖α→ cond(α, a, b) = a‖σ 9−→ T→ a ≡ a

A28: ‖i = 0 ∨ r(A) < i ∨ j = 0 ∨ c(A) < j → e(A, i, j) = 0‖σ maps to

‖i = 0‖σ ∨ ‖r(A) < i‖σ ∨ ‖j = 0‖σ ∨ ‖c(A) < j‖σ → ‖e(A, i, j)‖σ ≡ F

Suppose that the antecedent is true. Then, one of the formulas in the disjunction

has to be true, and so ‖e(A, i, j)‖σ 9−→ F, so the succedent is F ≡ F, and hence it

is valid.

A29:

‖ → r(λij〈m, n, t〉) = m‖σ 9−→→ T

‖ → c(λij〈m, n, t〉) = m‖σ 9−→→ T

Now consider ‖1 ≤ i, i ≤ m, 1 ≤ j, j ≤ n → e(λij〈m, n, t〉, i, j) = t‖σ which maps

to:

‖1≤ i‖σ, ‖i≤m‖σ, ‖1≤j‖σ, ‖j≤n‖σ → ‖e(λij〈m, n, t〉, i, j)‖σ ≡ ‖t‖σ

If all the formulas in the antecedent are true, then:

‖e(λij〈m, n, t〉, i, j)‖σ 9−→ ‖t‖σ

so the succedent becomes ‖t‖σ ≡ ‖t‖σ, and the entire sequent becomes:

T, T, T, T→ ‖t‖σ ≡ ‖t‖σ
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A30: ‖r(A) = 1, c(A) = 1 → Σ(A) = e(A, 1, 1)‖σ becomes:

‖r(A) = 1‖σ, ‖c(A) = 1‖σ → ‖Σ(A)‖σ ≡ ‖e(A, 1, 1)‖σ

and if both formulas in the antecedent are true, then:

‖Σ(A)‖σ 9−→ MOD2,1(A11)

‖e(A, 1, 1)‖σ 9−→ A11

so in this case the sequent becomes:

T, T→ MOD2,1(A11) ≡ A11

A31: ‖r(A) = 1, 1 < c(A) → Σ(A) = Σ(λij〈1, c(A)− 1, Aij〉) + A1c(A)‖σ becomes:

‖r(A) = 1‖σ,‖1 < c(A)‖σ

→‖Σ(A)‖σ ≡ MOD2,1(‖Σ(λij〈1, c(A)− 1, Aij〉)‖σ, ‖A1c(A)‖σ)

Suppose that both formulas in the antecedent are true. Then we have:

T, T→ MOD2,1(A11, . . . , A1σ(c(A))) ≡

MOD2,1(MOD2,1(A11, . . . , A1σ(c(A))−1), A1σ(c(A)))

A32: ‖c(A) = 1 → Σ(A) = Σ(At)‖σ becomes:

‖c(A) = 1‖σ → ‖Σ(A)‖σ ≡ ‖Σ(At)‖σ

Suppose that the formula in the antecedent is true, and recall that At is defined by

λij〈c(A), r(A), Aji〉. We obtain:

T→ MOD2,1(A11, . . . , Aσ(r(A))1) ≡ MOD2,1({‖Aji‖σ(p/i)(q/j)} 1≤p≤σ(c(A))=1
1≤q≤σ(r(A))

)

which is simply:

T→ MOD2,1(A11, . . . , Aσ(r(A))1) ≡ MOD2,1(A11, . . . , Aσ(r(A))1)

A33: Suppose that ‖1 < r(A)‖σ, ‖1 < c(A)‖σ 9−→ T. Then, the RHS of the sequent

maps to a propositional formula of the form φ1 ≡ φ2, where φ1 is ‖Σ(A)‖σ and where
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φ2 is a formula whose outermost gate is MOD2,1 with the following four arguments:

‖e(A, 1, 1)‖σ 9−→ A11

‖Σλij〈1, c(A)− 1, e(A, 1, i + 1)〉‖σ 9−→ MOD2,1(A12, . . . , A1σ(c(A)))

‖Σλij〈r(A)− 1, 1, e(A, i + 1, 1)〉‖σ 9−→ MOD2,1(A21, . . . , Aσ(r(A))1)

‖Σλij〈r(A)− 1, c(A)− 1, e(A, i + 1, j + 1)〉‖σ 9−→ MOD2,1(A22, . . . , Aσ(r(A))σ(c(A)))

Thus, it comes down to proving the following assertion:

MOD2,1(A) ≡ MOD2,1(A11, MOD2,1(R), MOD2,1(S), MOD2,1(M))

where MOD2,1(A) means the obvious: MOD2,1(A11, . . . , Aσ(r(A))σ(c(A))). Similarly, R, S

and M on the RHS abbreviate the corresponding sets of propositional variables.

Rule Case

We examine the three rules, and show that if the translations of the premises have

feasible polysize PK[2] derivations of bounded depth, so does the translation of the con-

clusion.

Ind: Since by IH, ‖α(i) → α(i + 1/i)‖σ has short PK[2] derivations for all σ, it follows

that for any particular fixed σ0, the propositional formulas:

‖α(i)‖σ0(p/i) → ‖α(i + 1/i)‖σ0(p/i) for 0 ≤ p < σ0(n) (7.5)

have short PK[2] derivations. From ‖α(0/i)‖σ0 and the formulas given by (7.5) we

can conclude, with a sequence of modus ponens, ‖α(n/i)‖σ0 .

Eq: Suppose that ‖r(T ) = r(U)‖σ 9−→ T and ‖c(T ) = c(U)‖σ 9−→ T, and that

‖e(T, i, j) = e(U, i, j)‖σ has a short PK[2] derivation for all σ, and in particu-

lar for all σ(i) ∈ {1, . . . , r} and σ(j) ∈ {1, . . . , c}, where r = ‖r(T )‖σ = ‖r(U)‖σ

and c = ‖c(T )‖σ = ‖c(U)‖σ. Therefore, ‖T = U‖σ, which is given by:

∧

1≤p≤r
1≤q≤c

‖e(T, i, j)‖σ(p/i)(q/j) ≡ ‖e(U, i, j)‖σ(p/i)(q/j)

also has short PK[2] derivations.

PK rules: This case is easy.

This finishes the proof of theorem 7.2.2. !
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7.3 Translating theorems of LA over Zp and Q

In this section we discuss briefly the translations of the theorems of LA over finite fields

of the form Zp (p prime), and over the field of the rationals Q. The finite field Zp, for p

a prime, is the set {0, 1, . . . , p− 1} with mod p addition and multiplication.

We will concentrate on the encoding of the field elements. We will not restate the

theorems and proofs for bigger fields since they are analogous to the Z2 case which has

been done in great detail in the previous section.

So suppose that F = Zp, for p a prime. In that case we cannot translate field elements

directly; we need several propositional variables to represent a single field variable.

Since Zp = {0, 1, 2, . . . , p − 1} has finitely many elements, we can use the unary

notation to represent (feasibly) each field element In the translations, we are going to

associate with each field variable a the following boolean variables: a1, a2, . . . , ap−1, which

are going to encode (in unary) the value of a. For example, if p = 5 and a = 3, then

a5a4a3a2a1 is F F T T T.

If t is a term of type field, then ‖t‖j
σ denotes the value of the j position in the unary

representation of t. In particular, ‖a‖j
σ is aj .

We allow the connectives MODp,i, for 0 ≤ i ≤ p− 1, and we include its defining axioms

(see section 7.1). Also, for each sequence of variables a1, a2, . . . , ap encoding the field

variable a, we add the following set of axioms:

ai+1 ⊃ ai for 1 ≤ i ≤ p− 1

This ensures that field elements are properly encoded in unary.

We need to make some changes in the procedure for the translation. First:

‖t = u‖σ 9−→
∧

1≤j≤p

‖t‖j
σ ≡ ‖u‖j

σ

Now we make the following changes in the (sub)procedure that translates terms of type

index and field (we only need to modify the cases that deal with terms of type field). In

the Base Case:

‖0field‖j
σ 9−→ F for 1 ≤ j ≤ p

‖1field‖1
σ 9−→ T

‖1field‖j
σ 9−→ F for 2 ≤ j ≤ p

‖a‖j
σ 9−→ aj
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for 1 ≤ j ≤ p. Now consider the Recursive Step. Addition is given as follows:

‖t + u‖j
σ 9−→

∨

j≤i≤p−1

MODp,i({‖t‖k
σ}1≤k≤p, {‖u‖k

σ}1≤k≤p)

We now show how to translate products, and additive and multiplicative inverses:

‖t ∗ u‖j
σ 9−→

∨

1≤i,k≤p−1
j≤(ik mod p)

(‖t‖i
σ ∧ ¬‖t‖i+1

σ ) ∧ (‖u‖k
σ ∧ ¬‖u‖k+1

σ )

‖ − t‖j
σ 9−→

∨

1≤i≤p−1
j≤p−i

(‖t‖i
σ ∧ ¬‖t‖i+1

σ )

‖t−1‖j
σ 9−→

∨

1≤i,k≤p−1
j≤k∧ik≡1 mod p

(‖t‖i
σ ∧ ¬‖t‖i+1

σ )

We translate e(A, i, j) in the obvious way: ‖e(A, i, j)‖k
σ is Ak

ij ; thus, with each matrix A

if size m × n, we associate m · n · p boolean variables Ak
ij . For constructed matrices, we

do the following: ‖e(λij〈m, n, t〉, i, j)‖k
σ 9−→ ‖t‖k

σ.

Finally, we deal with Σ(A) as follows:

‖Σ(A)‖j
σ 9−→

∨

j≤i≤p−1

MODp,i({Ak
xy}1≤x≤σ(r(A)),1≤y≤σ(c(A)),1≤k≤p)

We proceed in a similar way with constructed matrices. This ends the modification of

the translation for fields Zp.

We will not present the details of the translation over the rationals since field op-

erations over the integers (and we can encode the rationals as pairs of integers), have

been already formalized using boolean formulas of size polynomial in the length of the

encoding. See, for example, [Weg87, Theorems 1.2 and 1.3] for polysize circuits of depth

O(log n) that compute the addition and multiplication of integers. Also, see [Pit00].

7.4 Translating theorems of LAP

In this section we are going to show how to translate theorems of LAP into families of

boolean tautologies with quasi-poly-bounded Frege proofs. Again, we concentrate on the

field Z2 (as before, when the underlying field is Zp, p > 2, or Q, the translation is messier,

but all the results still hold). The “quasi” prefix in poly-bounded comes from the fact

that we require NC2 circuits to compute powers of matrices, and NC2 circuits correspond

to boolean formulas of size O(2log2 n).
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Most of the work has been done already, when we translated LA into families of

tautologies. In fact, we only need to show how to deal with e(P(m, A), i, j) over Z2.

The first thing we do is show how to translate ‖e(P(m, A), i, j)‖σ recursively:

Base Case: There are two cases:

case 1 ‖m‖σ = 0. ‖e(P(m, A), i, j)‖σ 9−→ T iff σ(i) = σ(j).

case 2 ‖m‖σ = 1. ‖e(P(m, A), i, j)‖σ 9−→ ‖e(A, i, j)‖σ 9−→ Aij.

Recursive Step: Assume ‖m‖σ > 1. There are two cases:

case 1 ‖m‖σ is even. Then ‖e(P(m, A), i, j)‖σ is mapped to:

MOD2,1({‖e(P(div(m, 2), A), i, k)‖σ ∧ ‖e(P(div(m, 2), A), k, j)‖σ}k)

where k ranges in {1, . . . , max{‖r(A)‖σ, ‖c(A)‖σ}}.

case 2 ‖m‖σ is odd. In this case, we effectively have to multiply three matrices; consider

the (i, j)-th entry of the product (AB)C (assume that all three are n×n matrices):

n∑

k=1

(AB)ikCkj =
n∑

1≤k≤n,1≤l≤n

((AilBlk)Ckj) (7.6)

If we now let A and B be P(div(m−1, 2), A), and C be A, and keep the right hand

side of equation (7.6) in mind, we get the following translation:

MOD2,1({

(‖e(P(div(m− 1, 2), A), i, l)‖σ ∧ ‖e(P(div(m− 1, 2), A), l, k)‖σ) ∧ ‖e(A, k, j)‖σ

}l,k)

where k and l range in {1, . . . , max{‖r(A)‖σ, ‖c(A)‖σ}}. Basically, the idea is that

if m is odd, then m = 2n + 1, and:

A
m−1

2 A
m−1

2 A = AnAnA = A2n+1 = Am

We also have to show that axioms A34 and A35 (see Table 4.1 on page 45) translate to

propositional tautologies with feasible quasi-polysize (O(2log2 n)) PK[2] derivations. This

is easy to see for A34 (it follows from the base case of the above recursion). Showing it

for A35:

→ P(m + 1, A) = P(m, A) ∗A
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requires showing that:

∧

i,j

‖e(P(m + 1, A), i, j)‖σ ≡ ‖e(P(m, A) ∗ A, i, j)‖σ

and given the translation for P(m, A), this is just associativity of “∧”.



Chapter 8

Proofs of the C-H Theorem

The main result of this chapter is a feasible proof of the Cayley-Hamilton Theorem. This

result gives us a feasible proof of correctness of Berkowitz’s algorithm, feasible proofs

of hard matrix identities, and feasible proofs of the main principles of Matrix Algebra

(specifically: axiomatic definition of the determinant, cofactor expansion formula, and

multiplicativity of the determinant).

We present three feasible proofs of the C-H Theorem. The first, in Section 8.2.2,

relies on translations from LAP with ΠM
1 -Induction into a variant of the poly-time theory

V1
1. The second and third, in Section 8.2.5 and Section 8.2.6, respectively, rely on

translations from LAP with ΠM
1 -Induction. We translate into families of Frege proofs

with the permutation rule in one case, and introduction of propositional quantifiers in the

second case. Permutation Frege is a fragment of Substitution Frege, which corresponds

to reasoning with poly-time concepts. The fragment of Quantified Frege that we use is

tree-like and all formulas only need one block of universal quantifiers, and this can be

p-simulated by Extended Frege.

It seems that we provide the first feasible proof of correctness of the C-H Theorem.

To support this claim we present in Section 8.1 the prototypical (infeasible) proofs of the

C-H Theorem, given in algebra textbooks. They are both infeasible as they rely on the

Lagrange formula for det(xI −A), which has n! terms for an n× n matrix A.

In section 8.3 we give a feasible proof of correctness of the Gaussian Elimination

Algorithm; a poly-time proof of a poly-time algorithm. This result is interesting in

its own right because we do not know how to give a proof of correctness of Berkowitz’s

algorithm in its own complexity class. In other words, we do not know if we can prove the

Cayley-Hamilton Theorem using NC2 concepts, rather than (feasible) poly-time concepts.

115
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We use the proof of correctness of Gaussian Elimination to give a direct feasible

proof (as opposed to an indirect proof via the feasible proof of the C-H Theorem) of

AB = I → BA = I (Section 8.3.3), and a feasible proof of det(A) = 0 → AB %= I

(Section 8.3.2). This last identity, together with a feasible proof of the Cayley-Hamilton

Theorem, gives us a feasible proof of multiplicativity of determinant (see Section 6.4).

At this point, it is not known if there are poly-bounded Frege proofs, or even quasi-

poly-bounded Frege proofs of hard matrix identities or of the Cayley-Hamilton Theorem.

To repeat using the language of circuit complexity: we know that hard matrix identities,

as well as the Cayley-Hamilton Theorem, have poly-bounded P/poly-Frege proofs, but

it is not known if they have poly-bounded NCi-Frege proofs, for any i. Since Berkowitz’s

algorithm is an NC2 algorithm, it is tempting to conjecture that they all have NC2-Frege

proofs.

8.1 Traditional proofs of the C-H Theorem

In this section we present two prototypical (infeasible) proofs of the Cayley-Hamilton

Theorem that are given in one form or another in most Linear Algebra textbooks. Our

(small) contribution is Claim 8.1.1 which is usually overlooked (and never proven) when

Proof I is given. These proofs are infeasible because they rely on the Lagrange expansion

of the determinant; the Lagrange expansion, for a n×n matrix, has n! terms (i.e., it is the

summation over all the permutations of n elements:
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) . . . anσ(n)).

8.1.1 Infeasible proof of the C-H Theorem (I)

Proof. The most direct proof is using the Lagrange expansion on det(xI − A). We

show that using the Lagrange expansion we can prove the axiomatic definition of the

determinant, and hence, by defining adj(xI−A) as the matrix of cofactors, we can prove

that:

(xI − A)adj(xI − A) = det(xI −A)I.

Let π be the isomorphism that maps objects from M(F[x]) to (M(F))[x], and replace x

by A in the expression (xI − A)π(adj(xI − A)) = π(det(xI − A)I). This gives us that

pA(A) = π(det(xI − A))|x=A = 0. !

Just for completeness we show that the map π, given in the above proof exists. This
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map allows us to consider every matrix whose entries are polynomials over the ring R,

as a polynomial whose coefficients are in Mn×n(R).

Example 8.1.1 Suppose that n = 2 and R = Q. Consider:

(
2x + 5 −x2 − 7

3 x2 + 5x + 1

)
=

(
0 −1

0 1

)
x2 +

(
2 0

0 5

)
x +

(
5 −7

3 1

)

where the LHS is in M2×2(Q[x]) and the RHS is in (M2×2(Q))[x].

Claim 8.1.1 Mn×n(R[x]) ∼= (Mn×n(R))[x].

Proof. Let π : Mn×n(R[x]) −→ (Mn×n(R))[x] be the natural mapping. We show first

that π is a ring homomorphism. Let ({ak
ij}) ∈ Mn×n(R[x]) where {ak

ij} ∈ R[x] is the

(i, j)-th entry, and ak
ij is the coefficient of the k-th power of this polynomial. Then:

π(({ak
ij}) + ({bk

ij})) = π(({ak
ij + bk

ij}))

= {(ak
ij + bk

ij)}

= {(ak
ij)} + {(bk

ij)}

= π(({ak
ij})) + π(({bk

ij}))

Now we want to show that π(({ak
ij}) · ({bk

ij})) = π(({ak
ij})) · π(({bk

ij})).

π(({ak
ij}) · ({bk

ij})) = π((Σn
l=1{ak

il} · {bk
lj}))

= π((Σn
l=1{Σr+s=ka

r
ilb

s
lj}))

= {Σr+s=k(Σ
n
l=1a

r
ilb

s
lj)}

= {Σr+s=k(a
r
ij) · (bs

ij)}

= {(ak
ij)} · {(bk

ij)}

= π(({ak
ij})) · π(({bk

ij}))

Thus π is a ring homomorphism. Since π is bijective, the claim follows. !

8.1.2 Infeasible proof of the C-H Theorem (II)

Another proof, more algebraic, considers algebraically closed fields. So let A be a matrix,

let pA(x) = det(xI−A) (also computed via the Lagrange expansion), and let λ1, λ2, . . . , λn
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be the eigenvalues of A. As we are dealing with algebraically closed fields, we can find a

matrix P such that:

A = P−1TP

where T is an upper-triangular matrix with λ1, λ2, . . . , λn on the diagonal. We factor the

characteristic polynomial as follows:

pA(x) = (x− λ1)(x− λ2) · · · (x− λn)

Then:

pA(A) = pA(P−1TP ) = P−1pA(T )P

and note that:

pA(T ) = (T − λ1I)(T − λ2I) · · · (T − λnI)

Now, using induction on k, we can show that the first k columns of (T−λ1I) · · · (T−λkI)

are zero, 1 ≤ k ≤ n. Thus, pA(T ) = 0, and therefore pA(A) = 0. !

8.2 Feasible proofs of the C-H Theorem

In this section we present three feasible proofs of the Cayley-Hamilton Theorem. All three

proofs rely on the same idea—they are the same proof expressed in slightly different ways

to draw connections with different propositional proof systems.

The basic intuition behind these proofs is the following: if pA(A) %= 0, that is, if the

C-H Theorem fails for A, then we can find in polytime a minor A[i|j] of A for which

pA[i|j](A[i|j]) %= 0, i.e., a minor for which the C-H Theorem fails already. Since the C-H

Theorem does not fail for 1×1 matrices, after n = (size of A) steps we get a contradiction.

This idea can be expressed with universal quantifiers over variables of type matrix: if the

C-H Theorem holds for all n2 minors of A, it also holds for A.

Also note that we do not need multiplicative inverses for field elements to prove the

C-H Theorem; that is, we do not need the function −1 and we do not need axiom A21.

Berkowitz’s algorithm does not compute inverses of field elements, and we do not need

to take inverses in the proofs of the C-H Theorem that we present below. Thus, the

C-H Theorem holds for commutative rings. On the other hand, we do use inverses in our

proof of the multiplicativity of the determinant1 (see Section 6.4).

1It is an interesting question whether it is possible to prove the multiplicativity of the determinant
for commutative rings.
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Here are the outlines of the proofs:

• Proof 1 with V1
1: In Section 8.2.1 we show that LAP, with ∀ quantifiers for

matrix variables (i.e., we allow ΠM
1 formulas—see Definition 8.2.1) and augmented

by ΠM
1 -Induction (we call the new theory ∀LAP), proves the C-H Theorem. In

Section 8.2.2 we define the theory Ṽ1(Σ, P), which is conservative over the poly-

time theory V1
1, and in Section 8.2.3 we show that the theorems of ∀LAP can be

interpreted in Ṽ1(Σ, P).

• Proof 2 with Permutation Frege: In Section 8.2.5 we use the machinery of LAP

to show that the C-H Theorem has poly-bounded uniform families of Permutation

Frege proofs. Since Permutation Frege is a fragment of Substitution Frege, which

in turn can be p-simulated by Extended Frege, once again we have feasible proofs

of the C-H Theorem.

• Proof 3 with Quantified Frege: In Section 8.2.6 we show that ∀LAP proofs

translate into uniform, tree-like, poly-bounded families of Quantified Frege proofs,

where all formulas either have no quantifiers at all, or a block of universal quanti-

fiers. This fragment of Quantified Frege can be p-simulated by Extended Frege.

Since LAP proves the equivalence of the C-H Theorem, the axiomatic definition of the

determinant, and the cofactor expansion (see Chapter 6), we obtain that these principles

have feasible proofs as well.

Finally, in Section 8.3.2, we show that a feasible proof of the C-H Theorem implies

that identity (6.16) has a feasible proof as well. From Section 6.4 we know that (6.16)

is enough to prove in LAP the multiplicativity of the determinant. Therefore, we can

conclude that the multiplicativity of det has feasible proofs also.

8.2.1 LAP augmented by ΠM
1 -Induction: ∀LAP

Definition 8.2.1 We define ΠM
0 to be the set of formulas over LLAP (“M” stands for

matrix). We define ΠM
1 to be the set of formulas in ΠM

0 together with formulas of the

form (∀A ≤ n)α, where α ∈ ΠM
0 , and where (∀A ≤ n)α abbreviates:

(∀A)((r(A) ≤ n ∧ c(A) ≤ n) ⊃ α)

where A is a matrix variable, not contained in the index term n.
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Definition 8.2.2 We define the proof system LK-∀LAP to be the same as PK-LAP, but

where we allow ΠM
1 formulas (hence we use LK rather then PK). Thus we need two more

rules for introducing a universal quantifier on the left and on the right of a sequent: see

Table 8.1, where T is any term of type matrix, and n is any term of type index. Also,

left
r(T ) ≤ n, c(T ) ≤ n, α(T ),Γ→ ∆

(∀X ≤ n)α(X),Γ→ ∆
right

r(A) ≤ n, c(A) ≤ n,Γ → ∆, α(A)

Γ→ ∆, (∀X ≤ n)α(X)

Table 8.1: ∀-introduction in LK-∀LAP

in ∀-introduction-right, A is a variable of type matrix that does not occur in the lower

sequent, and α is a ΠM
0 formula, because we just want a single matrix quantifier.

Definition 8.2.3 The theory ∀LAP is the set of sequents with formulas in ΠM
1 which

have LK-∀LAP derivations. In particular, ∀LAP has induction over ΠM
1 formulas, hence-

forth ΠM
1 -IND.

ΠM
1 -IND is what allows us to prove the C-H Theorem.

Note that instead of ∀LAP, we could have proceeded by allowing alternation of quan-

tifiers (with ∃-introduction), and proving a Cut-Elimination Theorem.

Theorem 8.2.1 ∀LAP proves the Cayley-Hamilton Theorem.

Proof. We prove that for all n×n matrices A, pA(A) = 0, by induction on n. The Basis

Case is trivial: if A = (a11), then the char poly of A is x − a11. We use the following

strong induction hypothesis: (∀A ≤ n)pA(A) = 0. Thus, in our Induction Step we

prove:

(∀M ≤ n)pM(M) = 0 → (∀A ≤ n + 1)pA(A) = 0 (8.1)

So let A be an (n+1)×(n+1) matrix, and assume that we have (∀M ≤ n)pM(M) = 0.

Then, by Corollary 6.1.1, we have that for all 1 ≤ i < j ≤ n− 1, p(IijAIij) = pA.

Suppose now that the i-th row (column) of pA(A) is not zero. Then, the first row

(column) of I1ipA(A)I1i is not zero. But:

I1ipA(A)I1i = pA(I1iAI1i) = p(I1iAI1i)(I1iAI1i)

and the first row and column of p(I1iAI1i)(I1iAI1i) are zero by Lemma 8.2.1 below (letting

C = I1iAI1i). Thus, contradiction; it follows that pA(A) = 0. This argument can be

clearly formalized in ∀LAP. !
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Lemma 8.2.1 LAP proves that if pC[1|1](C[1|1]) = 0, then the first row and the first

column of pC(C) are zero2.

Proof. We restate the Lemma using the usual notation of A and M = A[1|1]. Thus, we

want to show that LAP proves the following: if pM(M) = 0, then the first row and the

first column of pA(A) are zero. For clarity we let p = pA and q = pM .

The proof is by induction on the size of M . The Basis Case is when M is a 1 × 1

matrix. Let p2, p1, p0 be the coefficients of the char poly of A, and let q1, q0 be the

coefficients of the char poly of M . By assumption q1M + q0I = 0. Note that I is also a

1× 1 matrix. From Berkowitz’s algorithm we know that:





p2

p1

p0



 =





1 0

−a11 1

−RS −a11





(
q1

q0

)
=





q1

−a11q1 + q0

−RSq1 − a11q0



 (8.2)

Note that:

A2 =

(
a2

11 + RS a11R + RM

a11S + MS SR + M2

)

We must now show that the first row and column of pA(A) = p2A2 + p1A + p0I are zero.

We just show that the (1, 2) entry is zero; the rest follow just as easily. From (8.2) we

see that the (1, 2) entry of pA(A) is given by:

(a11R + RM)q1 + R(−a11q1 + q0) + 0(−RSq1 − a11q0) = R(Mq1 + q0) = 0

Note that it is actually possible, in the Basis Case, to show that pA(A) = 0 (as this is

true), not just the first row and column of pA(A). However, this seems infeasible to carry

out in the Induction Step.

We prove the Induction Step with three claims. We indicate in Figure 8.1, which

claim corresponds to which entries in the first row and column of pA(A).

We assume that M is an (n − 1)× (n− 1) matrix, where n− 1 ≥ 1. We let p = pA

and q = pM , that is, p, q are the char polys of A, M = A[1|1], respectively. Define

2The original hope was that from the assumption that pC[1|1](C[1|1]) = 0 it would be possible to show
that pC(C) = 0; unfortunately, this seems to be too weak an induction hypothesis. Hence we introduced
the universal quantifiers over matrices to overcome this weakness, but then also the complexity of the
proof jumped from quasi-polybounded Frege to polybounded Extended Frege.
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Claim 8.2.1
Claim 8.2.3

Claim 8.2.2

Figure 8.1: Shaded area of pA(A) is zero

wk, Xk, Yk, Zk as follows:

A =

(
w1 X1

Y1 Z1

)
=

(
a11 R

S M

)

Ak+1 =

(
wk+1 Xk+1

Yk+1 Zk+1

)
=

(
wk Xk

Yk Zk

)(
a11 R

S M

)
for k ≥ 1

Note that wk, Xk, Yk, Zk cannot be defined in LAP as we cannot define new matrices

recursively. However, all that we need in the following proof are entries of powers of

A, which can be expressed in LAP. The entry wk, and the submatrices Xk, Yk, Zk are

there to make the proof more human readable; for example, instead of wk we could write

e(P(k, A), 1, 1), or instead of Xk we could write λij〈1, n−1, e(P(k, A), 1, j +1)〉, but then

the proof would be difficult to read.

It is easy to see that LAP proves the following equations:

wk+1 = a11wk + XkS

Xk+1 = wkR + XkM

Yk+1 = a11Yk + ZkS

Zk+1 = YkR + ZkM

(8.3)

As was mentioned above, we are going to prove that the first row and column consist

of zeros with Claims 8.2.1, 8.2.2, and 8.2.3. Claim 8.2.3 follows from Claim 8.2.2 using

the fact that A and At have the same char poly (the details are provided in the proof
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of Claim 8.2.3). For the other two claims we are going to put pA(A) in a special form.

Using Berkowitz’s algorithm, it is easy to show in LAP that:

p(A) = (A− a11I)q(A)−
n−1∑

k=1

qk

k−1∑

i=0

(RM iS)A (8.4)

and thus, to show that the first column of p(A) is zero, it is enough to show that the

first columns of (A − a11I)q(A) and
∑n−1

k=1 qk

∑k−1
i=0 (RM iS)A are the same. This is the

strategy for proving Claims 8.2.1 and 8.2.2.

Claim 8.2.1 The upper-left entry of p(A) is zero.

Proof. Using (8.3) we obtain:






w0 = 1

w1 = a11

wk+1 = a11wk +
∑k−1

i=0 (RM iS)wk−1−i for k ≥ 1

(8.5)

The top left entry of (A− a11I)q(A) is given by

n−1∑

k=1

qk(wk+1 − a11wk) (8.6)

(notice that we can ignore the term k = 0 since the top left entry of A is the same as the

top left entry of a11I). We can compute (wk+1− a11wk) using the recursive definitions of

wk (given by (8.5) above):

wk+1 − a11wk = a11wk +
k−1∑

i=0

(RM iS)wk−1−i − a11wk

=
k−1∑

i=0

(RM iS)wk−1−i

Thus, (8.6) is equal to
n−1∑

k=1

qk

k−1∑

i=0

(RM iS)wk−1−i

This proves that the top left entry of p(A) is zero (see equation (8.4) and the explanation

below it). !

Claim 8.2.2 The (n− 1)× 1 lower-left submatrix of p(A) is zero.
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Proof. Using (8.3) we obtain:






Y0 = 0

Y1 = S

Yk+1 = a11Yk + (MkS) +
∑k−2

i=0 (RM iS)Yk−1−i for k ≥ 1

(8.7)

The lower-left (n− 1)× 1 submatrix of (A− a11I)q(A) is given by

n−1∑

k=0

qk(Yk+1 − a11Yk)

and by (8.7) we have that for k ≥ 2,

Yk+1 − a11Yk =

(
a11Yk + MkS +

k−2∑

i=0

(RM iS)Yk−1−i

)
− a11Yk

= MkS +
k−2∑

i=0

(RM iS)Yk−1−i

Therefore:

n−1∑

k=0

qk(Yk+1 − a11Yk) = q0(Y1 − a11Y0) + q1(Y2 − a11Y1)

+
n−1∑

k=2

qk

(

MkS +
k−2∑

i=0

(RM iS)Yk−1−i

)

= q(M)S +
n−1∑

k=2

qk

k−2∑

i=0

(RM iS)Yk−1−i

and by the IH,
∑n−1

k=0 MkS = q(M)S = 0, and by definition Y0 = 0, thus we can conclude

that:
n−1∑

k=0

qk(Yk+1 − a11Yk) =
n−1∑

k=1

qk

k−1∑

i=0

(RM iS)Yk−1−i

But the RHS of the above equation is equal to the (n − 1) × 1 lower-left submatrix of
∑n−1

k=1 qk

∑k−1
i=0 (RM iS)Ak−1−i, and hence the claim follows (once again, see equation (8.4)

and the explanation below it). !

Claim 8.2.3 The 1× (n− 1) upper-right submatrix of p(A) is zero.
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Proof. To prove this claim we use Lemma 5.1.7 and Claim 8.2.2. The crucial observation

is that the (n−1)×1 lower-left submatrix of (At)k is X t
k. Now, we know by Lemma 5.1.7

that p is also the char polynomial of At, so by Claim 8.2.2, we know that the (n− 1)× 1

lower-left submatrix of p(At) is zero. Thus the (n−1)×1 lower-left submatrix of (p(A))t

is zero, and therefore the 1 × (n − 1) upper-right submatrix of p(A) is zero, and hence

the claim follows. !

This ends the proof of the Lemma 8.2.1. !

8.2.2 The theory Ṽ1(Σ, P)

The theory Ṽ1, defined in [Coo98, p.41], has the same theorems as V1, defined in [Coo98,

Section 10]. Both theories correspond to V1
1 in [Kra95, Section 5.5]. All these theories,

Ṽ1,V1,V1
1 are close variants of each other, and they all correspond to feasible (i.e., poly-

time) reasoning. The theory Ṽ1 has been inspired by Domenico Zambella ([Zam96]). A

good treatment of a Ṽ1-like theory can also be found in [CK01].

The theory Ṽ1 is a second order theory over the language L2
A = [0, 1, +, ·, ||;∈,≤, =

]. There are number variables x, y, z, . . . and string variables X, Y, Z, . . .. Here |X| is

intended to denote the length of the string X, and X(t) abbreviates t ∈ X, where t is

a number term. Equating 1 with T and 0 with F, as usual, we think of X as a binary

string:

X(0)X(1)X(2) . . .X(n− 1)

where n = |X|. See [Coo98, Section 9] for the formal syntax of the terms and formulas

over L2
A.

The axioms of Ṽ1 are given in Table 8.2. We extend Ṽ1 by adding two function

symbols to L2
A: Σ and P, which take strings to strings. The defining axioms of Σ and P in

LAP are A30–A35, so we add the translations of these axioms to Ṽ1. In Section 8.2.3 we

will show that the translations of A30–A35 are ΣB
0 formulas (see Definition 8.2.4). The

resulting theory Ṽ1(Σ, P) is a conservative3 extension of Ṽ1, and therefore Ṽ1(Σ, P) also

corresponds to feasible (i.e., poly-time) reasoning4. Note that since Σ and P take strings

to strings, the sorts of Ṽ1(Σ, P) are still indices and strings.

3Here the idea is that if we add poly-time function symbols to Ṽ1, plus ΣB
1 defining axioms for these

new function symbols, then the resulting theory is still poly-time, and a conservative extension of Ṽ1.
A source for this observation is [Bus86], where the analogous result is shown for S1

2 .
4Buss’s RSUV isomorphism.
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We form terms over L2
A ∪ {Σ, P) by forming terms over L2

A (see [Coo98, p. 32]), and

by adding three more cases:

• A string variable X is a string term.

• If T is a string term, then Σ(T ) is a string term. The intended meaning is the

following:

Σ(T ) =





|Σ(T )| = 1 and T (0) = 1 if parity of T is odd

|Σ(T )| = 0 if parity of T is even

Thus, the empty string corresponds to the case where the parity of T is even, and

a string consisting of a single 1 corresponds to the case where the parity of T is

odd. Therefore we need to add the following axiom: |Σ(X)| ≤ 1.

• If T is a string term, and n is a number term, then P(T, n) is a string term. The

intended meaning of P is the following: if XA is the string variable correspond-

ing to the matrix A, then P(XA, n) = XAn . In the next section we explain the

correspondence A ↔ XA.

We define formulas over L2
A ∪ {Σ, P} as formulas over L2

A (see [Coo98, p. 33]). That

is, if t, u are number terms, and T is a string term, then t ∈ T (abbreviated by T (t)),

t ≤ u, t = u are atomic formulas. If T, U are string terms, then T = U is not a formula,

however we can take it as abbreviation of:

|T | = |U | ∧ (∀z ≤ |T |)(T (z) ↔ U(z))

Note that the universe for a model for L2
A ∪ {Σ, P} consists of two non-empty sets U1

and U2, for number objects and string objects respectively. An element α ∈ U2 can be

specified as a pair (|α|, Sα), where Sα = {u ∈ U1|u ∈ α}.

Definition 8.2.4 We define the following classes of formulas over L2
A ∪ {Σ, P}:

• ΣB
0 = ΠB

0 is the set of formulas such that all number quantifiers are bounded, and

there are no string quantifiers. (There may be free string variables.) Incidentally,

note that all the theorems of LA, which do not require Σ in their proofs, can be

be translated to ΣB
0 formulas and proven in V0—that is, they have AC0 proofs

(see [Coo98, Section 10] for the definition of the theory V0).
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• ΣB
1 is the set of formulas ∃X ≤ tB, where B is a ΣB

0 formula, together with all ΣB
0

formulas. Here ∃X ≤ tB stands for ∃X(|X| ≤ t ∧ B), where the term t does not

involve X.

• ΠB
1 is the set of formulas ∀X ≤ tB, where B is a ΠB

0 formula, together with all ΠB
0

formulas. Here ∀X ≤ tB stands for ∀X(|X| ≤ t ⊃ B), where the term t does not

involve X.

B1 x + 1 %= 0

B2 x + 1 = y + 1 ⊃ x = y

B3 x + 0 = x

B4 x + (y + 1) = (x + y) + 1

B5 x · 0 = 0

B6 x · (y + 1) = (x · y) + x

B7 x ≤ x + y

B8 (x ≤ y ∧ y ≤ x) ⊃ x = y

B9 0 ≤ x

B10 x ≤ y ≡ x < y + 1

L X(y) ⊃ y < |X|

IND (X(0) ∧ ∀y < z(X(y) ⊃ X(y + 1))) ⊃ X(z)

ΣB
1 -IND (A(0) ∧ ∀x(A(x) ⊃ A(x + 1))) ⊃ A(y)

ΣB
0 -COMP ∃X ≤ y∀z < y(|X| = y ∧ (X(z) ≡ A(z))

Table 8.2: The axioms of Ṽ1

Lemma 8.2.2 The theory Ṽ1(Σ, P) has ΠB
1 -IND as well. That is, for all formulas A(x),

where A(x) is ∀X ≤ t(x)B(x, X) for some B ∈ ΠB
0 , we have:

Ṽ1(Σ, P) 2 (A(0) ∧ ∀x(A(x) ⊃ A(x + 1))) ⊃ A(y)

Proof. This is a well known result (V1
1 and S1

2 prove ΠB
1 -IND and Πb

1-IND, respectively).
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Suppose that we are given:

∀X ≤ t(0)B(0, X) (8.8)

∧ (∀X ≤ t(x)B(x, X) ⊃ ∀X ≤ t(x + 1)B(x + 1, X)) (8.9)

we want to prove:

∀X ≤ t(y)B(y, X) (8.10)

For the sake of contradiction, assume the negation of (8.10), and replace y by y − 0 to

obtain:

∃X ≤ t(y − 0)¬B(y − 0, X) (8.11)

Taking the contrapositive of (8.9), and replacing x by y − (z + 1), where z is a new

variable, we obtain:

∀z(∃X ≤ t(y − z)¬B(X, y − z) ⊃ ∃X ≤ t(y − (z + 1))¬B(X, y − (z + 1))) (8.12)

Using ΣB
1 -IND on (8.11) and (8.12) we can conclude ∃X ≤ t(y − w)¬B(y − w, X), for

any w. Taking w = y we get the negation of (8.8), and hence a contradiction. !

8.2.3 Interpreting ∀LAP in Ṽ1(Σ, P)

We are going to interpret the theorems of ∀LAP in the theory Ṽ1(Σ, P), which is a

conservative extension of the poly-time theory Ṽ1. This will show that the theorems of

∀LAP have feasible proofs.

To do this, we translate the sequents over LLAP into formulas over the language of

Ṽ1(Σ, P). The details of this translation are given below. We let the underlying field

be Z2, as this is the simplest case, but extending the result to more general fields is not

difficult; it only requires a more complicated scheme for translating field elements.

This translation begs the following question: why not formalize Linear Algebra in Ṽ1

(or similar system) directly? The answer is that the advantage of LAP is that it is field

independent, whereas field elements would have to be encoded explicitly in a theory like

Ṽ1. Also, LAP is very natural for expressing concepts of Linear Algebra, and apparently

weaker than Ṽ1 (it corresponds to the complexity class DET rather than poly-time).
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Recall that ΠM
0 is the set of formulas over LLAP without quantifiers, and ΠB

0 is the set

of formulas over L2
A, also without quantifiers, and that the underlying field is assumed to

be Z2.

The translation ‖ · ‖ : ΠM
0 9−→ ΠB

0 preserves provability; that is, if α ∈ LAP, then

‖α‖ ∈ Ṽ1(Σ, P). (Recall that the theorems of LAP are sequents, so α is really the formula

corresponding to the sequent). ‖ · ‖ preserves all logical connectives, as well as = for all

three sorts, and ≤ for indices. The fact that ‖ · ‖ preserves provability follows from the

following two observations:

• If α is an axiom of LAP, then ‖α‖ can be proven in Ṽ1(Σ, P). At a high level,

this can be seen from the fact that index axioms are very similar to the number

axioms, the field axioms correspond to properties of boolean connectives, and the

translations of the axioms for Σ and P have been added to Ṽ1(Σ, P).

• The rules of inference of LAP can be simulated easily in Ṽ1(Σ, P). For example,

the LAP induction rule corresponds to ΣB
0 -IND which we have in Ṽ1(Σ, P).

Thus, we are just going to provide the details of the translations of the terms.

Terms of type index will be translated into number terms. Field elements and matrices

will be translated into strings: given a field element a, we associate with it the string

variable Xa, such that |Xa| = 1, and given a matrix variable A, we associate with it the

string variable XA, such that |XA| = rA·cA, where rA, cA are ‖r(A)‖, ‖c(A)‖, respectively.

Here is how we translate (recursively) terms of type index into number terms:

‖i‖ 9−→ i

‖m + n‖ 9−→ ‖m‖+ ‖n‖

‖m− n‖ 9−→ ‖m‖ − ‖n‖

‖m ∗ n‖ 9−→ ‖m‖ · ‖n‖

‖div(m, n)‖ 9−→ div(‖m‖, ‖n‖)

‖rem(m, n)‖ 9−→ rem(‖m‖, ‖n‖)

Note that {−, div, rem} are not function symbols in L2
A, but they can all be defined by
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ΣB
0 formulas. For example z = div(x, y) iff ∃w ≤ y(z · y + w = x). Furthermore:

‖r(A)‖ 9−→ rA

‖c(A)‖ 9−→ cA

‖r(λij〈m, n, t〉)‖ 9−→ ‖m‖

‖c(λij〈m, n, t〉)‖ 9−→ ‖n‖

where rA, cA are two new number variables.

Translating cond(β, m, n) is a little bit more complicated. We do it as follows: say

that cond(β, m, n) occurs in an atomic formula α. Then, we split α into two copies. In

α1, we replace cond(β, m, n) by m, and in α2, we replace cond(β, m, n) by n. Then, we

let ‖α‖ be:

(‖β‖ ∧ ‖α1‖) ∨ (¬‖β‖ ∧ ‖α2‖)

We translate terms of type field as follows:

‖a‖ 9−→ Xa(1)

‖t + u‖ 9−→ ‖t‖ ⊕ ‖u‖

‖t ∗ u‖ 9−→ ‖t‖ ∧ ‖u‖

‖ − t‖ 9−→ ‖t‖

‖t−1‖ 9−→ ‖t‖

Since terms of type field are translated into formulas over L2
A, we can translate the field

term cond(β, t, u) as follows:

(‖β‖ ∧ ‖t‖) ∨ (¬‖β‖ ∧ ‖u‖)

We associate the string variable XA with the matrix variable A, and we let |XA| = rA ·cA.

We use the standard pairing function,

〈i, j〉 := min z ≤ (2i + j)2(2z = (i + j)(i + j + 1) + 2i),

to encode a matrix A over Z2 as a string of 0s and 1s. See Figure 8.2. Thus ‖e(A, m, n)‖
is mapped to:

XA(〈‖m‖ − 1, ‖n‖ − 1〉) ∧ (‖m‖ < rA) ∧ (‖n‖ < cA)
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=XA

A =

Figure 8.2: If A is 4× 3, then |XA| = 12

We use ΣB
0 -COMP to translate constructed terms. So let λij〈m, n, t〉 be a matrix

term; we define Xλij〈m,n,t〉 as follows:

Xλij〈m,n,t〉(x) ≡ ∃i ≤ ‖m‖∃j ≤ ‖n‖(x = 〈i− 1, j − 1〉 ∧ (0 < i) ∧ (0 < j) ∧ ‖t(i, j)‖)

we let |Xλij〈m,n,t〉| = ‖m‖ · ‖n‖.
Since Σ and P are function symbols in L2

A ∪ {Σ, P}, we translate them as follows:

‖Σ(T )‖ 9−→ Σ(‖T‖)

‖P(n, T )‖ 9−→ P(‖n‖, ‖T‖)

Lemma 8.2.3 The axioms of LAP are translated into theorems of Ṽ1(Σ, P).

Theorem 8.2.2 The theorems of ∀LAP can be interpreted in Ṽ1(Σ, P).

Proof. We showed that ΠM
0 formulas can be translated into ΠB

0 formulas, and by

Lemma 8.2.3, the axioms of LAP correspond to theorems of Ṽ1(Σ, P).

We extend the translation ‖ · ‖ : ΠM
0 −→ ΠB

0 to ΠM
1 formulas in the obvious way:

‖(∀A ≤ n)α‖ 9−→ (∀XA ≤ (‖n‖·‖n‖))‖α‖

So now ΠM
1 formulas are translated into ΠB

1 formulas. Since n does not contain the

matrix variable A, ‖n‖ · ‖n‖ does not contain the string variable XA.

This extension still preserves provability; that is, if α ∈ ∀LAP, then ‖α‖ ∈ Ṽ1(Σ, P).

This follows by Lemma 8.2.2, which states that Ṽ1(Σ, P) proves ΠB
1 -IND. !
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Corollary 8.2.1 The Cayley-Hamilton Theorem has a feasible proof.

Proof. By Theorem 8.2.1, ∀LAP proves the C-H Theorem. By Theorem 8.2.2, all the

theorems of ∀LAP have feasible proofs. !

8.2.4 Summary of the feasible proof of the C-H Theorem

In this section we are going to summarize the elements of the feasible proof of the Cayley-

Hamilton Theorem.

Let pA be the characteristic polynomial of A. The C-H Theorem states that pA(A) is

the zero matrix. We compute the coefficients of pA using Berkowitz’s algorithm which is

explained in Section 4.2, and we use induction on the size of matrices to prove the C-H

Theorem (Theorem 8.2.1).

The Basis Case is simple, and in the Induction Step we prove:

(∀M ≤ n)pM(M) = 0 → (∀A ≤ n + 1)pA(A) = 0

This argument can be formalized in ∀LAP. The last step of the proof is to show that ∀LAP

can be interpreted in a poly-time theory (we choose Ṽ1); this is done in Section 8.2.2.

Thus, the main feat is proving the Induction Step. This is achieved with Lemma 8.2.1,

and with Corollary 6.1.1.

In Lemma 8.2.1 we show that LAP proves that if pC[1|1](C[1|1]) = 0, then the first

row and the first column of pC(C) are zero. Thus, if M = A[1|1] = principal minor of A,

then pM(M) = 0 implies that the first row and column of pA(A) are zero. This is a long

and technical proof, but it is basic and it can clearly be formalized in LAP.

We need more; we need to show that all of pA(A) is zero. To this end, we use

Corollary 6.1.1, which states that LAP proves, using the C-H Theorem on n×n matrices,

that pIijAIij = pA, where A is an (n + 1)× (n + 1) matrix. The proof of this Corollary is

most of Section 6.1.

So let A be an (n+1)×(n+1) matrix, and assume that we have (∀M ≤ n)pM(M) = 0.

Then, by Corollary 6.1.1, we have that for all 1 ≤ i < j ≤ n− 1, p(IijAIij) = pA.

Suppose now that the i-th row (column) of pA(A) is not zero. Then, the first row

(column) of I1ipA(A)I1i is not zero. But:

I1ipA(A)I1i = pA(I1iAI1i) = p(I1iAI1i)(I1iAI1i)
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and the first row and column of p(I1iAI1i)(I1iAI1i) are zero by Lemma 8.2.1 (by letting

C = I1iAI1i). Thus, contradiction; it follows that pA(A) = 0.

8.2.5 Permutation Frege

In this section we are going to show that Permutation Frege can prove efficiently the

C-H Theorem. Since Permutation Frege is a fragment of Substitution Frege (Substitution

Frege is a Frege proof system with one more rule for replacing all the occurrences of a

given variable in a formula by a formula), which in turn can be simulated efficiently by

Extended Frege, we have another proof that the C-H Theorem has feasible derivations.

Permutation Frege is Frege augmented by the permutation rule. Let S(x) be a propo-

sitional sequent whose variables are listed in x. Let π(x) denote a permutation of the

variables (i.e., if x = a1, a2, . . . , an, then π(x) = aπ(1), aπ(2), . . . , aπ(n), where π is a per-

mutation in the usual sense). Then, the permutation rule is given in Table 8.3.

S(x)

S(π(x))

Table 8.3: Permutation rule

Suppose that we want to prove the C-H Theorem for A, that is, we want to prove

‖pA(A) = 0‖σ. We can simulate efficiently the proof of Theorem 8.2.1 with Permutation

Frege as follows: in the induction step, we do not actually need the C-H Theorem on all

n× n matrices to conclude that pA(A) = 0, where A is an (n + 1)× (n + 1) matrix. We

need the C-H Theorem on the principal submatrices of permutations of A (see the proof

of Corollary 6.1.1).

We can simulate efficiently the Inductive Step of the proof of Theorem 8.2.1 with

Permutation Frege because:

‖α(IijAIij)‖σ = π(‖α(A)‖σ)

where π = (ij). Note that the Permutation Frege proofs are uniform as they are obtained

from the ∀LAP proof.

If we could show that Permutation Frege is weaker that substitution Frege, we could

conclude that there are proofs of the Cayley-Hamilton Theorem of lesser complexity than

poly-bounded Extended Frege.
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8.2.6 Quantified Frege

In this section we show that poly-bounded Quantified Frege proves the Cayley-Hamilton

Theorem. In fact, we do not even need the full power of Quantified Frege; we can restrict

our derivations to be tree-like and use only universally quantified propositional formulas

without alternation of quantifiers (i.e., Πq
1 formulas, see Definition 8.2.6 below). Since

Extended Frege can p-simulate such proofs (see [Kra95, Lemma 4.6.3]), we have yet

another feasible proof of the C-H Theorem.

Quantified propositional calculus is formed from PK by introducing propositional

quantifiers: ∀xα(x) and ∃xα(x), whose meaning is α(F) ∧ α(T) and α(F) ∨ α(T), respec-

tively. Thus, propositional quantifiers do not increase the expressibility of formulas, but

allow them to be shortened.

We follow [Kra95, Definition 4.6.2.] to define Quantified propositional calculus.

Definition 8.2.5 Quantified propositional calculus, denoted G, extends the system PK

by allowing quantified propositional formulas in sequents and by adopting the quantifier

rules in Table 8.4 and 8.5 (where β is any formula, and with the restriction that the atom

p does not occur in the lower sequents of ∀ right and ∃ left).

left:
α(β),Γ→ ∆

∀xα(x),Γ → ∆
right:

Γ→ ∆, α(p)

Γ→ ∆, ∀xα(x)

Table 8.4: ∀-introduction

left:
α(p),Γ→ ∆

∃xα(x),Γ → ∆
right:

Γ→ ∆, α(β)

Γ→ ∆, ∃xα(x)

Table 8.5: ∃-introduction

Definition 8.2.6 Let Πq
1 be the set of propositional formulas without quantifiers, or

whose prenex form is the following: (∀a1 . . .∀an)α, where α is quantifier-free.

Definition 8.2.7 We define G1 to be a sub-system of G where we only allow formulas

in Πq
1 in the derivations.
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Theorem 8.2.3 The theorems of ∀LAP translate into Πq
1 tautologies with uniform, tree-

like, poly-bounded G1 proofs.

Corollary 8.2.2 All the theorems of ∀LAP, and in particular the C-H Theorem, have

uniform poly-bounded Extended Frege proofs.

Proof. Since Extended Frege can simulate tree-like G1 proofs (see [Kra95, Lemma 4.6.3]),

the result follows. !

Proof.(of Theorem 8.2.3) We concentrate on the case where the underlying field is Z2.

First we show how to translate ΠM
1 formulas into families of Πq

1 formulas:

‖(∀A ≤ n)α‖σ 9−→ ∀A11∀A12 . . .∀A‖n‖σ‖n‖σ‖α‖σ

Since α is a formula over LLAP, we proceed as before. If the underlying field were Zp, then

instead of ‖n‖2
σ propositional variables we would have p · ‖n‖2

σ propositional variables.

Now we show how to translate a PK-∀LAP derivation into a family of G1 proofs. We

only have to show what to do with the two new rules given in Definition 8.2.2. Consider

∀ introduction left, and suppose that:

‖r(T ) ≤ n‖σ, ‖c(T ) ≤ n‖σ, ‖r(T ) = c(T )‖σ, ‖m ≤ n‖σ all map to T

So we have to show how to derive the sequent ‖(∀X ≤ m)α(X)‖σ, ‖Γ‖σ → ‖∆‖σ from

the sequent ‖α(T )‖σ, ‖Γ‖σ → ‖∆‖σ. But it is easy to see that this can be done in G1

with ∀ introduction left applied ‖m‖2
σ times. The same can also be done with the second

rule. !

8.3 Efficient Extended Frege proofs

In this section we give a feasible proof of AB = I → BA = I using Gaussian Elimination

(Section 8.3.3). The fact that AB = I → BA = I has feasible proofs follows from

the feasible proof of the C-H Theorem (see Chapter 6), but here we give a direct, more

enlightening, proof.

We also give a feasible proof of the identity det(A) = 0 → AB %= I (Section 8.3.2).

This, together with the feasible proof of the C-H Theorem given in the previous section,

allows us to give a feasible proof of the multiplicativity of the determinant. To see why
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det(A) = 0 → AB %= I and the C-H Theorem are sufficient to prove the multiplicativity

of det, see Section 6.4.

We start by proving a correctness condition for Gaussian Elimination, and then we use

this correctness condition to prove our two claims. Gaussian Elimination is the standard

textbook approach to Linear Algebra. It is a simple poly-time algorithm, but it seems to

be inherently sequential. Therefore, we can reason about it in poly-bounded Extended

Frege (i.e., in P/poly-Frege), but it seems not possible to reason about it in poly-bounded

NCi-Frege, for any i.

Extended Frege is a Frege proof system where we allow abbreviating formulas by new

variables. See [Urq95] for details.

8.3.1 Gaussian Elimination algorithm

Let eij be a matrix with zeros everywhere except in the (i, j)-th position, where it has a

1. A matrix E is an elementary matrix if E has one of the following three forms:

I + aeij i %= j (type 1)

I + eij + eji − eii − ejj (type 2)

I + (c− 1)eii c %= 0 (type 3)

Let A be any matrix. If E is an elementary matrix of type 1, then EA is A with the i-th

row replaced by the sum of the i-th row of A and a times the j-th row of A. If E is an

elementary matrix of type 2, then EA is A with the i-th and j-th rows interchanged. If

E is an elementary matrix of type 3, then EA is A with the i-th row multiplied by c %= 0.

Define the function GE (Gaussian Elimination) as follows:

GE(A) = {E1, . . . , Ek}

where the Ei’s are elementary matrices, and the idea is that Ek · · ·E1A is in row-echelon

form. A matrix is in row-echelon form form if it satisfies the following three conditions:

1. If there is a non-zero row, the first non-zero entry of every row is 1. This entry is

called a pivot.

2. The first non-zero entry of row i + 1 is to the right of the first non-zero entry of

row i.

3. The entries above a pivot are zero.
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In short, a matrix is in row-echelon form if it looks as follows:





1 ∗ . . . ∗ 0 ∗ . . .∗ 0 ∗ . . .∗ 0

1 ∗ . . .∗ 0 ∗ . . .∗ 0
. . . 1 ∗ . . .∗ 0

0 1 . . .
. . .

...
. . .





(8.13)

where the ∗’s indicate that any entry can be present.

It remains to explain how to compute GE(A) given a matrix A. Each Ei+1 can be

computed from Ei · · ·E1A.

The algorithm works in two stages. After the first stage the matrix satisfies conditions

1 and 2 of the row-echelon form. We start stage one as follows: find the first column

which contains a non-zero entry. If it does not exist, then A = 0 and it is already in

row-echelon form. Interchange rows using E1 of type 2 moving the first row with the

non-zero entry to the top. If the top row already has a non-zero entry then E1 = I.

Normalize this entry to 1 using E2 of type 3. Then clear out the other entries in this

column by a sequence of Ei’s of type 1. The resulting matrix is of the form:

(
0 1 B

0 0 D

)
=





0 . . . 0 1 ∗ . . .∗
0 . . . 0 0 ∗ . . .∗

...
...

...

0 . . . 0 0 ∗ . . .∗




(8.14)

We now continue, performing the same operations on the smaller matrix D, until done,

at which point the resulting matrix satisfies conditions 1 and 2. Now, in stage two, we

clear the entries above the pivots using elementary matrices of type 1, and the matrix is

in row-echelon form, as required.

Definition 8.3.1 We define the correctness of GE as follows: If GE(A) = {E1, . . . , Ek},
then Ek . . . E1A is in row-echelon form.

Theorem 8.3.1 The correctness of GE can be proven feasibly.

Proof. We first prove, by induction on the size of A, that A can be put in a form that

satisfies conditions 1 and 2 of row-echelon form. The Basis Case is easy (a 1×1 matrix).

In the Induction Step assume that D (see (8.14)) is in a form that satisfies 1 and 2,
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and show that the entire matrix can be put in a form that satisfies 1 and 2. Then clear

the entries above the pivots, and we are done. This argument, as presented here is quite

informal; it can be formalized, however, in Buss’ system S1
2 or in some variant of V1

1. !

Corollary 8.3.1 The correctness of GE can be proven with poly-bounded Extended

Frege.

Proof. Since poly-bounded Extended Frege formalizes poly-time reasoning, we are done.

We can also give a direct simulation by Extended Frege of the above proof of correctness;

in fact, Extended Frege is ideal for formalizing Gaussian Elimination because of the

sequential nature of the definitions of the elementary matrices that bring A to row-

echelon form. !

Corollary 8.3.2 For any square matrix A, it can be proven with poly-bounded Extended

Frege that if GE(A) = {E1, . . . , Ek}, then Ek · · ·E1A is either the identity matrix, or its

bottom row is zero.

Proof. The proof is an application of the Pigeon-Hole Principle (PHP) to the row-echelon

form of A, i.e. PHP applied to (8.13). !

8.3.2 Extended Frege proof of det(A) = 0 → AB %= I

Recall that in Section 6.4 we needed the identity det(A) = 0 → AB %= I in the proof of

the multiplicativity of the determinant from the C-H Theorem. If we could give an LAP

proof of this identity, it would follow from the results in that section, that the equivalence

of the C-H Theorem and the multiplicativity of the determinant can be shown in LAP.

However, at this point we only have a feasible proof of this identity (given in this section),

and therefore, all that we can state is that the equivalence of the C-H Theorem and the

multiplicativity of the determinant can be proven feasibly.

However, we have, by Lemma 6.4.1, that LAP proves the C-H Theorem from the

multiplicativity of the determinant.

Theorem 8.3.2 Let A, B be square matrices. The propositional tautologies expressing

det(A) = 0 → AB %= I have poly-bounded Extended Frege proofs.
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Proof. Let E be an elementary matrix. Then, for any matrix A, we have:

det(EA) = det(E) det(A)

This follows from the axiomatic definition of the determinant, which in turn follows from

the C-H Theorem (see Section 6.1), and in this chapter we showed that the C-H Theorem

can be proven with uniform poly-bounded Extended Frege proofs.

Using straightforward induction, we can prove that:

det(Ek · · ·E1A) = det(Ek) · · ·det(E1) det(A)

Now suppose that det(A) = 0, and let GE(A) = {E1, . . . , Ek} be the result of running the

Gaussian Elimination algorithm on A. It follows, by Corollary 8.3.2, that the bottom

row of Ek · · ·E1A is zero, since det(I) = 1 %= 0 (see Corollary 5.2.2). Suppose that for

some B, AB = I. Then Ek · · ·E1AB = Ek · · ·E1 has the bottom row zero, which is a

contradiction since Ek · · ·E1 is invertible (the inverse of each Ei can be computed easily).

Thus, for all B, AB %= I. !

Therefore we have proven feasibly that:

det(A) %= 0 iff A is invertible

the direction “⇐=” is the above result, the direction “=⇒” is the Cayley-Hamilton

Theorem.

8.3.3 Extended Frege proof of AB = I → BA = I

Now we show, using Gaussian Elimination, that AB = I → BA = I has a poly-bounded

Extended Frege proofs. From this it follows that all the matrix identities in:

Th(LA ∪ {AB = I → BA = I})

have poly-bounded Extended Frege proofs.

We already knew all this from the feasible proof of the C-H Theorem (see Section 5.3),

but the proof based on Gaussian Elimination is more direct.

Theorem 8.3.3 The propositional tautologies expressing AB = I → BA = I have

poly-bounded Extended Frege proofs.
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Proof. Suppose that AB = I. Let GE(A) = {E1, . . . , Ek}. Then, by Corollary 8.3.2,

Ek · · ·E1A is either the identity matrix, or its bottom row is zero. Since AB = I, it

follows that:

Ek · · ·E1AB = Ek · · ·E1

so, if the bottom row of Ek · · ·E1A is zero, then so is the bottom row of Ek · · ·E1, which

is not possible as Ek · · ·E1 is invertible (where the inverse is E−1
1 · · ·E−1

k , and the inverse

of each elementary matrix is easy to compute). Thus Ek · · ·E1A = I.

Now that we know that A has a left inverse, and since we can show (in LA) that

AB = I → A(BA− I) = I, it follows that BA = I. !
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Eight Open Problems

9.1 Can LA prove AB = I → BA = I ?

We want to separate LA and Th(LA ∪ {AB = I → BA = I}). In particular, this would

show that AB = I → BA = I does not follow from the ring properties of the set of

matrices.

This seems to be a much easier problem then separating Frege and Extended Frege.

The most obvious approach would be model theoretic: design a model M of the theory

LA such that M # AB = I → BA = I.

In this section we present a different approach, due to Alasdair Urquhart [Urq00].

The idea is to show that if AB = I → BA = I can be shown in LA, then we could

prove the Pigeonhole Principle (PHP) in bounded-depth Frege with mod 2 gates, which

is believed to be impossible. Here we present the idea in ([Urq00]).

When translating general matrix identities (over the language LLA into bounded-

depth Frege (without mod 2 gates), we are faced with the difficulty that matrix multipli-

cation cannot be translated efficiently into such a system, since unbounded parity gates

are not available as a primitive connective (i.e., we do not have MOD2,1 gates). However,

matrix products can be expressed if we restrict ourselves to a special class of matrices.

Let us say that a {0, 1} matrix is a partial permutation matrix if each row and column

contains at most one 1 (the terminology is taken from the monograph of Kim [Kim82]

on Boolean matrix theory). If A and B are square partial permutation matrices, then

the (i, j)-th entry of their product can be given as follows:

n∨

k=1

(Aik ∧ Bkj)

141
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In other words, in the special case of partial permutation matrices, the normal matrix

product coincides with the Boolean matrix product (see [Kim82] for all the details).

It follows that in the special case of permutation matrices, AB = I → BA = I can

be expressed efficiently in bounded-depth Frege. However:

Lemma 9.1.1 The matrix identity AB = I → BA = I is hard for bounded-depth Frege,

even when A, B are partial permutation matrices.

Proof. Suppose that bounded-depth Frege proves AB = I → BA = I in the case where

A, B are partial permutation matrices. We are going to use this to show that bounded-

depth Frege can give efficient proofs of the PHP, and hence derive our contradiction1.

We shall take the PHP in the following form: If f is an injective mapping on a finite

set, then f is surjective.

A square {0, 1} matrix can be considered as the incidence matrix of a relation on

a finite set. Furthermore, the boolean product of matrices corresponds exactly to the

relative product of two relations. That is to say, if A, B are the incidence matrices

corresponding to relations R, S, respectively, then their product AB is the incidence

matrix of their relative product R|S.

Let R be a relation on a finite set that corresponds to a bijection. That is, R satisfies

the conditions:

1. (Rxy ∧Rxz) ⊃ y = z

2. ∀x∃yRxy

3. (Rxz ∧ Ryz) ⊃ x = y

Hence, the incidence matrix A corresponding to R is a partial permutation matrix. Let

B be the incidence matrix of the converse of R; this is simply the transpose of A, At.

Clearly, B is also a partial permutation matrix.

By assumption we have that R|S = Id, hence AB = I. By our matrix implication we

have that BA = I, so S|R = Id. This means that the domain of the converse of R, S, is

the whole set, and hence R is surjective.

All this can be easily formalized in bounded-depth Frege. However, the PHP requires

exponential size bounded-depth Frege derivations. Therefore, AB = I → BA = I,

1See [Pit92] where it is proven (in Chapter 3) that the proofs of the PHP in bounded-depth Frege
require exponential size.
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restricted to partial permutation matrices, also requires exponential size derivations in

bounded-depth Frege. !

Theorem 9.1.1 If PHP requires super polynomial proofs in bounded-depth Frege with

mod 2 gates, then LA ! AB = I → BA = I.

Proof. If PHP requires super polynomial proofs in bounded-depth Frege with mod 2

gates, then so does AB = I → BA = I.

If AB = I → BA = I is not provable efficiently in bounded depth Frege with MOD2,1

gates, then, by Theorems 7.2.1 and 7.2.2, AB = I → BA = I is not provable in LA. !

9.2 Is AB = I → BA = I complete ?

To pose this question, we must propose some plausible definition of completeness. As

we have seen, AB = I → BA = I, is representative in some sense of a large class of

universal matrix identities: from Theorem 3.2.1, we know that an efficient C-Frege proof

of AB = I → BA = I, where C is a complexity class such that NC1 ⊆ C, would imply

that many matrix identities have efficient C-Frege proofs.

The C-H Theorem states that for all A, pA(A) = 0, that is, that the characteristic

poly of A is an annihilating poly of A. We know from Theorem 5.3.1 that the C-H

Theorem implies, in LAP, hard matrix identities. Thus, AB = I → BA = I can be

proven in:

Th(LAP ∪ {pA(A) = 0})

where pA(A) = 0 can be taken to be the annihilating poly of A, not necessarily the char

poly. (In Section 5.3 we show that the C-H Theorem implies AB = I → BA = I, but all

we use about the C-H Theorem is that the char poly is an annihilating poly).

We can pose the question of the completeness of AB = I → BA = I as follows:

Th(LAP ∪ {pA(A) = 0})|LLA

?
⊆ Th(LA ∪ {AB = I → BA = I})

That is, can we derive from AB = I → BA = I the same identities that we can derive

from the existence of an annihilating poly?
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9.3 Does AB = I → BA = I have NC2-Frege proofs ?

The answer would be “Yes”, if we could show that LAP proves AB = I → BA = I.

We conjecture that AB = I → BA = I can be proven in LAP. To show that LAP

proves AB = I → BA = I, we only need to show that LAP proves that every matrix A

has a non-zero annihilating polynomial.

To see this, recall that in Section 5.3, we prove Theorem 5.3.1 which states that LAP

shows that hard matrix identities follow from the Cayley-Hamilton Theorem. The only

property of the characteristic poly that we use in the proof of this theorem, is that it is

a non-zero annihilating polynomial.

We conjecture that LAP is strong enough to show that every matrix has a non-

zero annihilating polynomial. What evidence do we have for this? The set of matrices

{I, A, A2, . . . , An2} is a linearly dependent set, with a “high degree of redundancy”; by this

we mean that already the set {I, A, . . . , An} is linearly dependent (by the C-H Theorem!).

Therefore, it seems very plausible that we can compute, using matrix powering, a set

of coefficients c0, c1, c2, . . . , cn2 (where at least one is non-zero), and show in LAP that

c0I + c1A + c2A2 + · · · + cn2An2
= 0

If LAP proves AB = I → BA = I, then it would follows that hard matrix identities

have quasi-poly-bounded Frege proofs, i.e., NC2-Frege proofs.

9.4 Can LAP prove det(A) = 0 → AB %= I ?

From Section 6.4 we know that if LAP can prove det(A) = 0 → AB %= I, then it

would follow that LAP proves the equivalence of the Cayley-Hamilton Theorem and the

multiplicativity of the determinant (see Chapter 6 for more details).

In a sense this identity is the converse of the Cayley-Hamilton Theorem: we can look

at the C-H Theorem as stating that if det(A) %= 0, then A has an inverse. Therefore,

showing that LAP can prove det(A) = 0 → AB %= I would show that LAP can prove the

equivalence of the C-H Theorem and its converse—an interesting result.

9.5 Can LAP prove the C-H Theorem ?

It is difficult to conjecture the answer to this question. A “Yes” answer would imply

that the C-H Theorem has quasi-poly-bounded Frege proofs (more precisely, NC2-Frege
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proofs); a major result. A “No” answer would prove the separation of Frege and Extended

Frege; a very big result.

Still, it is important to note that matrix powering is the only major operation that we

have to perform in the computation of the coefficients of the char poly. This is an NC2

computation, therefore, it does not seem too far-fetched to assume that the correctness of

this computation can be proven in NC2-Frege. See Section 9.7 for some (slight) evidence

towards an NC2-Frege proof of the C-H Theorem. However, a uniform poly-bounded

NC2-Frege proof of the C-H Theorem, does not imply that LAP can prove the C-H

Theorem.

Finally, an NC2-Frege of the C-H Theorem, via the correctness of Berkowitz’s algo-

rithm, would be consistent with the meta-theorem which states that “the correctness of

an algorithm should be provable within the complexity of the algorithm”.

9.6 Feasible proofs based on Gaussian Elimination ?

In Section 8.3 we showed that we can give poly-bounded Extended Frege proofs of the

identity AB = I → BA = I, and of det(A) = 0 → AB %= I, based on the Gaussian

Elimination algorithm.

Is it possible to give feasible proofs based on Gaussian Elimination, of the other

fundamental properties? That is, can we give a feasible proof of the axiomatic definition

of the determinant based on Gaussian Elimination?

Such a proof would involve defining the determinant in terms of Gaussian Elimination

(rather than in terms of Berkowitz’s algorithms, as in this thesis). This definition of

the determinant would be something like the product of the elements on the diagonal,

when the matrix is reduced to row-echelon form. We would have to fix the procedure,

as otherwise, to prove uniqueness of the result, we would have to have the axiomatic

definition of the determinant.

9.7 How strong is Permutation Frege ?

It is easy to see that Permutation Frege is a restricted instance of Substitution Frege;

what about the converse? That is, can Permutation Frege p-simulate Substitution Frege?

A “No” answer would show that the C-H Theorem can be proven in propositional

proof systems strictly weaker than Extended Frege. The fact that the C-H Theorem can
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be proven in uniform poly-bounded Permutation Frege (see Section 8.2.5) is the best

indication we have of the possibility that the C-H Theorem can be proven in systems

strictly weaker than Extended Frege. Perhaps the C-H Theorem can be proven in uni-

form NC2-Frege after all? We conjecture NC2-Frege since matrix powering, the main

computation in the proof of the C-H Theorem, is an NC2 operation.

In [Urq98] Urquhart discusses the permutation rule in the context of resolution sys-

tems (he calls the permutation rule, the symmetry rule). Urquhart proves exponential

lower bounds on the size of resolution refutations using two forms of the symmetry rule,

and discusses the relationship of symmetry rules to the extension rule (which allows the

use of definitions in proofs to abbreviate formulas).

In [Ara95] and [Ara] Arai proves properties of cut-free Gentzen systems augmented by

the permutation rule. Also, in [Ara], Arai shows that Frege p-simulates cut-free Gentzen

with the renaming rule iff Frege p-simulates Extended Frege. The renaming rule permits

arbitrary renaming of variables (so, unlike in the permutation rule, two distinct variables

can be mapped to the same variable). We call this proof system Renaming Frege.

9.8 Does ∀LAP capture polytime reasoning ?

In Section 8.2.3 we showed that ∀LAP can be interpreted in Ṽ1(Σ, P), and from this it

follows that all the theorems of ∀LAP have feasible proofs. The natural question to ask

is the following: can all the feasible theorems be proven in ∀LAP ? That is, can Ṽ1(Σ, P)

be interpreted in ∀LAP? We believe that the answer to this question is yes; however, the

actual translation has many technical difficulties that we do not see how to overcome at

the moment.

Here we present part of the translation, and we point out the major difficulties. To

see that Ṽ1(Σ, P) can be interpreted in ∀LAP, we translate formulas over the language of

Ṽ1(Σ, P) into formulas over the language of ∀LAP′, where ∀LAP′ is the same as ∀LAP, but

we allow index quantifiers. To prove that ∀LAP′ is a conservative extension of ∀LAP, we

need to prove the completeness of the sequent calculus LK-∀LAP (see Definition 8.2.2).

This proof of completeness should follow the proof theoretic argument, with anchored

proofs, but the complication is the λ-terms.

The translation from Ṽ1(Σ, P) into ∀LAP is straightforward: index terms go to to

index terms directly (∀LAP has index addition, multiplication, etc.). String variables go

to matrix variables, in such a way that a string variable X of length |X|, corresponds
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to a row matrix X of length c(X). In the translations, F is going to be represented

by 0field, and T is going to be represented by a sum of 1field’s. We translate X(i) into

e(X, 1, i + 1) %= 0field. If A is a formula over Ṽ1(Σ, P), we denote the translated formula

over ∀LAP′ by A∗.

In the Table 8.2 (page 127), the axioms B1–B10 of Ṽ1(Σ, P) are presented. These

axioms either have counterparts in LA, or can be easily proven in LA. Axiom L, X(i) ⊃
i < |X|, translates into e(X, 1, i + 1) %= 0field ⊃ i < c(X). This can be easily proven in

LA since out-of-bounds entries are zero by A28. The axiom IND can be simulated with

the induction rule:

e(X, 1, 0 + 1) %= 0field e(X, 1, i + 1) %= 0field ⊃ e(X, 1, i + 1 + 1) %= 0field

e(X, 1, j) %= 0field

The axiom ΣB
1 -IND, (A(0) ∧ (A(x) ⊃ A(x + 1)) ⊃ A(y), can be also presented as

ΠB
1 -IND (as ΣB

1 -IND and ΠB
1 -IND are equivalent), and ∀LAP has ΠM

1 -IND, which allows

induction over formulas of the form ∀X ≤ nA, where A has no matrix quantifiers. The

only thing is that ΠM
1 -IND allows a single matrix quantifier, but this can be fixed in one

of the following two ways: combine several matrices into one (each matrix corresponds to

a block in a single big matrix), or extend ΠM
1 -IND to allow a block of bounded universal

matrix quantifiers.

Finally, the axiom ΣB
0 -COMP, ∃X ≤ i∀j < i(|X| = i ∧ (X(j) ≡ A(j))), is the

only one that gives some difficulties. What we want to do is construct a matrix X, of

size 1 × i, such that e(X, 1, j + 1) %= 0field iff A∗(j) is true. Since we have a restriction

on the α’s that appear in cond(t, u, α) (they must be atomic formulas of type index;

item 9 in the inductive definition of terms and formulas), we cannot simply define X as

λkl〈1, i, cond(1field, 0field, A∗)〉.
We resort to the following trick. We translate a formula A over Ṽ1(Σ, P), into a term

of type field, tA, over LA, so that A∗ is true iff tA %= 0 is true.

Here is the translation: terms are translated as explained above, but we must show

what to do with logical connectives, with the predicate symbols = and ≤, and with

bounded index quantifiers. We define t¬A as 1field− (tA ∗ t−1
A ) (note that 0−1 = 0), tA1∧A2

as tA1 ∗field tA2 , and tA1∨A2 as tA1 +field tA2 . (Since below we add axioms that ensure that

the field is of characteristic zero, no sum of 1field’s will result in 0field).

We translate m = n into cond(1field, 0field, m = n), and similarly for ≤. Finally, t∃i≤nA

is Σλkl〈1, n, tA〉, and t∀i≤nA is 1field − (Σλkl〈1, n, t¬A〉)(Σλkl〈1, n, t¬A〉)−1.
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Thus, given ∃X ≤ i∀j < i(|X| = i ∧ (X(j) ≡ A(j))), we can define X as follows:

λkl〈1, i, tA〉. To ensure that a sum of 1field’s is never one (we do not want fields of finite

characteristic), we add the following axiom schema to ∀LAP: A∗ ≡ (tA %= 0). This axiom

schema not only assures that the underlying field does not have a finite characteristic,

but it also asserts the correctness of the construction of the matrix variable X. However,

we have to show that these axioms are feasible; for example, we have to show that their

translations have uniform polybounded Extended Frege proofs.

It is really a characteristic zero version of ∀LAP that seems to capture polytime

reasoning, rather than the original ∀LAP; can we do it without the characteristic zero

axioms?
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adjoint, 51

and Samuelson’s identity, 48

as matrix of cofactors, 82

defined from char poly, 51

expressed in LAP, 55

annihilating polynomial, 6, 62

and AB = I → BA = I, 70

and correctness of Berkowitz’s alg, 63

axioms

defining P, 45

equality, 23

for MODa,i, 91

for field elements, 25

for indices, 24

for matrices, 26

of LA, 23–26

substitution instances, 23

Berkowitz’s algorithm, 49, 46–63

adjoint, see adjoint

characteristic polynomial, see char

poly

correctness, 6, 63

and proof of C-H Theorem, 63

determinant, see determinant

field independent, 50

Samuelson’s identity, 47, 47–48

C-H Theorem, 6, 62

∀LAP proof of, 120

combinatorial proof of, 55

equivalences, 71–89

table of, 71

implies hard matrix identities, 69

infeasible proofs of, 116–118

proven in LAP for triangular matrices,

67

proven in LAP from cofactor

expansion, 81–83

proven in LAP from multiplicativity of

det, 83

Cayley-Hamilton Theorem, see C-H

Theorem

char poly, 51

annihilating polynomial, see

annihilating polynomial

as det(xI − A), 46, 116

as output of Berkowitz’s algorithm, 51

Cayley-Hamilton Theorem, see C-H

Theorem

coefficients of, 51

expressed in LAP, 52

characteristic polynomial, see char poly

Chistov’s algorithm, 44n

Clay Mathematical Institute, 2

clow, 57, 55–61

head, 57
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sequence, 57

and Berkowitz’s Algorithm, 59

and cycle cover, 57

weight, 58

constructed term, 16

λ, 17

Csanky’s algorithm, 44n

Davis-Putnam, 2

depth, see formula

det, see determinant

determinant, 51

axiomatic definition, 72

proven in LAP from C-H Theorem,

72–80

cofactor expansion, 80

proven in LAP from axiomatic

definition, 80–81

defined from char poly, 51

expressed in LAP, 55

Lagrange expansion, 56

multiplicativity, 63

equivalent to C-H Theorem, 83–89

feasible

computation, 3

proof, 3

fields

Zp, 111

algebraically closed, 117

formula

ΠB
0 , 126

ΠM
0 , 119

ΠB
1 , 127

ΠM
1 , 119

ΣB
0 , 126

ΣB
1 , 127

over LLAP, 45

over LLA, 16–17

propositional

depth, 92

logical depth, 92

quantified propositional

Πq
1, 134

Frege, see proof system

Gaussian Elimination, 136

algorithm, 136–137

correctness, 137

Extended Frege proof of, 138

feasible proof of, 137

identity, see matrix

λ, see constructed term

matrix

Cj, 50

Iij, 65

Ii, 65

eigenvalues, 118

elementary, 136

identity

basic, 7, 31–40

Cook’s, 3, 7, 40

hard, 7, 40–43

Rackoff’s, 42

lower triangular, 49

partial permutation, 141

principal submatrix, 9

rank, 42
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row-echelon form, 136

submatrix

Mj , Rj, Sj , 50

wk, Xk, Yk, Zk, 122

R,S,M as terms over LLAP, 54

Toeplitz, 49

upper triangular, 49

Millennium Prize Problems, 2

MODa,i, 91

axioms, see axioms

model

object assignment, 22

standard for LA, 21

Odd Town Theorem, 42

follows from Rackoff’s identity, 42

p-simulation, 3

BD Frege and Frege, 4

Frege and Extended Frege, 4

Permutation Frege, 145

Pigeonhole Principle

and AB = I → BA = I, 141

and correctness of Gaussian

Elimination, 138

and separation of Frege and BD Frege,

2

poly-bounded, 1

proof system

G, see quantified propositional

LK-∀LAP, 120

PK, 27

complete, 27

sound, 27

PK-LAP, 45

PK-LA, 29

propositional

PK[a], 91

Extended Frege, 136

Permutation Frege, 133

Renaming Frege, 146

Substitution Frege, 133

table of principal, 3

quantified propositional, 134

G1, 134

and C-H Theorem, 134–135

resolution, 2

rule, 27

cut rule, 27

for introducing connectives, 28

induction, 28

matrix equality, 28

permutation, 133

substitution, 29

symmetry, 146

weak structural, 27

Samuelson’s identity, see adjoint,

Berkowitz’s algorithm

separation, 2

Frege and Bounded Depth Frege, 2

Frege and Extended Frege, 3

sequent, 17

antecedent, 18

cedent, 18

empty, 18

succedent, 18

valid, tautology, 18

sign
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of clow sequence, 57

of permutation, 56

term

defined

dot product, 19

identity matrix, 19

matrix multiplication, 19

scalar multiplication, 18

trace, 19

transpose, 19

zero matrix, 19

over LLAP, 45

over LLA, 16–17

substitution instance, 20

theory

∀LAP, 120

Ṽ1, 125

Ṽ1(Σ, P), 125

V1, 125

V1
1, 125

LAP, 45

LA, 29

translation

of LAP over Z2, 112–114

of LA over Z2, 93–110

correctness, 98

procedure, 94–98

of LA over Zp and Q, 111–112


