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In this thesis we are concerned with building logical foundations for Linear Algebra,
from the perspective of proof complexity. As the cornerstone of our logical theories,
we use Berkowitz’s parallel algorithm for computing the coefficients of the characteristic
polynomial of a matrix.

Standard Linear Algebra textbooks use Gaussian Elimination as the main algorithm,
but they invariably use the (very infeasible) Lagrange expansion to prove properties of
this algorithm.

The main contribution of this thesis is a (first) feasible proof of the Cayley-Hamilton
Theorem, and related principles of Linear Algebra (namely, the axiomatic definition of the
determinant, the cofactor expansion formula, and multiplicativity of the determinant).
Furthermore, we show that these principles are equivalent, and the equivalence can be
proven feasibly.

We also show that a large class of matrix identities, such as:
AB=1—BA=1

proposed by S.A. Cook as a candidate for separating Frege and Extended Frege proposi-
tional proof systems, all have feasible proofs, and hence polynomially-bounded Extended
Frege proofs. We introduce the notion of completeness for these matrix identities.

As the main tool to prove our results, we design three logical theories:

LA Cc LAP C VLAP

il



LA is a three-sorted quantifier-free theory of Linear Algebra. The three sorts are indices,
field elements and matrices. This is a simple theory that allows us to formalize and
prove all the basic properties of matrices (roughly the properties that state that the set
of matrices is a ring). The theorems of LA have polynomially-bounded Frege proofs.
We extend LA to LAP by adding a new function, P, which is intended to denote matrix
powering, i.e., P(n, A) means A™. LAP is well suited for formalizing Berkowitz’s algorithm,
and it is strong enough to prove the equivalence of some fundamental principles of Linear
Algebra. The theorems of LAP translate into quasi-polynomially-bounded Frege proofs.
We finally extend LAP to VLAP by allowing induction on formulas with V matrix
quantifiers. This new theory is strong enough to prove the Cayley-Hamilton Theorem,
and hence (by our equivalence) all the major principles of Linear Algebra. The theorems

of VLAP translate into polynomially-bounded Extended Frege proofs.

il
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Chapter 1
Introduction

Proof Theory is the area of mathematics which studies the concepts of mathematical proof
and mathematical provability ([Bus98]). Proof Complexity is an area of mathematics and
theoretical computer science that studies the length of proofs in propositional logic. It
is an area of study that is fundamentally connected both to major open questions of
computational complexity theory and practical properties of automated theorem provers
([BP98]).

A propositional formula ¢ is a tautology if ¢ is true under all truth value assignments.
For example, ¢ given by:

pV-p

is a tautology. Let TAUT be the set of all tautologies. A propositional proof system is a
polytime predicate P C ¥* x TAUT such that:

¢ € TAUT «— JazP(z,¢)
P is poly-bounded (i.e., polynomially bounded) if there exists a polynomial p such that:
¢ € TAUT <« Ju(|z| < p(|¢]) A P(z,9))
The existence of a poly-bounded proof system is related to the fundamental question:
P < NP

In 1979 Cook and Reckhow ([CR79]) proved that NP = co-NP iff there is a poly-bounded
proof system for tautologies. On the other hand, if P = NP then NP = co-NP. Thus, if
there is no poly-bounded proof system, then NP # co-NP, and that in turn would imply
that P # NP.
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There is a one million $ cash prize offered by the Clay Mathematical Institute for set-
tling the P Z NP problem; see the Millennium Prize Problems on the web site of the CMI
at www.claymath.org/index.htm. Also see [Coo00b], a manuscript prepared by Cook for
the CLI for the Millennium Prize Problems, available at www.cs.toronto.edu/ " sacook.

Thus, considerable effort goes into proving lower bounds (and separations) for propo-
sitional proof systems. The program is to show lower bounds for standard proof systems
of increasing complexity.

But the P = NP problem is not the only motivation for finding lower bounds for

Propositional Proof Systems (PPS):
e PPS are (mathematically) interesting in their own right.
e Applications to Automated Reasoning (Artificial Intelligence).

e We can use lower bounds for PPS, to prove lower bounds for decision procedures
(for SAT). A good example of this is the exponential lower bound for resolution,
which gives us an exponential lower bound for the Davis-Putnam procedure for
satisfiability. The idea behind the correspondence is very simple: each instance of
the Davis-Putnam procedure on a particular set of clauses can be viewed (“upside
down”) as a resolution refutation. Thus, if all resolution refutations on a family
of clauses must be of a certain size, so must be all instances of the Davis-Putnam

procedure on that family of clauses. (See [BP96] for the resolution lower bound).

See Figure 1.1 for a table of the principal propositional proof systems. Exponential
lower bounds exist for the proof systems below the line. The strongest propositional proof
system (Quantified Frege) is shown in the top, and the weakest (Truth Tables) is shown
in the bottom. Each system can simulate the one below. The systems Frege and PK are
equivalent in the sense that they p-simulate each other (see below for p-simulation).

In this thesis we are concerned with all four types of Frege proof systems. There
is a separation between Bounded Depth Frege and Frege, and there exist lower bounds
for Bounded Depth Frege, but no such results exist for the remaining Frege systems.
By a separation we mean that there exists a family of tautologies 7,,, such that Frege
proves T, efficiently (i.e., in polysize), but Bounded Depth Frege does not (i.e., there is no
polynomial p(n) such that Bounded Depth Frege can prove 7,, with derivations of length
at most p(n)). The Pigeonhole Principle (PHP) is the standard tautology for separating
Bounded Depth Frege and Frege (see [Pit92], [BIP93] and [BIK192]).
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Quantified Frege
Extended Frege, Substitution Frege, Renaming Frege
Permutation Frege
Frege, PK
Bounded Depth (BD) Frege
Resolution
Truth Tables

Table 1.1: Propositional proof systems

Note that even though we mention Frege, in practice in this thesis we use the sequent
calculus proof system PK. Thus we have Bounded Depth PK, PK, Extended PK, and
Quantified PK. It is easy to show that Frege and PK p-simulate each other, and hence
they can be used interchangeably.

The (alleged) separation between Frege and Extended Frege is a fundamental open
problem. The matrix identity AB = I — BA = I was originally proposed by Cook in the
context of separating Frege and Extended Frege (private communication; in [BBP94] the
authors give examples of tautology families, such as the “Odd Town Theorem” | that seem
to depend on linear algebra for their proofs, and it was this paper that inspired Cook to
think of AB =1 — BA = I). The separation between Extended Frege and Quantified
Frege (again, if there is one), seems to be completely out of reach at the moment.

A fundamental notion that appears throughout this thesis is that of a feasible proof
(and feasible computation, or polytime computation). Feasible proofs were introduced by
Cook in [Coo75], and they formalize the idea of tractable reasoning; a theorem can be
proven feasibly, if all the computations involved in the proof are polytime computations,
and the induction can be unwound feasibly.

Cook’s system PV is the original system for polytime reasoning (see [CU93]). Samuel
R. Buss formalized polytime reasoning with the system S5 in [Bus86]. The importance
of the Extended Frege propositional proof system stems from the fact that first order
theorems which have feasible proofs correspond to propositional tautologies which have
uniform polysize Extended Frege proofs.

Another fundamental notion throughout this thesis is that of a p-simulation. We say
that a proof system P p-simulates a proof system P’ if there exists a function f and

a polynomial p such that every proof x in P’ corresponds to a proof f(x) in P, and
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|f(z)| < p(Jz|). In other words, all the proofs of P’ can be “reproduced” in P with a
small increase in size. Thus, coming back to the separations discussed above, for example,
Frege p-simulates Bounded Depth Frege, but Bounded Depth Frege does not p-simulate

Frege. It is not known if Frege can p-simulate Extended Frege.

1.1 Motivation

The motivation for the research presented in this thesis is establishing the complexity
of the concepts involved in proving standard theorems in Linear Algebra. We want to
understand where do standard theorems of Linear Algebra stand with respect to the Frege
proof systems (Bounded Depth Frege, Frege, Extended Frege, and Quantified Frege). In

particular, we are interested in the complexity of the proofs of the following principles:

e Standard theorems of Linear Algebra, such as the Cayley-Hamilton Theorem, the
axiomatic definition of the determinant, the cofactor expansion formula, and the

multiplicativity of the determinant.
e Universal matrix identities such as AB=1 — BA = 1.

Thus, we are concerned with building logical foundations for Matrix Algebra, from
the perspective of the complexity of the computations involved in the proofs. We use
Berkowitz’s parallel algorithm as the main tool for computations, and most results are
related to proving properties of this algorithm. Berkowitz’s algorithm computes the
coefficients of the characteristic polynomial of a matrix, by computing iterated matrix
products.

Standard Linear Algebra textbooks use Gaussian Elimination as the main algorithm,
but they invariably use the (very infeasible) Lagrange expansion to prove properties of
the determinant. Berkowitz’s algorithm is a fast parallel algorithm, Gaussian Elimination
is poly-time, and the Lagrange expansion is n! (where the parameter for all three is the
size of the matrix).

We have chosen Berkowitz’s algorithm as the cornerstone of our theory of Linear
Algebra because it is the fastest known algorithm for computing inverses of matrices,
and it has the property of being field independent (and hence all the results of this thesis
are field independent). Furthermore, we show that we can feasibly prove properties of

the determinant using Berkowitz’s algorithm, while we do not know how to prove them
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feasibly using Gaussian Elimination, or any other algorithm (granted that for this thesis,
we did concentrate our research on Berkowitz’s algorithm).
In order to carry out our proofs based on Berkowitz’s algorithm, we developed a new

approach to proving matrix identities by induction on the size of matrices.

1.2 Contributions

In Section 8.2 we present the main contribution of this thesis: a feasible proof of the
Cayley-Hamilton Theorem. It seems that we give the first such proof!; in fact we present
three feasible proofs. The first is based on interpreting the VLAP proof of the C-H
Theorem in the polytime theory in \71(2, P), Section 8.2.3. This proof relies on results
spread throughout the thesis, so we summarize it in Section 8.2.4. The second proof
is based on interpreting the VLAP proof of the C-H Theorem in poly-bounded uniform
Permutation Frege (a propositional proof system), Section 8.2.5. The VLAP proof itself
is given in Section 8.2.1. The third proof is based on Quantified Frege, Section 8.2.6.

Note that many of the proofs given in this thesis are substantially more difficult than
the corresponding proofs in an average Linear Algebra text book. An extreme example
of this is the proof of multiplicativity of the determinant. In [DF91, page 364] the
proof of the multiplicativity of the determinant takes one line; this proof relies on the
Lagrange Expansion of the determinant. Our proof of multiplicativity of the determinant
from the Cayley-Hamilton Theorem takes over six pages (see Section 6.4). The proof
of the Cayley-Hamilton Theorem takes several sections spread throughout the thesis.
However, our proofs are feasible; we can prove the propositional tautologies asserting
the multiplicativity of the determinant, with Extended Frege, for matrices which have
10% x 108 entries. With the Lagrange Expansion which has n! terms (n is the size of the
matrices involved), it is impossible to prove multiplicativity for matrices of size 20 x 20
(using Extended Frege).

In Chapter 6 we show that the C-H Theorem is equivalent to the axiomatic definition
of the determinant, and to the cofactor expansion, and that these equivalences can be
shown in the theory LAP. The theory LAP formalizes reasoning in POW (the class of
problems “easily” reducible to powers of matrices). In Section 6.4 we show that the

multiplicativity of determinant implies (also in LAP) the C-H Theorem, and we show

'In Section 8.1 we present, briefly, two typical infeasible proofs of the C-H Theorem.
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that the C-H implies (feasibly, but we do not know if in LAP) the multiplicativity of the
determinant. The conclusion is that all these major principles of Linear Algebra have
feasible proofs.

In Section 5.3 we show that AB =1 — BA = I, and hence (by the results in Sec-
tion 3.2) many matrix identities, follows, in LAP, from the Cayley-Hamilton Theorem.
Since we give a feasible proof of the C-H Theorem, it follows that these identities also
have feasible proofs.

We compute the determinant of a matrix with Berkowitz’s algorithm. Since the
Cayley-Hamilton Theorem states that the characteristic polynomial of a matrix is an
annihilating polynomial (i.e. pa(A) = 0), the Cayley-Hamilton Theorem implies the
following:

det(A) #0 = A is invertible

On the other hand, we also give a feasible proof (based on Gaussian Elimination, but

still for the determinant as defined by Berkowitz’s algorithm) that:
det(A) = 0= A is not invertible

Therefore, we give a feasible proof of the fact that a matrix is invertible iff its determinant
is not zero.

We define the correctness of Berkowitz’s algorithm to be the following property: it
computes an annihilating polynomial of the given matrix. Thus, we can look at the
central result of this thesis as being a feasible proof of the correctness of Berkowitz’s
algorithm; the feasible proof of Berkowitz’s algorithm is the mechanism that makes a
feasible proof of the Cayley-Hamilton Theorem possible.

In Chapter 2 we design a three-sorted quantifier-free theory of Linear Algebra, and
we call it LA. The three sorts are indices, field elements and matrices. LA is field
independent, and matrix identities can be expressed very naturally in its language.

LA is a fairly weak theory, which nevertheless allows us to prove all the basic properties
of matrices (roughly the properties that state that the set of matrices is a ring). We
show this in Chapter 3, where we prove, in LA, properties such as the associativity
of matrix multiplication, A(BC) = (AB)C, or the commutativity of matrix addition,
A+ B =B+ A, ie., the ring properties of the set of matrices.

In Chapter 7 we show that all the theorems of LA can be translated into poly-
bounded families of propositional tautologies, with poly-bounded Frege proofs. Thus,

LA is strong enough to prove basic properties of matrices, but at the same time the
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truth of any theorem of LA can be verified with poly-bounded Frege. In fact, we prove
a tighter result since we show that bounded-depth Frege proofs with MOD p gates suffice,
when the underlying field is Z,.

We identify two classes of matrix identities: basic and hard. The basic matrix iden-
tities are those which can be proven in LA, and, as was mentioned above, they roughly
correspond to the ring properties of the set of matrices. Hard matrix identities, intro-
duced in Section 3.2, are those which seem to require computing matrix inverses in their
derivations; the prototypical example of a hard matrix identity is AB = — BA =1,
suggested by Cook in the context of separating Frege and Extended Frege. Hard matrix
identities are more difficult to define, and their definition is related to the definition of
completeness of matrix identities. Roughly, we can say that hard matrix identities are
those which can be proven from AB = [ — BA = I using basic reasoning, i.e., LA.

One of the nicer results of this thesis is identifying equivalent matrix identities, where
the equivalence can be proven in LA, hence with basic matrix properties, while the

identities themselves are believed to be independent of LA. We refer to:

AB=1,AC=1—-B=C I
AB=1—AC #0,C=0 11
AB=1—-BA=1 111
AB=1— A'B' =] vV

presented in Section 3.2. This suggests a notion of completeness for matrix identities,
which we try to make precise. We discuss the notion of completeness for matrix identities
in Section 9.2, but we do not yet have a satisfactory definition.

In Chapter 4 we design an extension of LA, called LAP. This new theory is just LA
with a new function symbol: P. The intended meaning of P(n, A) is A". The addition
of P increases considerably the expressive power of LA (however, we have no separation
result between LA and LAP—for all we know LAP might be conservative over LA, but
we conjecture otherwise). Having added matrix powering, we can now compute products
of sequences of matrices, so LAP is ideally suited for formalizing Berkowitz’s algorithm;
we express the characteristic polynomial, computed by Berkowitz’s algorithm, as a term
of LAP in Section 4.2.3.

Berkowitz’s algorithm is a fast parallel algorithm for computing the characteristic

polynomial of a matrix. It has the great advantage of being field independent, and
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therefore all our results (e.g. the Cayley-Hamilton Theorem) hold irrespectively of the
underlying field; fields are never an issue in our proofs. We discuss Berkowitz’s algorithm
in depth in Section 4.2.

In Section 7.4 we show that all the theorems of LAP translate into quasi-poly-
bounded Frege proofs.

In Chapter 6 we use Berkowitz’s algorithm to show that LAP proves the equivalence

of several important principles of Linear Algebra:
e the Cayley-Hamilton Theorem
e the axiomatic definition of the determinant

e the cofactor expansion formula

Furthermore, we show that LAP proves that all these principles follow from the multi-
plicativity of the determinant. Thus, by giving a feasible proof of the Cayley-Hamilton
Theorem, we are able to give feasible proofs of the axiomatic definition of determinant
and the cofactor expansion.

To prove the Cayley-Hamilton Theorem we needed induction over formulas with uni-
versal quantifiers for variables of type matrix; thus we designed VLAP in Section 8.2.1.
It seems that LAP by itself cannot prove the C-H Theorem, although we have no good
evidence for this conjecture. However, we show in Section 5.2 that LAP is capable of
proving the C-H Theorem, and all the other major principles, for triangular matrices.

In Section 6.4 we show that the Cayley-Hamilton Theorem, together with the iden-
tity det(A) = 0 — AB # I, imply (in LAP) the multiplicativity of the determinant.
Since in Section 8.3.2 we present a feasible proof of det(A) = 0 — AB # I (based on
Gaussian Elimination), it follows that there is a feasible proof of the multiplicativity of
determinant from the C-H Theorem. Therefore, the multiplicativity of determinant also
has a feasible proof.

To show that LAP proves the equivalences mentioned above, we developed a new
approach to proving identities that involve the determinant and the adjoint. Since LAP
is a theory that relies mainly on powers of matrices and on induction on terms of type
index, we need a new method for proving properties of the determinant and the adjoint.

The main idea in this new method is to consider the following submatrices:

A= a1 R
S M
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where aq; is the (1,1) entry of A, and R,S are 1 x (n—1), (n—1) x 1 submatrices,
respectively, and M is the principal submatriz of A. So consider for example the property
of multiplicativity of the determinant, det(AB) = det(A) det(B). To prove this property,
we assume inductively that it holds for the principal submatrices of A and B, and show
that it holds for A and B. To accomplish this, we have developed many (perhaps new)

matrix identities, such as for example:
det(SR + M) = det(M) + Radj(M)S

which is identity (6.22) in Chapter 6. Another interesting identity is identity (6.23).
Both identities have feasible proofs (in LAP from the Cayley-Hamilton Theorem) given
at the end of Section 6.4.
To illustrate out method, suppose that we want to prove that det(A) = det(A"). We
show that:
det(M) = det(M") — det(A) = det(A")

(this is the induction step), and we show that since det((a)) = a, the claim also holds in
the basis case. Using induction on the size of matrices we conclude that the claim holds
for all matrices. Basically, we use induction to prove a given claim for bigger and bigger
submatrices, as the picture in Figure 1.1 shows. We can define and parameterize these

submatrices using our constructed terms (i.e., Aij(m,n,t)).

Figure 1.1: Proving claims by induction on submatrices

In Section 8.3.1 we present a feasible proof of correctness of Gaussian Elimination.
This is an interesting result because it was very difficult to give a proof of correctness of
Berkowitz’s algorithm, so potentially, the correctness of Gaussian Elimination might have
been very problematic as well. Furthermore, we give a proof of correctness of Gaussian

Elimination using poly-time concepts, that is, concepts in the same complexity class as
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the Gaussian Elimination algorithm. We did not manage to give a proof of correctness
of Berkowitz’s algorithm in its own complexity class; while Berkowitz’s algorithm is an
NC? algorithm, its proof of correctness uses poly-time concepts.

In Section 8.2.1 we extend LAP to VLAP by allowing T}/ Induction in our proofs
(that is, induction on formulas with V matrix quantifiers, with bounds on the size of the
matrix). This new theory is strong enough to prove the Cayley-Hamilton Theorem, and
hence all the major principles of Linear Algebra.

Finally, we list open problems in Chapter 9. We discuss each of the seven open

problems presented in some detail.
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1.3 Summary of results

In this section we summarize the main results of this thesis in table format. In Table 1.2
we give brief descriptions of our logical theories LA, LAP, and VLAP, summarizing what
are the important properties that can be proved in them. In Table 1.3 we show the
propositional proof systems (and the related complexity classes), that correspond to the

theories LA, LAP, and VLAP. In Table 1.4 we conjecture what we expect to be true.

Theory | Summary of properties provable in the theory

LA Ring properties of matrices (with the usual matrix addition and
multiplication); for example, associativity of matrix products:
A(BC) = (AB)C, or commutativity of matrix addition

A+ B=B+A.

It can also prove equivalences of hard matrix identities.

LAP It extends LA by adding a new function symbol, P, for computing
powers of matrices.

Berkowitz’s algorithm can be defined in this theory (as a term in
the language of LAP), and it is strong enough to prove
equivalences of the Cayley-Hamilton Theorem, the axiomatic
definition of the determinant, and the cofactor expansion formula.
It can also prove that the multiplicativity of the determinant

implies the Cayley-Hamilton Theorem.

VLAP It extends LAP by allowing universal quantifiers over variables of
type matrix; in particular, it allows induction over formulas of this
type.

It is strong enough to prove the Cayley-Hamilton Theorem and

related principles, while it is still feasible.

Table 1.2: Summary of theories
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Propositional Proof System; corresponding complexity class

LA

fields Z,: polybounded Bounded Depth Frege with MOD p gates; AC°[p]

field Q: polybounded Frege; NC*

LAP

quasi-polybounded Frege; DET C NC?

VLAP

Theory

polybounded Extended Frege; P /poly

Table 1.3: Summary of translations

Related conjecture

LA

LA¥ AB =1 — BA = I; LA does not prove any of the hard
matrix identities.

In fact, we conjecture something stronger: AB=1— BA=1
does not have polybounded Frege proofs, but it has
quasi-polybounded Frege proofs.

LAP

LAP+ AB =1 — BA = I, that is, LAP proves hard matrix
identities; we are also going to make the following bold conjecture:
LAP proves the Cayley-Hamilton Theorem. We make this
conjecture because we think that it is reasonable to assume that
we can prove properties of the characteristic polynomial, as
computed by Berkowitz’s algorithm, within the complexity class

of Berkowitz’s algorithm.

VLAP

Captures polytime reasoning

Table 1.4: Summary of conjectures



Chapter 2

The Theory LA

In this chapter we define a quantifier-free theory of Linear Algebra (of Matrix Algebra),
and call it LA. Our theory is strong enough to prove basic properties of matrices, but
weak enough so that all the theorems of LA translate into propositional tautologies with
short Frege proofs.

We want LA to be just strong enough to prove all the ring properties of the set of
matrices; for example, the associativity of matrix multiplication: A(BC) = (AB)C, or
the commutativity of matrix addition: A+ B = B + A.

We have three sorts of object: indices, field elements, and matrices. We define the
theory LA to be a set of sequents. We use sequents, rather than formulas, for two
reasons: (i) sequents are convenient for expressing matrix identities (see, for example,
the four hard matrix identities in Section 3.2, page 40), and (ii) we use the sequent
calculus proof system to formalize propositional derivations.

We define LA as the set of sequents which have derivations from the axioms A1-33,
given below, using: rules for propositional consequence, the induction (on indices) rule,
and a rule for concluding equality of matrices. Of course, all the details will be given
below.

Note that LA is a quantifier-free theory, but all the sequents are implicitly universally
quantified.

2.1 Language

We use 1, 7, k, | as metasymbols for indices, a, b, ¢ as metasymbols for field elements, and

A, B, C' as metasymbols for matrices. We use x, y, z as meta-metasymbols; this is useful,

13
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for example, in axiom A2 given below where x can be a variable of any sort. We use

primes or subscripts when we run out of letters.

Definition 2.1.1 The language of LA, denoted L, has the function and predicate
symbols given in Table 2.1 below. The indices are intended to range over natural numbers.
We have 0 and 1 indices, we also have the usual addition and multiplication of indices,
but subtraction (“—") is intended to be “cut-off subtraction”; that is, if i > j, then j —i
is intended to be 0. The functions div and rem are intended to be the standard quotient
and reminder functions. Then we also have field elements, with 0 and 1, and addition
and multiplication, and multiplicative inverses (where we define 0! to be 0). Finally,
we have < and = for indices, and = for field elements and matrices. Below we give the

details more formally.

Oindexa 1index7 +index7 *index) —index> diV: rem, Condindex

-1
Ofields Lfield, +field, *fields —fields » CONdgeld
r,c,e, X

<

>indexs —index; —fieldy —matrix

Table 2.1: Function and predicate symbols in Ly

Intended meaning of the symbols:

® Oindexs Lindex and Ogeld, lhelq are constants (i.e. 0-ary function symbols), of type index

and field, respectively.

® +index, ¥index are 2-ary function symbols for addition and multiplication of indices,
and +felq, *gelq are 2-ary function symbols for addition and multiplication of field

elements.

® —i dex IS a 2-ary function symbol that denotes cut-off subtraction of index elements.

1

—feld and T+ are l-ary function symbols denoting the additive and multiplicative

inverse, respectively, of field elements. Again, we intend 0~* to be 0.
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e div,rem are the quotient and reminder 2-ary functions, respectively. That is, for

any numbers m, n, we have:
m =n-div(m,n) + rem(m,n) where 0 < rem(m,n) <m (2.1)

We want m,n > 0, and when we incorporate equation (2.1) as axioms of LA, we

make sure that n # 0 to avoid division by zero.

These two functions are not really used in LA, but become very important in
Chapter 4, where they are used to compute products of sequences of matrices with

the powering function P.

e condi,gex and condgeq are 3-ary function symbols, whose first argument is a formula,
and the two other arguments are indices (in cond;,gey) or field elements (in condgeq)-
The intended meaning is the following;:

term; if « is true
cond(c, termy, termy) =

termy otherwise

e r and c are l-ary function symbols whose argument is of type matrix, and whose
output is of type index. r(A) and c(A) are intended to denote the number of rows

and columns of the matrix A, respectively.

e e is a 3-ary function symbol, where the first argument is of type matrix, and the
other two are of type index, and e(A4, 7, j) is intended to denote A;;, i.e. the (4, j)-th
entry of A. Sometimes we will use A;; instead of e(A,,j) to shorten formulas. It
is important to realize one technical point which is going to play a role later on;
a matrix is a finite array, and therefore, we are going to encounter the following
problem: what if we access an entry out of bounds? That is, suppose that A is a
3 x 3 matrix. What is e(A4,4,3)7 We make the convention of defining all out of
bounds entries to be zero. Thus, we can view matrices as infinite arrays, with only

a finite upper-left portion being non-zero.

e Y is a l-ary function whose argument is of type matrix, and the intended meaning

is that ¥ adds up all the entries of its argument.

We will usually omit the type subscripts index, field @nd matrix, for the sake of readability.
This is not a problem as the type will be clear from the context and the names of the

metavariables involved.
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2.2 Terms, formulas and sequents

2.2.1 Inductive definition of terms and formulas

We define inductively the terms and formulas over the language Ly4. It is customary to
define terms and formulas separately, but we define them together as the terms cond;,gex
and condgeq take a formula as an argument.

We use the letters n, m for terms of type index, t,u for terms of type field, and T, U
for terms of type matrix.
Base Case: Oindex; lindexs Ofield, lieia and variables of all three types, are all terms.

Induction Step:

1. If m and n are of type index, then (m +indgex 1),(M —index 1), (M *index ), div(m,n),

and rem(m,n) are all of type index.
2. If t and u are of type field, then (¢ +geq ) and (¢ *geq w) are of type field.
3. If t is a term of type field, then —¢ and ¢t~! are terms of type field.

4. If T is of type matrix, then r(7") and c¢(7") are of type index, and 3(7") is of type
field.

5. If m and n are of type index, and T is of type matrix, then e(7,m,n) is of type
field.

6. If m and n are of type index, and t is of type field, then \ij(m,n,t) is a constructed

term of type matrix. There is one restriction:
1,7 do not occur free in m and n (2.2)

The idea behind constructed terms is to avoid having to define a whole spectrum of
matrix functions (matrix addition, multiplication, subtraction, transpose, inverse,
etc.). Instead, since matrices can be defined in terms of their entries (for example,
matrix addition is just addition entry by entry), we use functions of type field
to define matrix functions; the A operator allows us to do this. For example,
suppose that A and B are 3 x 3 matrices. Then, A+ B can be defined as follows:
Nij(3,3,e(A,i,7)+e(B,1,7)). Incidentally, note that there is nothing that prevents

us from constructing matrices with zero rows or zero columns, i.e., empty matrices.
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7. If m,n,t,u,T,U are terms, then:

m Sindex n
M =index M

l =field U

T —matrix U
are formulas (called atomic formulas).
8. If « is a formula, so is —«, and if a and [ are formulas so are (a A 3) and (a V 3).

9. Suppose « is a formula where all atomic subformulas have the form m < jgex 7
Or M =index N, Where m and n are terms of type index. Then, if m/,n’ are terms
of type index, then condiygex(a, m’,n’) is a term of type index, and if ¢t and u are

terms of type field, then condgegq(c,t,u) is a term of type field.

This finishes the inductive definition of terms and formulas.

The A is the A-operator, and in our case it just indicates that the variables 7, ; are
bound. From now on, we say that an occurrence of a variable is free if it is not an index
variable ¢ or j in a subterm of Aij(...) (so in particular all field and matrix variables are
always free), and it is bound otherwise. Note that the same index variable might occur
in the same term both as a free and a bound variable.

We let a D ( abbreviate ~a V (3, and o = 3 abbreviate o D 3 A [ D «a.

2.2.2 Definition of sequents

We follow the presentation of Samuel R. Buss in [Bus98, Chapter 1]. As we mentioned in
the introduction, LA is a theory of sequents, rather than a theory of formulas, because
sequents are more appropriate for expressing matrix identities.

A sequent is written in the form:

0417"'704k_>517"'7ﬂl (23)

where the symbol — is a new symbol called the sequent arrow, and where each «; and
B; is a formula. The intuitive meaning of the sequent is that the conjunction of the
a;’s implies the disjunction of the 3;’s. Thus, a sequent is equivalent in meaning to the

formula:

k l
i=1 j=1
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We adopt the convention that an empty conjunction (k = 0 above) has value True, and
that an empty disjunction (I = 0 above) has value False. Thus the sequent — « has the
same meaning as the formula «, and the empty sequent — is false. A sequent is defined
to be valid or a tautology iff its corresponding formula is.

The sequence of formulas aq, ..., ay is called the antecedent of the sequent displayed
above; (1, ..., is called its succedent. They are both referred to as cedents.

The semantic equivalence between (2.3) and (2.4) holds regardless of whether the a’s
and the 3’s are propositional formulas, or formulas over the language L. However,
as was mentioned in the introduction, all sequents are implicitly universally quantified,

hence (2.3) is really equivalent in meaning to the formula:

k !
Voy...x, (/\ozi D \/5]-)
i=1 j=1

where 1, ..., z, is the list of all the free variables that appear in the sequent (2.3).

2.2.3 Defined terms, formulas and cedents

13

We use “:=” to define new objects. For example:

max{i,j} := cond(i < j,7,1)

denotes that max{i,j} stands for cond(i < j,7,4). This way we can simplify formulas
over L1,4 by providing meaningful abbreviations for complicated terms. Of course, these
abbreviations are there only to make derivations more human-readable, and they are not
part of the language £y (for example, max is not a function symbol in Ly, ).

Since we can construct new matrix terms with Aij(m,n,t), we can avoid including
many operations (such as matrix addition) as primitive operations by defining them

instead. For example, we can define the addition of two matrices A and B as follows:
A+ B = Nij(max{r(A),r(B)},max{c(A), c(B)}, Ai; + Bi;) (2.5)

In the above definition of addition of matrices, we used “+” instead of “+g0q” on the
right-hand side, and on the left hand side “4” should be “+.uix, but all this is clear
from the context.

We now define standard matrix functions. Let A by a variable of type matrix. Then,

scalar multiplication is defined by:

aA = Nij(r(A),c(A),ax A;j) (2.6)
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and the transpose by:
A= Nij{c(A),r(A), Aji) (2.7)

The only requirement is that if A is replaced by a constructed matrix term 7', then 7 and
7 are new index variables which do not occur free in 7.

The zero matriz and the identity matriz are defined by:
O := Aig(k,1,0) and I := Xij(k, k,cond(i = j,1,0)) (2.8)

respectively, where cond(i = j,1,0) expresses that I} is 1 on the diagonal and it is zero
everywhere else. Sometimes we will just write 0 and / when the sizes are clear from the
context.

We define the trace function by:
tr(A) = X\ij(r(A), 1, Ay) (2.9)

Note that \ij(r(A), 1, A;) is a column vector consisting of the diagonal entries of A, and
that i, j are new index variables which do not occur free in 7', if T replaces A.

We let the dot product of two matrices, A, B, be A- B, and we want it to be the sum
of the products of corresponding entries of A and B. Formally, we define the dot product
by:

A - B :=¥\ijmax{r(A),r(B)},max{c(A), c(B)}, Aij * Bjj) (2.10)

where 7, 7 do not occur free in T, U, if T, U replace A, B.
With the dot product we can define matriz multiplication by letting the (i, j)-th entry
of A % B be the dot product of the i-th row of A and the j-th column of B. Formally:

Ax B := Xij(r(A), c(B), \kl{c(A),1,e(A,i, k)) - \kl{(x(B),1,e(B,k,7))) (2.11)

where 7, 7 do not occur freely in T, U, if T, U replace A, B.
Finally, as was mentioned in the introduction, the following decomposition of an n xn

matrix A is going to play a prominent role in this thesis:

A= a1 R
S M

where aq; is the (1,1) entry of A, and R,S are 1 x (n—1), (n—1) x 1 submatrices,
respectively, and M is the principal submatrix of A, i.e., M = A[1|1]. In general, A[i|j]
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indicates that row ¢ and column j have been deleted from A. Therefore, we make the

following precise definitions:

R(A) := Nij(1, c(A) 1, e(A 1,i+1))
S(A) := Nij(r(A) —1,1,e(4,i+1,1)) (2.12)

(
M(A) i= \ij(r(A) — ( )= Le(Ai+1,j+1)

2.2.4 Substitution

Suppose that term is a term. We can indicate that a variable x occurs in term by writing
term(z). If term’ is also a term, of the same type as the variable x, then term(term’/x)
denotes that the free occurrences of the variable x have been replaced throughout term by
term’, and we say that term(term’/x) is a substitution instance of term. If « is a formula,
then a(term’/z) is defined analogously.

However, the existence of bound variables complicates things, and substitution is
not always as straightforward as the above paragraph would suggest. Thus, to avoid
confusion, we give a precise definition of substitution, by structural induction on term:
Basis Case: term is just a variable z; in this case z(term’/z) =y term’. Note that
term’ must be of the same type as the variable x.

Induction Step: We examine items 1-9. For example, if term is of the form (m + n),
then (m +n)(term’/x) is simply (m(term’/x) 4+ n(term’/x)). All cases, except item 6 and
item 9, are just as straightforward, so we only present item 6 and item O:

Suppose that term is of the form Aij{m,n,t). If x is i or j, then the substitution has

no effect, as we cannot replace bound variables. So we assume that x is neither ¢ nor j.

If term” does not contain i or j, then \ij(m,n,t)(term’/x) is just:
Aij(m(term’/z), n(term’/x), t(term’/x)) (2.13)

If, on the other hand, term’ contains ¢ or j, then, if we substituted carelessly as in (2.13),
the danger arises that « might occur in m or n, and we would violate restriction (2.2).
Furthermore, if x also occurs in ¢, then the i and j from term’ would “get caught” in the
scope of the M-operator, and change the semantics of ¢ in an unwanted way.

Thus, if term’ contains ¢ or j, then, to avoid the problems listed in the above para-

graph, we rename ¢, j in A\ij(m, n, t) to new index variables 7', 5/, and carry on as in (2.13).
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A detailed exposition of substitution and A calculus can be found, for example,
in [HS86].

Suppose that term is of the form condiyqex (v, m,n). Then the result of replacing x by
term’ is simply:

condipgex ((z/term’), m(term’/x), n(term’ /z))

Note that the only worry is whether a(term’/z) continues to be a boolean combination of
atomic formulas with terms of type index (see item 9 above). But this is not a problem
as we require term’ to be of the same type as the variable x, so, and this can be proven

by induction, substitution does not change the type of the term.

Lemma 2.2.1 Every substitution instance of a term is a term (of the same type). Simi-
larly, every substitution instance of a formula is a formula, and every substitution instance

of a sequent is a sequent.

Proof. Immediate from the above inductive definition of substitution. O
We end this section with some more terminology: if term,termy, ..., term; are terms,
and z1,...,x, are variables, where x; is of the same type as term;, then:
term(termy/xq, ..., termyg/xy)

denotes the simultaneous substitution of term; for x;. On the other hand,
term(term; /xq) ... (termy/xy)

denotes a sequential substitution, where we first replace all instances of x1 by termy, then
we replace all instances of x5 in term(term;/x1) by termsy, and so on. We have analogous

conventions for formulas and sequents.

2.2.5 Standard models

In this section we define standard models for formulas over Ly 5 ; we follow the terminology
and style of [Bus98, chapter 2.1.2.]. We do not define general models as we do not need
them. A standard model is a structure where the universe for terms of type index is N,
the universe for terms of type field is IF, for some fixed field F, and the universe for terms
of type matrix is M(F) = U,, en Mmxn(F) and My, (F) is the set of m x n matrices
over the field F. The standard model is denoted by Sp. All operations are given the
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standard meaning by Sp (“—iuex” 18 cut-off subtraction). We define 0! to be 0, and
div(i,j) and rem(i, j) are undefined when j = 0.

If o is a formula over L5 without free variables, i.e. « is a sentence, then we write
Sr F «a to denote that « is true in the structure Sp. However, formulas over L5 may
have free variables in them. Thus, to give meaning to a general formula o we not only
need a structure S, but also an object assignment, which is a mapping 7 from the set of
variables (at least the ones free in «) to the universe of Sg. That is, 7 assigns values from
N to all the free index variables, values from FF to all the field variables, and matrices
over [F to all the matrix variables.

We write Sg F a|r] to denote that « is true in the structure Sp with the given
object assignment 7. To give a formal definition of Sg F a[r], we first need to define the
interpretation of terms, i.e. we need to formally define the manner in which arbitrary
terms represent objects in the universe of Sg. To this end, we define term®[7], for a given
S = Sy, by structural induction:

Basis Case: term is a variable of one of the three sorts, or a constant. For example, if
term is 4, then i%[7] is just 7(i) € N.

Induction Step: Suppose that term is of the form (m +inaexn). Then, (M +inaexn)®[7] =
m®[7] + nS[r], where “+” denotes the usual addition of natural numbers. Similarly we
can deal with multiplication, and the basic operations of field elements.

Suppose that term is of the form r(7T). Then (r(7))%[r] is the number of rows of
TS[r], which is the number of rows of 7(A) if T' is the matrix variable A, and it is m®[r],
if T' is of the form A\ij(m,n,t).

Suppose that term is of the form e(7,m,n). Then (e(T,m,n))°[r] is the entry
(mS[7],n®[r]) of the matrix T°[r] (and it is zero if one of the parameters is out of
bounds).

All other cases can be dealt with similarly.

Since all free variables in a formula « are implicitly universally quantified, we say that
« is true in the standard model, denoted Sy F «, if Sp F «[r] for all object assignments

T.
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2.3 Axioms

In this section we present all the axioms of the theory LA. The axioms are divided into
four groups: equality axioms (section 2.3.1), the axioms for indices which are the axioms
of Peano’s Arithmetic without induction (section 2.3.2), the axioms for field elements
(section 2.3.3), and the axioms for matrices (section 2.3.4). We have the following axiom
convention:

All substitution instances of axioms are also axioms. (2.14)

Thus, our axioms are really axiom schemas.

2.3.1 Equality Axioms

b

We have the usual equality axioms. The symbol “=" is a metasymbol for one of the three

equality symbols, and the variables x,y are meta-metavariables, that is, they stand for
one of the three types of standard metavariables. The function symbol f in A4 is one of

the function symbols of Ly, given in Table 2.1, and n is the corresponding arity.

Al - x==x

A2 x=y—y==x

A3 (z=yANy=z2) -x=2

Ad zi=wy,....0,=Yp— fx1...20, = fU1...Yn

A5 i = ji1,1p = Jo, 01 Sl — J1 < Jo

Table 2.2: Equality axioms

Example 2.3.1 A particular instance of A4 would be:
’L.l = ig,jl = jQ,A =B — e(A,il,jl) = e(B,iQ,jg)

Here f = e, and since e has arity 3, n = 3.
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2.3.2 Axioms for indices

The axioms for indices are the usual axioms of Peano’s Arithmetic without induction?,
with A15 for cut-off subtraction definitions, (note that ¢ £ j abbreviates =(i < j)), A16
for the quotient and reminder function definitions, and A17 for the conditional function

definitions (recall that o has to satisfy the restriction of item 9 given in Section 2.2.1).

A6 —i+140 All —i<j,j<i

A7 —wix(j+1)=(0Gx*j)+1 Al2 i+ (+1)=(G+j)+1
A8 itl=j+1—i=j A13 i<jj<i—i=j

A9 —i<it] Ald —i%x0=0

A10 —-i+0=1

Al5 i<ji+thk=j—j—i=kand i< j—j—i=0

A16 j#0—remn(i,j) <j and j#0—i=j*div(i,j)+ rem(s,))

A17 o — cond(w,i,j) =i and —a — cond(a,,j) = j

Table 2.3: Axioms for indices

!Thus, the index fragment of LA does not correspond to Peano Arithmetic, since LA has no quantifiers,
and the induction (introduced later in this chapter as a rule) is on quantifier-free formulas.
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2.3.3 Axioms for field elements

The axioms for the field elements are the usual field axioms, plus A27 for the condi-
tional function definition (recall that « has to satisfy the restriction of item 9 given in

Section 2.2.1).

Al18 - 0+a=a A23 —axb=0bxa

Al19 - a+(—a)=0 A24 —a+(b+c)=(a+b) +c
A20 - 1xa=a A25 —ax(bxc)=(axb)*c
A21 a#0—ax*x(at)=1 A26 —ax(b+c)=axb+axc

A22 —a+b=b+a

A27 o — cond(w,a,b) =a and —a — cond(w,a,b) =b
Table 2.4: Axioms for field elements

2.3.4 Axioms for matrices

In this section we define the last six axioms which govern the behavior of matrices. Axiom
A28 states that e(A, 1, 7) is zero when 4, j are outside the size of A. Axiom A29 defines
the behavior of constructed matrices. Axioms A30-A33 define the function ¥ recursively

as follows:

e First, A30 and A31, we define ¥ for row vectors, that is for matrices of the form:

A=<a1 as ... an>

If n=c(A) =1, s0o A= (a), then 3((a)) = a. Suppose r(A) =1Ac(4) > 1. In

that case we define X as follows:
Z(A):E< a ... G ) :E< ar ... Gp_1 )—l—an

e If Ais a column vector, A32, then A’ is a row vector, and so X(A4) = X(A") which
is already defined.
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e In A33, we extend ¥ to all matrices. Suppose that r(A) > 1 and c(A) > 1, that is:

R
A= an
S M
Then, X is defined recursively as follows:

S(A) = a1y + S(R) + 2(S) + S(M) (2.15)

Note that throughout m < n is an abbreviation for (m < n A m # n), and, of course,
m # n is an abbreviation for =(m = n). Finally, see (2.7) for the precise definition of A’
in A32, and see (2.12), page 20, for definitions of the terms R(A),S(A),M(A) in A33.

A28 (i=0Vr(A) <iVj=0Vc(A)<j) —elAij)=0

A29 — r(Xij(m,n,t)) =m and — c(Aij{m,n,t)) =n and
1<i,i<m,1<j,7<n—e(Xijim,n,t),i,j)=t

E°r(A)=0Vc(4)=0—XA=0

A30 r(A) =1,c(4) =1 — S(A) = e(4,1,1)

A31 r(A) =1,1 < c(A) = Z(A) = S(Niji(1,c(A) — 1, 4;)) + Are(a)
A32 c(A) = 1 — %(4) = £(4Y)

A33°1<r(A),1<c(A) = 3(A) =e(A,1,1)+Z(R(A)) +2(S(A)) + XZ(M(A))

“The axiom E(mpty) is necessary to take care of empty matrices—matrices with zero rows
or zero columns. There is nothing that prevents us from construction a matrix Aij(0, 3, t),
for example, and we want 3 of such a matrix to be Ogelq, regardless of t.

bSee page 19 for the definition of A’.

¢See page 20 for the definitions of R, S, M.

Table 2.5: Axioms for matrices
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2.4 Rules of inference and proof systems

We start by defining the propositional sequent calculus proof system PK, following loosely
the presentation in [Bus98, Chapter 1].

A PK proof consists of an ordered sequence of sequents {5, ...,S,}, where S, is the
endsequent and it is the sequent proved by the proof. All sequents in {S;....,S,} are
either initial sequents of the form a — «, for any formula «, or follow by one of the rules

for propositional consequence (defined below) from previous sequents in the proof.

Definition 2.4.1 A rule of inference is denoted by a figure:

ﬁ Sl SQ Sl S2 SS
S S S

indicating that the sequent S may be inferred from Sy, or from the pair S; and Ss, or
from the triple S; and Sy and S3. The conclusion, S, is called the lower sequent of the

inference; each hypotheses is an upper sequent of the inference.

Definition 2.4.2 The rules in Tables 2.6, 2.7, and 2.8, are the PK rules for propositional
consequence. These rules are essentially schematic, in that o and ( denote arbitrary

formulas and I'; A denote arbitrary cedents.

h left F17&7B7F2_>A h ioht F—>A1,C¥,B,A2

nge-left: nge-right:

CREIAnSETe F17ﬂ7057F2_>A CREIANEETS F—>A1,ﬂ,0&,A2

traction-left xal = A traction-right [>4a0

contraction-left: ———— contraction-right: ——
a, I’ = A & I' - A«
r—A r—A

weakening-left: oz,lj—)ﬁ weakening-right: F—>_>7A,oz

Table 2.6: Weak structural rules

'-Aa ol —A
r—A

Table 2.7: Cut rule

The PK system, as a propositional proof system, is sound and complete, that is to

say, any PK-provable sequent is a propositional tautology, and every propositionally valid
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loft: I' = A« ol a, ' = A
e -a, ' - A e T — A«
a, 3, — A ) '-Aa I'=Ap
left: —————— -right:
A A BT = A A N NP
a,l' A [,T'— A . ' = Aa,p
V-left: — ’ V-right: ————
¢ aV gl — A He - AaVvp

Table 2.8: Rules for introducing connectives

sequent (tautology) has a PK-proof. For a proof of this, see theorems 1.2.6 and 1.2.8
in [Bus98, Chapter 1].

We now define the sequent calculus proof system PK-LA. Besides the rules for propo-
sitional consequence, we need a rule for induction on indices, and a rule for concluding

equality of matrices.

Definition 2.4.3 Recall that «o(term/z) denotes that every occurrence of the variable
x in « is replaced by the term term (note that term must be of the same type as the
variable ). Thus we define the induction rule as in Table 2.9; note that ¢ must be an

I a(i) = a(i+1/i), A
' a(0/i) — a(n/i), A

Table 2.9: Induction Rule

index variable (as we only allow induction on indices), and n is any term of type index.
We have induction on indices because we want to prove matrix identities by induction

on the size of the matrices involved.

Definition 2.4.4 The matriz equality rules are defined in Table 2.10; the only restriction

r(T)=x(U),c(T) =c(U),e(T,i,j) = e(U,i,j),I' - A

left: T—UT = A

P Ae(Tyij) = e(Uij) T—AxT)=x(l) T —AcT)=cl)
- AT=U

right:

Table 2.10: Equality Rules

is that 4,5 do not occur free in the bottom sequent of Equality right. Note that three
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types of equalities appear in this rule: equality of indices, field elements, and matrices.
(As usual, for the sake of readability, we omit the corresponding subscripts). Note that

we have the “reverse” of the equality rule by using axiom A4.

Definition 2.4.5 We define the proof system PK-LA to be a system of sequent calculus
proofs, where all the initial sequents are either of the form o — « (for any formula «
over L,4), or are given by one of the axiom schemas A1-33, and all the other sequents (if
any) follow from previous sequents in the proof by one of the PK rules for propositional

consequence, or by Ind, or by Eq.

Thus, a PK-LA proof of a sequent S consists of an ordered sequence of sequents
{S1,...,S,}, where each S; is either of the form o — «, or is given by one of the axiom
schemas A1-33, or follows from previous S;’s by a PK rule for propositional consequence,

or by Ind, or by Eq. The endsequent, S,, is S. The length of this derivation is n.

Definition 2.4.6 The theory LA is the set of sequents over L4 which have PK-LA

derivations.

Note that, in particular, all the sequents given by the axiom schemas A1-33 are in
LA.

Definition 2.4.7 The substitution rule is given in Table 2.11; S is any sequent, and

S(xla"'axk)

Subst:
oS S(terml/xl,...,termk/xk)

Table 2.11: The derived Substitution Rule

S(x1,...,xx) indicates that xi,...,x; are variables in S. Recall that the expression
S(termy/xq, ..., termg/z) indicates that the terms termy, ..., term; replace all free oc-
currences of the variables zq, ..., z; in S, simultaneously. Here, x; has any of the three

types, and the term term; has the same type as x;.

Lemma 2.4.1 LA is closed under the substitution rule.

Proof. We prove the lemma by induction on the length of a derivation of the sequent S.
Basis Case: If S is an axiom of LA, then by the axiom convention (2.14) in section 2.3,

all the substitution instances of S are also axioms of LA.
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Induction Step: S is derived by one of the rules (by one of the rules for propositional
consequence, by Ind, or by Eq). Suppose S is obtained by Ind. Then S =g, [' —
a(n/i), A, and it is obtained as follows:

T, a(0/i), (i) — ali + 1/1), A
I'— a(n/i), A

(2.16)

and x1, ...,z is a list of variables that occur in I' — a(n/i), A. The first thing we do is
replace ¢ in the premiss of (2.16) by a new variable i’. Note that this can be done by our
induction hypothesis. Now we can present the derivation of I', a(n/i) — A as follows:

[ a(0/i), a(i’) — a(i +1/7), A
I'— a(n/i'),A

(2.16')

Note that (2.16") is still a valid induction rule. Now we replace 1, ...,z in (2.16") by
termy,...,term,. Note that since ¢ is a new variable, it was not replaced by any of the

terms termy, ..., term,. Thus, we obtained a derivation of:
(T — a(n/i'), A)(termy [y, . .. termy/xy)

which is just S(termy/xzy, ..., termy/xy).

Suppose S is of the form I' — A, T = U and it is obtained by the equality rule. We
proceed similarly to the induction rule case: we replace i, j by two new variables i, 5’
which do not occur in xy,...,z;. Again, we can do this by the induction hypothesis.
Then, we replace x1, ...,z throughout in the rule by termy, ..., termy, and we are done.

Finally, if S is obtained by a rule for propositional consequence, then we just replace

x1, ..., T throughout the rule by termy, ..., term. U



Chapter 3

The Theorems of LA

In this chapter we will show that all the basic properties of matrices can be proven in
LA. More precisely, we will show that all the matrix identities which state that the set
of n X n matrices is a ring, and all the matrix identities that state that the set of m xn
matrices is a module over the underlying field, are theorems of LA.

The conclusion is that all the basic matrix manipulations can be proven correct in LA.
By “basic” we mean for example the associativity of matrix multiplication. However, LA
is apparently not strong enough to prove matrix identities which require arguing about
inverses; thus, it seems that LA is not strong enough to prove AB =1 — BA = 1.

One approach to show the independence of AB = I — BA = [ from LA is by
constructing a model M of LA that does not satisfy AB = I — BA = I. A less
promising approach would be to show that AB = I — BA = I has no short Frege proofs
(whereas all the theorems of LA have short Frege proofs; see Chapter 7). In any case,
the independence of AB =1 — BA = I from LA is stated as open problem 9.1.

In Section 3.2 we show that LA proves the equivalence of several hard matrix identi-
ties. This is an interesting result, as LA seems too weak to prove the identities themselves.
We also show that LA can prove combinatorial results (The Odd Town Theorem is given

here) that rely on “linear-independence results” from hard matrix identities.

3.1 LA proofs of basic matrix identities

We will use the following strategy to prove that T'= U: we first show that r(7T") = r(U)
and ¢(T') = ¢(U), and then we show e(7,i,7) = e(U,1,j), from which we can conclude

that T" = U invoking the equality rule. Thus, we are showing equality of two matrices

31



CHAPTER 3. THE THEOREMS OF LA 32

by showing that they have the same size and the same entries. We will omit the proof of
c(T) = c(T) as in all cases it is analogous to the proof of r(7) = r(U).

For the sake of readability we will omit “¢” (the multiplication symbol), as it will
always be clear from the context when does multiplication apply, and what type of
multiplication is being used (product of indices, field elements or of matrices).

Recall that the formula « is equivalent in meaning to the sequent — «a. Therefore,
we can omit the arrow, but formally LA is a theory of sequents, and so the arrow is
there. Also, our derivations are informal; recall that a sequent S is in LA iff it has a
PK-LA derivation. However, providing complete PK-LA derivations would be tedious
and unnecessary, so we derive all theorems below informally, sometimes giving informal
justifications in the right margin, but we keep in mind that these informal derivations

can be formalized in PK-LA.

3.1.1 Ring properties
T1 A+ Or(A)c(A) =A

Proof. r(A 4 Op(a)c(a)) = max{r(A),r(0r(a)c(a))} = max{r(A),r(A)} = r(A), and the
entries: e(A + Or(ayc(a). 4, J) = Aij +0 = Ay;. O

T2 A+ (—1)A = 0:4)c(n)

Proof. T(A -+ (~1)A) = max{r(4), r((~1)A)} = max{r(4), 2(4)} = £(4) = r(0xareca),
and the entries: e(A+ (—1)A,4,75) = A;; + (—1)A;; = 0. O

To prove the commutativity and associativity of matrix addition we need to prove

two properties of max; hence T3 and T5.

T3 max{i,j} = max{j,i}

Proof. We have to prove that cond(i < j,7,4) = cond(j < 4,4,7). We introduced the

following abbreviation: ¢ < j stands for ¢ < j A7 # j. Then, by All, we have that
1<jVi=j3Vj<i

To see this just note that ¢ < j propositionally implies (i < j A # j)Vi=j.
We now consider each of the three cases in i < jVi=jV j <1 separately. If i = 7,

then by A13, 4 < j and j < 4, so cond(i < j,j,7) = j and cond(j < i,4,j) = i, where
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we used A17, but since ¢ = j, using the equality axioms we have that cond(i < j,7,7) =
cond(j <1,1i,7), and we are done.

Consider the case i < j. Then i < j, so, by A17, cond(i < j,7,7) = j. Now, if i < j,
then —j < 7. To see this, suppose that ¢ < j Aj < 4. Then, i1 < jA7# 57N 7 <1, so,
by A13, i = j A i # j, contradiction. Thus —j < i. From this we have, by A17, that
cond(j <1i,i,j) = j, and again, by equality axioms we are done.

The case j < i can be done similarly, and we are done. 0
Now we can prove the commutativity of matrix addition:

T4 A+ B=B+ A

Proof. r(A+ B) = max{r(A),r(B)} and by T3, this is equal to max{r(B),r(A)} =
r(B + A). Since addition of field elements is commutative (A22), we can conclude that:

T5 max{i,max{j, k}} = max{max{i,j}, k}

T6 A+ (B+C)=(A+B)+C

Proof. r(A+ (B + C)) = max{r(A),r(B + C)} = max{r(A),max{r(B),r(C)}} and
by T5, max{r(A),max{r(B),r(C)}} = max{max{r(A),r(B)},r(C)}, which is equal to
r((A + B) + C). Since addition of field elements is associative (A22), we have that:
e(A+ (B+C),i,j) = Aij + (Bij + Cyy) = (Aij + By) + Ciy = e((A+ B) + C,4,5) O

Before we prove the next theorem, we outline a strategy for proving claims about
matrices by induction on their size. The first thing to note is that it is possible to define
empty matrices (matrices with zero rows or zero columns), but we consider such matrices
to be special. Our theorems hold for this special case, by axioms A28 and E on page 26,
so we will always implicitly assume that it holds. Thus, the Basis Case in the inductive
proofs that will follow, is when there is one row (or one column). Therefore, instead of
doing induction on i (see page 28 for the Induction Rule), we do induction on j, where
1=7+1.

Also note that the size of a matrix has two parameters: the number of rows, and the

number of columns. We deal with this problem as follows: suppose that we want to prove
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something for all matrices A. We define a new (constructed) matrix M (i, A) as follows:
first let d(A) be:
d(A) :=cond(r(A),c(A),r(A) < c(A))

that is, d(A) = min{r(A),c(A)}. Now let:
M{(i, A) := Apg(r(A) — d(A) +i,c(A) —d(A) +i,e(A,d(A) —i+p,d(A) —i+q))

that is, M(i, A) is the i-th principal submatrix of A. For example, if A is a 3 x 5 matrix,
then M(1, A) is a 1 x 3 matrix, with the entries from the lower-right corner of A.

To prove that a property P holds for A, we prove that P holds for M(1, A) (Basis
Case), and we prove that if P holds for M (i, A), it also holds for M (i + 1, A) (Induction
Step). From this we conclude, by the induction rule, that P holds for M(d(A), A), and
M (d(A), A) is just A. Note that in the Basis Case we might have to prove that P holds
for a row vector or a column vector, which is a k x 1 or a 1 X k matrix, and this in turn

can also be done by induction (on k).

T7 X0k = Oficla

Proof. We prove this theorem in considerable detail, making use of the induction strategy
outlined above. Recall that 0y; abbreviates Apg(k, [, Ogea), so r(0x) = k and c(0x) = {,
and so d(0g) is just min{k,(}. The matrix M (i, 0x) is given by:

Apg(k — min{k, [} + 4,1 — min{k, I} + i, e(O;, min{k, [} — i + p, min{k, I} — i + q))

Since for all p,q we have e(Og, min{k,(} — i + p,min{k,l} — i + ¢) = Ogeq, using the
equality rule we can show that M (i,05) = O (k—min{k,l}+4)(I—min{k,}+i)- L herefore, we now

want to show by induction on 7 that:

220 (k—min{k,1} +4)(I—min{k,1}+i) = Oficld

Basis Case: i = 1. Depending on whether or not & < [, Ogx—min{k,i}+i)(—min{k,i}+i)
is a row vector of zeros, or a column vector of zeros. Assume first that £ < [, and
show that 30;; = Ogeaqg, by induction on j. The Basis Case is j = 1, in which case
r(0;) = ¢(01;) = 1, so we can use A30 to conclude that 30;; = e(01;,1,1) = Ogeiq. For
the Induction Step, assume that ¥0;; = Ogelq is true, for j > 1. By A31, and making use
of the equality rule, we have that:

201¢j41) = 2015 + Ofera
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By the induction hypothesis, ¥0;; = Ogciq, and by A18, Ogeiq + Ogeld = Ogiela, and therefore
201(j+1) = Ofela- Now, with the induction rule we can conclude that ¥0;; = Ogeq holds
for j = 1 — min{k,(} + 1. If £ > [, we can prove the result with A32 (by simply taking
the transpose of 0y; to prove that X0;1 = Ofela)-

Induction Step: Assume that 0 _min{k,i}44)(—min{k,}+i) = Ogela holds for ¢ > 1, and
show that it holds for i + 1. To show this we use the equality axioms (to show that
Apg(k — 1,1 —1,e(0k, 1, q)) = Or—1y0—1)), and A33. Thus:

20 (k—min{k}4+i+1) (I—min{k,}+i+1) = 2010—min{k,1}+4) T 20(k—min{k,1}+i)1

+ 220 (k—min{k,}+4) ((—min{k,}+i)

The first two terms of the RHS are Ogaq by the Basis Case. The last term of the RHS is
Ogiela by the induction hypothesis. Thus, by A18, 30k —min{k,i}+i+1)(-min{k,}+i+1) = Ofield-
Now using the induction rule, we conclude that %0 _min{r,1}+4)(1-min{k,}+i) = Ogela holds
for i = min{k, I}, and therefore X0z = Ofge1q- O

The next theorems show that [, has the required properties, i.e. it is indeed the

identity for matrix multiplication.

T8 AIC(A) = A and Ir(A)A =A

Proof. We just derive Al 4y = A. First note that r(Al;4)) = r(A). Now:

e(Algay,i,5) = Akl{c(A), 1, Ai) - Ael(r(Le(a)), 1, (Te(a))rs)
= Equ<maX{c(A>a r([C(A))}a L Aip(IC(A))pJ'>
= YApq(c(A), 1, A;jpcond(p = j,1,0))

Now we show that:

Aij = ZApg(c(A), 1, Apeond(p = j, 1,0)) (3.1)

Consider two cases: in the first case [i = 0 or r(A) < i or j = 0 or c(A) < j]. Then,
A;j =0 and A;,cond(p = 7,1,0) = 0, and by T7, we have that XApg(c(4),1,0) = 0.

In the second case we assume [1 < i < r(A) and 1 < j < c(A)], and we prove
equation (3.1) by induction on c(A):
Basis Case: c¢(A) = 1. Then, by A30, the RHS of equation (3.1) is given by A;;cond(1 =

J,»1,0) which is just A;;, since if 1 < j <c(A) =1, then j = 1.
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Induction Step: Apg(c(A), 1, A;ycond(p = j,1,0)) is a column vector, and its transpose
is the row vector given by Agp(l, c(A), A;ycond(p = 7,1,0)). Now, using A31 and A32,

we can rewrite equation (3.1) as:
Aij = Equ<17 C(A) - 17 Aipcond(p = j: 17 O)> + Aic(A)

If j = c(A) we are done, and if not, we apply the Induction Hypothesis to A;; =
YAgp(l,c(A) — 1, Ajycond(p = 7, 1,0)). O

The next four theorems are auxiliary to proving the associativity of matrix multiplica-
tion (which is theorem T13 below). The main idea behind the derivation of associativity
of matrix multiplication is that we can sum all the entries of a matrix by summing along
the rows first, or, by summing along the columns first, and in both cases we obtain the

same result.
T9 X(cA) = cX(A)
T10 X(A+ B) = X(A) + X(B)

In the next theorem we show that we can “fold” a matrix into a column vector, that
is, if we take X of each row, then the ¥ of the resulting column vector is the same as
the X of the original matrix. Using standard matrix notation this can be expressed as

follows:

a1 ... Qin Z(@n aln)

p1 .. Gpp X(an .. apn )

and formally, this can be stated as follows:

T11 $A = LAij(r(A), 1, SAKI(1, c(A), Ay))

Proof. 'We prove this theorem by induction on the number of rows of A, that is by
induction on r(A). In the basis case, A has just one row, so we immediately have
Y(A) = X((2(A))) by A30. Now the induction step. Suppose the claim holds for
r(A) < n. Then:

aypy ... QAip R
a
s : :2( 1 M>:a11+Z(R)+Z(S)+Z(M)
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where we used (2.15). By the induction hypothesis:

2imy;
E(M) =

DMy

Using linearity we combine a;; and ¥(R), and obtain

Z(CLH T ... Tn) (32)
and we combine ¥(S) and X(M) to obtain

51 4 2imy;
» : (3.3)

Sn + Ezmm

and now, we use linearity one more time on (3.2) and (3.3) to obtain

a1 + 21
21,
5 51+ 'Zimli _ )
2
Sn + szm
which finishes the proof of the theorem. O

Now, the “folding” theorem above (T11), together with T12 below, can express the
fact that we can add up all the entries of a matrix by adding them along the rows first,

or, along the columns first, and obtain the same result.
T12 X(A) = X(AY)

Proof. We prove it by induction on r(A). The proof is quite easy: By (2.15), X(A") =
a1 + N(S) + D(RY) + S(M?). By A32, $(S) = 9(S) and S(R') = X(R). Finally, by
the induction hypothesis, ¥(M*) = (M), so indeed X(A) = X(A%). O

We are finally ready to prove associativity of matrix multiplication, but first we intro-
duce some new notation to make the derivation more readable: instead of XAij(m,n,t)
we will write Z t.

i<m,j<n

T13 A(BC) = (AB)C
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Proof. First note that: r(A(BC)) = r(A) = r(AB) = r((AB)C). Now, e(A(BC),1,j) is
given by:
Akl(c(A),1,e(A,i,k)) - \kI(xr(BC), 1,e(BC, k, j))
H it
and max{r(i), r(ii)} = max{c(A),r(BC)} = max{c(A),r(B)} and also max{c(i),c(ii)} =
max{1l,1} = 1. From this we have that e(A(BC),i,j) is given by:

Z Aip(BC)pj

p<max{c(A),r(B)},q<1

and the (p, j)-th entry of BC is given by ngmax{c(B),r(C)},sgl B,,C,;, which, by T12, is

Y B,

s<1,r<max{c(B),r(C)}

equal to:

So putting everything together we have that e(A(BC),1,j) is given by:
> o ¥ one
p<max{c(A),r(B)},q¢<1 s<1,r<max{c(B),r(C)}

and now using T9 we can put A;, inside the second ¥, and then “unfolding” (T11), we

obtain:

= Z Aip(BpTOTj)
p<max{c(A),r(B)},r<max{c(B),r(C)}
and by associativity of multiplication of field elements (A25), and T12, we obtain:
= Z (Aipor)CTj
r<max{c(B),r(C)},p<max{c(A),r(B)}
and “folding” back (T11 again), we obtain:
- Z Z (AipBypr)Crj
r<max{c(B),r(C)},¢<1 s<1,p<max{c(A),r(B)}

using T9 and commutativity of field multiplication (A23) we obtain:

= Z Z Az‘p B pr OT J

r<max{c(B),r(C)},q<1 \ s<l,p<max{c(A),r(B)}

= > (AB):rC.j

r<max{c(B),r(C)},¢<1
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Which is just e((AB)C,1,j), and we are done. O

Finally, we show left and right distributivity, but first we need one more theorem for

the defined function max:
T14 max{i,max{j, k}} = max{max{i, j},max{i,k}}
T15 A(B+C)= AB+ AC

Proof. First note that r(A(B +C)) = r(A) = max{r(A),r(A)}, and since r(A) = r(AB)
and r(A) = r(AC), we have that this is equal to: max{r(AB),r(AC)} = r(AB + AC).
Now, e(A(B + (), i,j) is given by:

Mel(c(A),1,e(A,i,k)) - Nkl(x(B+ C),1,e(B+C,k,j))
=Y rs(max{c(A), r(B+C)},1, A, (B +C),))

Now, using the distributivity of field multiplication (A26), we obtain:
=Y rs(max{c(A),max{r(B),r(C)}} 1, AiB,; + AirCyj)
we use T'14 to show that:
max{c(A),max{r(B),r(C)}} = max{max{c(A),r(B)}, max{c(A), r(C)}}
and also T'10 to conclude:

=Y rs(max{c(A),r(B)}, 1, AiB,;) + EArs(max{c(A),r(C)}, 1, Ailj)
=e(AB,i,j) +e(AC,1,7)

and we are done. O

T16 (B+C)A=BA+CA

Similar to the derivation of left distributivity given above (T15).

3.1.2 Module properties
T17 (a+b)A = aA+bA
T18 a(A+ B) =aA+aB

T19 (ab)A = a(bB)
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3.1.3 Inner product

The following theorems show that our dot product is in fact an inner product:

T20 A-B=B-A

T21 A-(B+C)=A-B+A-C

T22 aA-B =a(A- B)

3.1.4 Miscellaneous theorems

T23 a(AB) = (aA)B A (aA)B = A(aB)
T24 (AB)! = B'A!
T25 It = I, AOL, = Oy,

T26 (A1) = A

3.2 Hard matrix identities

In this section we present four matrix identities which we call hard matriz identities. They
are hard in the sense that they seem to require computing inverses in their derivations,

and therefore appear not to be provable in the theory LA.

AB=1,AC=1—-B=C I
AB=1—AC #0,C =0 11
AB=1—-BA=1 111
AB=1— A'B' =] vV

Identity I states that right inverses are unique, identity II states that units are not zero-
divisors, and identity III states that a right inverse is an inverse. Identity III was proposed
by Cook as a candidate for the separation of Frege and Extended Frege propositional proof
systems.

We conjecture that the identities [-IV are hard for Frege, however, it might be easier

to prove a weaker statement: the identities I-IV are independent of LA.
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It is interesting to note that matrix products cannot be expressed feasibly in bounded-
depth Frege (directly, without extension variables). This is essentially because the parity
function is hard for bounded-depth circuits!, and computing the (7,5)-th entry of AB
over Zs is the same as computing PARITY(a;1b1j, . . ., Ginbnj).

It is an open problem whether these identities can be proven in poly-bounded Frege
or even poly-bounded NC'-Frege, for any i. In Section 8.3 we show that hard matrix
identities can be proven in poly-bounded P/poly-Frege (i.e., in poly-bounded Extended
Frege).

It turns out that it is enough to show that one of these identities (we always choose
AB =1 — BA = I) can be proven in poly-bounded Extended Frege, to conclude that all
four can be proven in poly-bounded Extended Frege. The reason is that their equivalence
can be shown with poly-bounded Frege proofs (in fact, as Theorem 3.2.1 below shows,

they can be proven equivalent in LA).

Theorem 3.2.1 LA proves the equivalence [ < 11 < 11l < 1V.

Proof. We show that [ = [I1 =1l =1V = L.

I = 1II Assume AB = I NAC = 0. By A4, AB+ AC =1+ 0, and by T1 and T15,
A(B4+C)=1. UsingI, B= B+ C,so by T2, C =0.

IT = III Assume AB = I. By Al and A4, (AB)A = 1A, by T2, (AB)A+ (-1)IA =0,
by T13 and T23, A(BA) + A(—1)I = 0, and by T15, A(BA + (—1)I) = 0. By II,
BA+(~1)I =0, and by T2, BA = I.

III = IV Assume AB = I. By III, BA = I, and by A29 and Eq, (BA)! = I'. By T24,
we obtain A'B* = 1.

IV = I Assume AB = INAC = I. By T2 AB+(—1)AC =0, by T23, AB+A(—1)C =0,
by T15, A(B + (—1)C) = 0, by T13, (BA)(B + (—1)C) = 0. Now, using transpose
property T24, we get (B + (—1)C)(BA)" = 0, and since AB = I, by IV, A'B' = I, so
by T24 again, (BA)" = I, so we obtain that (B + (—=1)C)" = 0, so B+ (—1)C = 0, so
B=C. 0

Consider now the following identity due to C. Rackoft:

)\Z](l, C(B), BZ]> = OIC(B) — AB 7£ Ir(A) V

1See [SP95, Chapter 11] for a good presentation of the lower bound for the parity function due to
Furst, Saxe and Sipser. The original is in [FSS84, pp. 13-27].
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This identity states that if the top row of a matrix is zero, then the matrix cannot have

a left inverse, that is:
A # 1

Using the rank function (where rank(A) is the largest number of linearly independent

rows/columns of A), identity V can be proven as follows:
rank(AB) = min{rank(A), rank(B)}

Since B has the top row of zeros, rank(B) < c(B), so that rank(AB) < c(B). But
c(B) =r(A), so rank(AB) < rank([/), where [ is the r(A) x r(A) identity matrix.

Lemma 3.2.1 LA proves that III implies V.

Proof. Suppose the top row of B is zero. Then the top row of BA is zero. If AB =1,
then by III, BA=1,s0 AB # 1. O

It is an open question whether III follows from V in LA, and it is also an open
question whether LA can prove V, which, somehow, seems to be a “weaker” identity
than the four identities above. Interestingly, it can be shown in LA that the Odd Town
Theorem follows from V.

The Odd Town Theorem? states the following: Suppose a town has n citizens, and
that there is a set of clubs, each consisting of citizens, such that each club has an odd
number of members, and such that every two clubs have an even number of members in

common. Then there is no more than n clubs.

Lemma 3.2.2 LA proves that V implies the “Odd Town Theorem”.

Proof. We want the underlying field to be Zs,, so we need the condition that a = 0Va = 1.
Let A be the incidence matrix for the Odd Town problem, defined as follows: r(A) is
the number of clubs in Odd Town, and c(A) is the number of citizen in Odd Town, and,
if the assumption is true (i.e. each club has an odd number of members, and every two
clubs have an even number of members in common), then the (7, j)-th entry of AA" is

5ij7 so that AAt = Ir(A)-

2See [BF92, page 9] for the “Odd Town Theorem” and many related combinatorial principles. Also
see [BBP94, page 5] for a discussion of hard combinatorial candidates for Frege from examples based on
Linear Programming—the authors mention the “Odd Town Theorem”.
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Suppose that r(A) > c(A). Then we can pad A with r(A) — c(A) columns of zeros,
and call the result A’. Then the first r(A) — c(A) rows of (A")" consist of zeros. However
the (i, j) entry of (A’)(A’)" is the same as the (i, j) entry of AA" ie. (A')(A")" = L(a),

which according to V is a contradiction. This finishes the proof. U



Chapter 4

LA with Matrix Powering

In this chapter we expand LA by adding to it a new function, P, for computing powers of
matrices. We call the new theory LAP, and we give its precise definition in section 4.1.

Expressing powers of matrices allows us to define Berkowitz’s algorithm in the new
theory. Berkowitz’s algorithm, which we present in section 4.2, computes the coefficients
of the characteristic polynomial of a matrix A via iterated matrix product. That is,
Berkowitz’s algorithm computes the coefficients of the polynomial p4(z) = det(xzl — A).
From p4(z) we can immediately obtain the adjoint of A, adj(A), and the determinant
of A, det(A). Therefore, Berkowitz’s algorithm allows us to compute and argue about
inverses.

Berkowitz’s algorithm is the fastest known algorithm! for computing inverses and
determinants (it is an NC? algorithm, while, for example, Gaussian Elimination is a
sequential polytime algorithm), and it yields itself to a natural and simple formalization

in our theory.

4.1 The theory LAP

4.1.1 Language

We have the same language as for LA, except for the new function symbol P, which is a

2-ary function where the first argument is of type index, and the second argument is of

!There are two other parallel algorithms for computing the coefficients of the char polynomial of a
matrix: Chistov’s algorithm and Csanky’s algorithm. Chistov’s algorithm is more difficult to formalize,
and Csanky’s algorithm works only for fields of characteristic 0; see [vzG93, section 13.4] for all the
details.

44
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type matrix. The intended meaning of P(m, A) is A™. We denote this new language by

LiAp.

4.1.2 Terms and formulas

We expand the definition of terms and formulas in LA given in section 2.2.1. The basis

case remains the same. In the induction step we add the following case:

10. If m is a term of type index, and T is a term of type matrix, then P(m,T') is a term

of type matrix.

4.1.3 Axioms

We have the same axioms as in LA, that is A1-33, but we also add two new axioms that
define the behavior of P: A34 and A35, stated below.

In the definition of P we consider two cases: first we assume that m = 0, in which
case we want P(m,T) to be the identity (axiom A34). In the second case, we assume

that m > 0, and compute P(m,T) recursively (axiom A35).

A34 m=0— P(m, A) = [r(A)

A35 — P(m+1,A) =P(m,A)*xA

Table 4.1: Axioms for P

We now define PK-LAP analogously to PK-LA. Since both definitions are so similar,

some explanatory details are omitted this time; see section 2.4 for more explanations.

Definition 4.1.1 We define the proof system PK-LAP to be a system of sequent calculus
proofs, where all the initial sequents are either of the form o« — «a (for a formula « over
Liap), or are given by one of the axiom schemas A1-35, and all the other sequents (if
any) follow from their predecessor(s) in the tree by one of the rules for propositional

consequence, or by Ind, or by Eq.

Definition 4.1.2 The theory LAP is the set of sequents over Liap which have PK-LAP

derivations.

Lemma 4.1.1 LA C LAP
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Proof. Immediate from the definitions of PK-LA and PK-LAP. O

4.2 Berkowitz’s algorithm

For a given matrix A, Berkowitz’s algorithm computes the coefficients of the characteristic
polynomial, p4(z), of A. In the context of the theory LAP, given an n x n matrix A, ps
is an (n 4 1) x 1 column vector containing the coefficients of the char poly of A, that is
pa is < Pn Pn-1 --- Do )t. The p;’s are the coeflicients of the n-th degree polynomial
given by det(zl — A), but we will not prove this in our theories; we will prove the
properties of the char poly directly from the definition given by Berkowitz’s algorithm
(See definitions 4.2.2 and 4.2.3). We will also denote the coefficients of the char poly of
a matrix A by (pa);, to avoid ambiguities.

The theory LAP has three types: indices, field elements, and matrices. Thus, it is not
possible to write a polynomial p(x) with an indeterminate x. So, we denote polynomials

by matrix variables, where the correspondence is the following:

. _ Pn—
polynomial p(x) = p,z" + pp_12" '4...4py «<—  column vector p = . '

Po

We can evaluate the polynomial p at field element or a matrix, using the dot product

(see (2.10) on page 19, for a definition of the dot product). So, p(a) is given by:
S(p- Aij{n+1,1,a"7))

(see (4.11), page 54, for the definition of a"*'~%), and p(A) (where A is assumed to be

n X n, but this is not a crucial assumption) is given by:
Aij(n,n,e(p- Akl(n,1,e(P(n — k, A),i, 7)), i, ])

The usual properties of polynomials, for example (p 4+ ¢)(a) = p(a) + q(a) or (c-p)(a) =
¢ (p(a)), are easy to prove in LAP.

Berkowitz’s algorithm is based on Samuelson’s identity, and we present the construc-
tion of Berkowitz’s algorithm from Samuelson’s identity (and Lemma 4.2.2 due to Paul

Beame) in the next section. This construction relies on the cofactor expansion, and the
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definition of the char poly given by pa(xz) = det(zl — A). This construction provides
a proof of correctness, which unfortunately is infeasible; it is infeasible because it relies
on an infeasible proof of the cofactor expansion of the determinant, and on an infeasible

proof of the Cayley-Hamilton Theorem (in order to prove Lemma 4.2.2).

4.2.1 Samuelson’s identity

We follow Berkowitz’s paper ([Ber84]), but we make some modifications (for example,
we define the char poly to be det(x] — A) rather than det(A — x/)). The main idea
behind Berkowitz’s algorithm is Samuelson’s identity, which relates the char polynomial
of a matrix to the char polynomial of its principal submatrix. Thus, the coefficients of

the char polynomial of an n x n matrix A below are computed in terms of the coefficients

A= a1 R
S M

where R, S and M are 1x(n—1), (n—1)x1 and (n—1) X (n—1) submatrices, respectively.

of the char polynomial of M:

Lemma 4.2.1 (Samuelson’s Identity) Let p(z) and ¢(z) be the char polynomials of
A and M, respectively. Then:

p(x) = (x —a1)q(x) — R+adj(zl — M) % S

Recall that the adjoint of a matrix A is the transpose of the matrix of cofactors of A; that
is, the (7, 7)-the entry of adj(A) is given by (—1)""7 det(A[j]:]). Also recall that A[k|] is
the matrix obtained from A by deleting the k-th row and the /-th column. We also make
up the following notation: A[—|l] denotes that only the [-th column has been deleted.
Similarly, A[k|—] denotes that only the k-th row has been deleted, and A[—|—] = A.

Proof.

p(z) = det(z — A)

r — a1 —R
= det
-S xl-M

using the cofactor expansion along the first row:

[y

= (z — ayy) det(z] — M) + ; (—1)7(—r;) det(=S (a1 —VM>[—U])

(*)

<.
I
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where R = (ri7y...7,—1), and the matrix indicated by (x) is given as follows: the first
column is S, and the remaining columns are given by (xI — M) with the j-th column
deleted. We expand det(—S(zI — M)[—|j]) along the first column, i.e., along the column

S = (s5189...8,-1)T:

= (r —an)q(@) + (—1)j(—7“j)2(—1)i+1( s;) det(zl — M)[i|j]

and rearranging:

= (r —an)q (Zr H] det(zl — M)li ’ﬂ) s

=1

= (x —a)q(x) — Rxadj(zl — M) * S

and we are done. O

Lemma 4.2.2 Let q(x) = ¢,_ 12" ' + -+ + 1z + qo be the char polynomial of M, and
let:

n

B(z) = Z(%—1Mk_2 o g D)2 E (4.1)
k=2
Then B(z) = adj(z! — M).
Example 4.2.1 If n = 4, then
B(z) = Iqsz® + (Mgs + Ig2)x + (M?qs + Mgo + 1)
Proof. First note that:

adj(zl — M) x (zI — M) = det(z] — M)I = q(x)I

Now multiply B(z) by (z/ — M), and using the Cayley-Hamilton Theorem, we can
conclude that B(z) * (xI — M) = q(x)I. Thus, the result follows as ¢(x) is not the zero

polynomial; i.e., (I — M) is not singular. O
From Lemma 4.2.1 and Lemma 4.2.2 we have that:

p(x) = (x —a1)q(x) — R+ B(x) xS (4.2)
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4.2.2 Expressing the char poly as a product of matrices

Using (4.2), we can express the char poly of a matrix as iterated matrix product. Again,

a1 R
S M

Definition 4.2.1 We say that an n x m matrix is Toeplitz if the values on each diagonal

suppose that A is of the form:

are the same. We say that a matrix is upper triangular if all the values below the main
diagonal are zero. A matrix is lower triangular if all the values above the main diagonal

are zero.

If we express equation (4.2) in matrix form we obtain:
p=Cig (4.3)

where C is an (n+ 1) x n Toeplitz lower triangular matrix, and where the entries in the

first column are defined as follows:

1 ife=1
Ci1 = —an ifi=2 (44)
—(RM3S) ifi>3

Example 4.2.2 If A is a 4 x 4 matrix, then p = C}q is given by:

s 1 0 0 0

Ps —an 100 v
qo

D2 - —RS —Qa11 1 0

pi _RMS —-RS —ay 1 @

o _RM2S —RMS —-RS —ay 1

Berkowitz’s algorithm consists in repeating this for ¢, and so on, and eventually

expressing p as a product of matrices:
p=0C1Cy---Cy

Definition 4.2.2 (Berkowitz’s algorithm) Let A be an n x n matrix. Berkowitz’s

algorithms computes an (n + 1) x 1 column vector p4 as follows:
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Let C; be an (n+ 2 — j) x (n + 1 — j) Toeplitz and lower-triangular matrix, where

the entries in the first column are define as follows:
1 ifi=1
—R;M/7%S; if3<i<n+2—j
where M; is the j-th principal submatrix, so My = A[1|1], My = M;[1|1], and in general
M1 = M;[1]1], and R; and S; are given by:
t
( AjG+1)  AjG+2) -+ Gjn ) and ( aG+1)j  AG+2)j -+ Anj )

respectively (see Figure 4.1). Then py = C1Cy - - - C,,.

j J

Figure 4.1: a;;, R;, S}, M;

Note that Berkowitz’s algorithm is field independent (there are no divisions in the com-
putation of p4), and therefore, since Berkowitz’s algorithm is a cornerstone of our theory
of Linear Algebra, all our results are field independent.

The following definitions (characteristic polynomial, adjoint, and determinant), are
definitions in terms of Berkowitz’s algorithm. We will show later that the adjoint and the
determinant, defined from Berkowitz’s algorithm, correspond to the usual definitions of
the adjoint and the determinant. Corollary 6.3.1 states that LAP proves, from the cofactor
expansion, that the usual definition of the adjoint (as a matrix of cofactors) corresponds
to the definition of the adjoint from Berkowitz’s algorithm. Since the cofactor expansion
formula follows from the Cayley-Hamilton Theorem (see Chapter 6 for all these results),
and we give a feasible proof of the Cayley-Hamilton Theorem (Chapter 8), we also have
a feasible proof of the fact that the usual definition of the adjoint corresponds to the

definition in terms of Berkowitz’s algorithm. Same comments apply to the determinant.



CHAPTER 4. LA wITH MATRIX POWERING 51

Definition 4.2.3 (Characteristic polynomial) We want to define the characteristic
polynomial (char poly) in terms of Berkowitz’s algorithm. To be precise, we define
the coefficients of the char poly, for a given matrix A, to be the output of Berkowitz’s
algorithm, i.e., to be the entries of the column vector py = C1Cs---C,,. We define the
char poly, for a given matrix A, to be the polynomial whose coefficients are the output
of Berkowitz’s algorithm. In practice we do not make this distinction, and when we say
char poly, we mean both the column vector of coefficients given by Berkowitz’s algorithm,

and the polynomial p4(z) with these coefficients.

This definition of the char polynomial corresponds to the true char polynomial in the

following sense: the output of Berkowitz’s algorithm is a column vector p, given by:

t
<pn Pn—1 ... po)

where p; is the coefficient of z* in det(z] — A).

Definition 4.2.4 (Adjoint) Let p be the char poly of A. Then the adjoint of A, denoted
adj(A), is defined as follows:

adj(A) := (=1)" " (pn A" +pu 2 A" 4 i) (4.6)

Note that this definition of the adjoint is equivalent to the usual definition of the adjoint
in terms of determinants of minors; see Lemma 6.3.2, where we show that LAP proves
(from the C-H Theorem) that our adjoint is equal to the adjoint given by the transpose

of the matrix of cofactors.

Definition 4.2.5 (Determinant) Let p be the char poly of A. Then the determinant
of A, denoted det(A), is defined as follows:

det(A) :== (—1)"po (4.7)

This definition of the determinant is equivalent to the usual definition given in terms
of the cofactor expansion formula; see Section 6.1 where we show that our definition of
the determinant satisfies the axiomatic definition of the determinant, and hence the det

function computed by Berkowitz’s algorithm is the true det function.

When proving results by induction on the size of matrices, we will often use the
following identity:
det(A) = ayq det(M) — Radj(M)S (4.8)
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We prove this identity in Lemma 5.1.3 (in fact, we show that LAP can prove this identity).
This identity is just Samuelson’s Identity (Lemma 4.2.1) with z replaced by zero, however,
Samuelson’s Identity uses the “traditional” definition of the adjoint in terms of cofactors,
and equation (4.8) uses our definition of the adjoint (as in Definition 4.2.4). At this
point we do not have a feasible proof of Samuelson’s Identity (we will have it when we
prove the Cayley-Hamilton feasibly in Chapter 8), so at this point we cannot conclude

(feasibly) equation (4.8) by letting = = 0 is Samuelson’s identity.

4.2.3 Expressing the char poly in LAP

The point of introducing the new symbol P into LA is that we can now express iterated
matrix products. Let Aj, As, ..., A, be a sequence of square matrices of equal size (if
they are not of equal size they can be padded with zeros, and the actual product can be
extracted from the product of the padded matrices at the end). To compute the iterated
matrix product A; Ay --- A,,, we place these matrices into a single big matrix C, above
the main diagonal of C'. More precisely, assume that the A;’s are n x n matrices. Then,

Cis a (m—+1)n x (m+ 1)n matrix of the form:

0 A O 0
0 0 A -~ 0
0 0 0 0
o o0 o0 --- A,
o o0 o0 --- 0

Now, compute C™. The product A, A, ... A,, is the n x n upper-right corner of C"™.

Given a matrix A, we compute its char poly p4 as follows:
pa = Aij(n+1,1,e(P(n,D(A)),i,n(n + 1))) (4.9)

where n := max{r(A),c(A)} (so in effect, if A is not a square matrix we compute the

char poly of its padded version), and where D(A) is the following matrix:

0 c1,4d 0 - 0
0 0 C24 - 0
D(A):=| 0 0 0 0
0 0 0 - C(n,A)
0 0 0 0
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that is, D consists of (n + 1) x (n + 1) blocks of size (n + 1) x (n + 1) each, and all
these blocks, except those which are above the main diagonal, are zero. Therefore, when
we raise this matrix to the n-th power, we obtain the product of the C(k, A)’s in the
upper-right corner; hence P(n,D(A)) in (4.9).

In the definition of Berkowitz’s algorithm, we see that the matrices C1, ..., C, are of

different sizes.

Example 4.2.3 If n = 3 then C}, Cy, C5 look as follows:

mE

We want the C(k, A)’s to be square matrices of the same size to be able to define D(A),

so we pad them with zeros to convert them to (n + 1) x (n + 1) matrices.

Example 4.2.4 After the padding, the matrices from example 4.2.3 look as follows:

0 00 0(0]0
0 00 0(0]0
0 00 0(010]{0
0 0(0]0]{0 0(010]{0
Formally, C(k, A) := Xij(n+ 1,n+ 1,
( \
0 <]
1 i
cond(i <k+1Vj <k, ,0)
—Agr, i=j+1
e(—R(A, k) *PM(A, k), i —3) *S(A, k), 1,1) j+2 gi)

\
Note that the expression between “{” and “}” can be given formally with four nested

conditionals, and the defined matrix terms R, M, and S, are given as follows:
R(A, k) := Nij(n —k,1,cond(i = 1,e(A, k,k + 7),0))
S(A, k) := Xij(n — k,1,cond(j = 1,e(A, k +1i,k),0)) (4.10)
M(A k) = Nij(n —k,n—k,e(A, k+i,k+ 7))
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In (2.12) we already defined R, S,M, but for the case where k = 1. The new definitions
in (4.10) extend R, S, M to all the values of k.

Example 4.2.5 Suppose that

aix Qa2 a3

A= A1 Q22 A23

az1 asz ass

Then:

R(A, 1) :== Xij(2,1,cond(i = 1,e(A, 1,1+ 4),0))

I
/~
S

fin
[N}
e
i
w
—

S(A, 1) i= Aij(2,1,cond(j = 1,e(A, 1 +7,1),0)) = < a1 )

M(A, 1) = Aij(2,2,e(A, 1+, 14 j)) = ( azs  as )

a3z Aa33

We define D(A) to be a n(n + 1) x n(n + 1) matrix where the (4, j)-th entry is given by:
cond(div(i,n+ 1) +1 =div(j,n+ 1),e(C(div(i,n + 1), A),rem(i,n), rem(j,n)),0)

We used the quotient function div and the reminder function rem to compute the entries
of D(A). Recall that D(A) consists of (n 4+ 1) x (n + 1) blocks, each block of size (n +
1) x (n+1), and that only the blocks above the blocks on the main diagonal are possibly
non-zero. This means that the (i, j)-th entry of D(A) is zero unless

i=n+1)*xqa+r  0<r<n+l

j=Mm+1)xg@p+ry 0<ry<n+1

and ¢; + 1 = ¢ (which ensures that we are in the ¢;-th block above the blocks on the

main diagonal), and in that block we are considering the (71, 75)-th entry.

4.2.4 Expressing adj and det in LAP

We can define the adjoint and the determinant in LAP. First we define t" for a general

field term t and a general index term n as follows:

t" == e(P(n, Nij(1,1,1)),1,1) (4.11)
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The idea is that ¢" is the (only) entry of the n-th power of the matrix (¢), i.e. (t)" = (t").
Now note that the (7, j)-th entry of adj(A) is (—1)™ times the dot product of:

n— € An_27i7 ]
Pl and ( . J) (4.12)
P1 e(-[TUi?j)

where the matrix on the left is just p4 (without the last entry, pg), so the adjoint is given
by:
adj(A) = (=1)""'\ij(n, n, e(pa - Mkl(n, 1, e(A" ™4, 7)), 4, )

and the determinant is simply given by:
det(A) == (~1)"e(pa,n +1,1)

where e(pa,n+1,1) is py, i.e. the constant coefficient of the char poly of the matrix A.

4.3 Berkowitz’s algorithm and clow sequences

Clow sequences provide a simple way of understanding the computations in Berkowitz’s
algorithm. It turns out (and this is an observation due to Valiant, see [Val92, Section 3])
that Berkowitz’s algorithm computes sums of restricted clow sequences. Clow sequences
are easy to define (they are just generalized permutations), and it is not difficult to see
how Berkowitz’s algorithm computes sums of clow sequences.

Besides giving us insight into Berkowitz’s algorithm, clow sequences are a potential
tool for proving the Cayley-Hamilton Theorem directly in LAP (thus far, we only have a
polytime proof of the C-H Theorem, given in Chapter 8). This is especially interesting in
light of a dynamic programming algorithm for computing clows, given in [MV97, Table 1].
If we could somehow prove the correctness of this algorithm in LAP, we could use it to
prove the C-H Theorem in LAP. So far this is only speculation, but the point is that
maybe a “clow sequences approach” to the determinant could prove the C-H Theorem
in NC?, rather than in polytime.

A substantial part of the material in the rest of this section comes from [MV97] where
the authors build upon a purely combinatorial interpretation of the Cayley-Hamilton
Theorem given in [Str83]. Unfortunately, the combinatorial proof of the C-H Theorem

given in [Str83] is infeasible.
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Recall the Lagrange expansion for the determinant:

det(A) = Z SIgN(0)a1o(1) * * * Gno(n)

O'ESn

The summation is over all permutations on n elements. The sign of a permutation o,

sign(o), is defined as follows:

Sign(g) = (_1)number of transpositions in o
To move to a combinatorial setting, we interpret o € S,, as a directed graph G, on n

vertices.

Example 4.3.1 The permutation given by:

1 23456
g =
31 2 46 5

corresponds to the directed graph G, given by Figure 4.2 below.

; @ 6

Figure 4.2: G,

Given a matrix A, define the weight of G,, w(G,), as the product of a;;’s such that
(1,7) € G,. Consider G, given by Figure 4.2: w(G,) = a13a32a91G44a560¢5. Thus, using
this new terminology:

det(A) = )~ sign(o)w(G,)

oESn
The Lagrange expression cannot be converted directly into an efficient algorithm for
the determinant, because the summation is over n! monomials.
Any efficient algorithm should implicitly count over all monomials; the bottleneck in
doing so directly is that permutations are not easily “factorizable” to allow for a simple
implementation. We will get around this problem by enlarging the summation from cycle

covers to clow sequences.
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Definition 4.3.1 A clow is a walk (wy,...,w;) starting from vertex w; and ending at
the same vertex, where any (w;,w;+1) is an edge in the graph. Vertex w; is the least-
numbered vertex in the clow, and it is called the head of the clow. We also require that
the head occur only once in the clow. This means that there is exactly one incoming
edge (wy,wy), and one outgoing edge (wy,ws) at wy, and w; # w; for i # 1. The length

of a clow (wy,...,wy) is .

Example 4.3.2 Consider the clow C given by (1,2,3,2,3) on four vertices. The head
of clow C'is vertex 1, and the length of C' is 6. See Figure 4.3.

Figure 4.3: Clow C'

Definition 4.3.2 A clow sequence is a sequence of clows (C1, .. ., Cy) with the following
two properties: (i) The sequence is ordered by the heads: head(C;) < ... < head(Cy).
(ii) The total number of edges, counted with multiplicity, adds to n; that is, the lengths

of the clows add up to n.

Note that a cycle cover is a special type of a clow sequence.

We will now show how to associate a sign with a clow sequence that is consistent
with the definition of the sign of a cycle cover. The sign of a cycle cover can be shown
to be (—1)"** where n is the number of vertices in the graph, and k is the number of
components in the cycle cover.

n+k

Definition 4.3.3 We define the sign of a clow sequence to be (—1)""" where n is the

number of vertices in the graph, and £ is the number of clows in the sequence.

Example 4.3.3 We list the clow sequences associated with the three vertices {1, 2, 3}.
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We give the sign of the corresponding clow sequences in the right-most column:

L (1),(2),3) (1) =1
2. (L,2),3) (=1 =-1
3. (1,2,2) (=1)F=1
4. (1,2),(2) (=1 =-1
5. (1),(2,3)  (=1)¥2=-1
6. (1,2,3) (=1 =1
7. (1,3,3) (=1l =1
8. (1,3),(3) (=172 =-1
9. (1,3,2)  (—=1)¥'=1
10. (1,3),(2) (=132 =—1
11. (2,3,3) (=131 =1
12, (2,3),(3) (=132 =—1

Notice that the number of permutations on 3 vertices is 3! = 6, and indeed, the clow
sequences {3,4,7,8,11,12} do not correspond to cycle covers. Notice that we listed these
clow sequences which do not correspond to cycle covers by pairs: {3,4},{7,8},{11,12}.
Consider the first pair: {3,4}. We will later define the weight of a clow (simply the
product of the labels of the edges), but notice that clow sequence 3 corresponds to
a12a20a91 and clow sequence 4 corresponds to ai2a91a92, Which is the same value; however,
they have opposite signs, so they cancel each other out. Same for pairs {7,8} and
{11,12}. We make this informal observation precise with the following definitions, and
in Theorem 4.3.1 we show that clow sequences which do not correspond to cycle covers

cancel out.

We will associate a weight with a clow sequence that is consistent with the contribu-

tion of a cycle cover.

Definition 4.3.4 The weight of a clow C, w(C), is the product of the weights of the

edges in the walk while accounting for multiplicity.

Example 4.3.4 Given a matrix A, the weight of clow C' in example 4.3.2 is given by:
w((1,2,3,2,3)) = apasazaz

Definition 4.3.5 The weight of a clow sequence C' = (C4,...,Cy) is:

=[]
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Theorem 4.3.1
det(A) = > sign(C)w(C)

C'is a clow sequence

Proof. The idea of the proof of Theorem 4.3.1 (see [MV97, pp. 5-8]) is that clow sequences

which are not cycle covers cancel out. U

In [Val92, Section 3] Valiant points out that Berkowitz’s algorithm computes sums of
certain clow sequences; it computes the sums of clow sequences whose first head is the
first vertex. Since the heads are ordered, if the first head is not the first vertex, then the
given clow sequence is not a cycle cover (i.e., not a permutation), and hence it cancels
out at the end, so sums of clow sequences with this restriction still compute correctly the
determinant, and other coefficients of the characteristic polynomial.

More precisely, let A be an n x n matrix, and let p,, p,,_1, ..., po be the coefficients of
the char poly of A as computed by Berkowitz’s algorithm. Then, p, is the sum of clow
sequences of length 0, p,_1 is the sum of clow sequences of length 1, and in general p,,_;
is the sum of clow sequences of length 7. In particular, pg is the determinant of A. Vertex
1 is the first head in the clow sequences computing each p,_; (¢ > 0), and vertex 2 is the
first head in the clow sequences computing each ¢g,—1)—; (j > 0), where the ¢,—1)—;’s are
the coefficients of the char polynomial of M = A[1|1], etc.

We illustrate these computations with an example where A is a 3 x 3 matrix.

Example 4.3.5 Suppose that A is a 3 x 3 matrix, M = A[1|1] as usual, and p3, pa, p1, Po
are the coefficients of the char poly of A and ¢, q1, qo are the coefficients of the char poly
or M, computed by Berkowitz’s algorithm. Thus:

P3 1 0 0 q2
a2
p2 | | —an 1 0 o |- —ang: + ¢
— L=
D1 —RS —apn 1 —RSq — ang + qo
Po —RMS —RS —ap o —RMSq, — RSq1 — anqo

(4.13)
The coefficients ¢, q1, qo are computed by clow sequences on M, that is, by clow sequences
on vertices {2,3}, where the head of the first clow is always 2. See Figure 4.4. Since ¢
is the sum of clows of length zero (and 1 by default), so is p;s. Now consider p,, which by
definition is supposed to be the sum of clow sequences of length one on all three vertices,
where the head of the first clow is vertex 1; see Figure 4.5. But this is the sum of clow

sequences of length one on vertices 2 and 3 (i.e., ¢1), plus the clow of length one on vertex
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Figure 4.4: Clows on A and M = A[1|1]

1, which is just aj;. All these clows have sign —1, hence the sum is —aj1¢2 + ¢; (again,

o =1).

Figure 4.5: Clows of length one on all three vertices

Consider py: since p; = p3_o, it follows that it is the sum of clow sequences of length
two. We are going to show now how the term —RSqy — a11¢1 + qo computes the sum of
all these clow sequences.

There is just one clow of length two on vertices 2 and 3, it corresponds to ¢o and it

is shown in Figure 4.6.

1@ 2

Figure 4.6: The single clow of length two on vertices 2 and 3

There are two clows of length two which include a self loop at vertex 1. These clows
correspond to the term —a;;¢q;. Note that the negative sign comes from the fact that
¢1 has a negative value, but the parity of these clows is even. Both clows are shown in
Figure 4.7.

Finally, we consider the clow sequences of length two, where there is no self loop at

vertex 1. Since vertex 1 must be included, there are only two possibilities, both shown
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10 2(}’ 3@
10 2@ 3(}’

Figure 4.7: Clows of length two with a self loop at vertex 1

on Figure 4.8. These clows correspond to the term —RSq, which is equal to:

a3y

a21
- ( Q12 Aa13 ) < ) = —a12G21 — A13a31

since qo = 1.

Figure 4.8: Clows of length two without a self loop at vertex 1

We do not show how to get pg, but hopefully at this point the idea is clear.
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Chapter 5
The Characteristic Polynomial

In Chapter 4 we showed that the char poly can be expressed as a term over Ly ap. In this
chapter we study the properties of the char poly that can be proven in LAP. In particular
we show that we LAP proves the Cayley-Hamilton Theorem, and the multiplicativity of
the determinant, for triangular matrices. It is an open question whether LAP can prove
these properties for general matrices!.

In Section 5.1 we prove some basic results in LAP that will be useful later. We
also prove (in LAP) properties of the char poly which do not depend on the matrices
being triangular. In Section 5.3 we show that hard matrix identities follow from the C-H
Theorem (in LAP).

The most important property of the characteristic polynomial (char poly) is stated
by the Cayley-Hamilton Theorem (C-H Theorem) which says the following: if p4 is the
char poly of A, then pa(A) = 0. That is, the C-H Theorem states that the characteristic
polynomial of A is an annihilating polynomial of A. In general, we say that p is an

annihilating polynomial of a square matrix A, if:
p(A) = pp A" + pp_ A" 4o+ pr A+ pol = 0 = the zero matrix
We can also state the C-H Theorem as:
Aadj(A) = adj(A)A = det(A)] (5.1)

given our definition of the adjoint (see (4.6) on page 51).

'In Chapter 6 we show that LAP also proves the equivalence of some of the fundamental principles of
Linear Algebra (for general matrices); see Table 6.1 on page 71. In Chapter 8 we show that the extension
VLAP of LAP can prove the C-H Theorem (for general matrices), and therefore the C-H Theorem has a
feasible proof, as VLAP can be interpreted in a standard poly-time theory.

62
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We define the correctness of Berkowitz’s algorithm to be the following property: given
a matrix A, the polynomial obtained from Berkowitz’s algorithm, p4, is an annihilating
polynomial of A. As a small clarification, note that for a matrix A, the output of
Berkowitz’s algorithm is a column vector, so when we say that “p4 is obtained from
Berkowitz’s algorithm”, we mean that the coefficients of p4 are given by the entries of
this column vector.

Thus, the correctness of Berkowitz’s algorithm is the mechanism for proving the C-H
Theorem; we define the polynomial computed by Berkowitz’s algorithm to be the char
poly, and hence, if we prove that it is an annihilating poly, then we also prove the C-H
Theorem.

Another crucial property of the char poly is the multiplicativity of the determinant,
(the determinant is defined from the constant coefficient of the char poly; see (4.7) on

page 51) given by the identity:
det(AB) = det(A) det(B) (5.2)

The provability of (5.1) and (5.2), and other properties, is the subject of the next chapters.
It turns out that while we can prove (5.1) and (5.2) for triangular matrices (see Section 5.2
of this chapter), we need to extend LAP to VLAP (which is LAP with induction on
formulas with universally quantified matrix variables) in order to prove (5.1) and (5.2)

for general matrices.

5.1 Basic properties
In this section we prove some basic results in LAP.

Lemma 5.1.1 LAP proves that a"a™ = a"t™ and A"A™ = A"t™,

Proof. Both claims can be proven by induction on n. The Basis Case is when n = 0,
so that n +m = m. Using (4.11) we have that a° := e(P(0, A\ij(1,1,a)),1,1), and by

A34, we have that P(0,Xij(1,1,a)) = Lyxija,1,e) = 1, so that a® = e([;,1,1) = 1, and

0+m

1-a™ =a" and a = a". For the Induction Step assume that the claim holds for n

and show that it holds for n + 1. Using A35, and the associativity of addition of index

elements, we can easily show that a®t)+™ = ¢"*™q, and ¢"t'a™ = a"aa™ = a"a™a,

which is ¢"*™a, by the induction hypothesis. Proving that A" A™ = A"*™ is similar. [
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Lemma 5.1.2 LAP proves that (—1)®v" POV = 1.

Proof. From (4.11) we know that (—1)?" := e(P(2n, Aij(1,1,(—1))),1,1). So, we are
going to prove by induction on n that e(P(2n, Aij(1,1,(—1))),1,1) = 1. The Basis
Case is n = 0, so using A34, we get P(0,Aij(1,1,(—1))) = Ljai,-1y) = 11, and
e(l1,1,1) = 1. For the Induction Step, suppose that n > 0. Using basic index
operations we have that 2n = 2(n — 1) + 2. Using the IH we have that (—1)2"~) =1,
and by basic arguments we have that (—1)? = 1. Now using Lemma 5.1.1, we have that
1= (12D (=1)2 = (=1)2*"D+2 = (—1)>" and we are done. O

Let pa denote (as usual) the char poly of A as computed by Berkowitz’s algorithm.
Let (pa); denote the i-th coefficient of the char poly p4.

Lemma 5.1.3 LAP proves that for any A, det(A) = a;; det(M) — Radj(M)S.

Proof. We use Definitions 4.2.4 and 4.2.5, that is the definitions of the adjoint and the

determinant given in terms of Berkowitz’s algorithm.
det(A) = (=1)"(pa)o
by definition of the determinant,

= (=1)"(=an(par)o — (—=1)"*Radj(M)S)

from Berkowitz’s algorithm, and the definition of the adjoint—this is how we compute

(pa)o from pyy,
= an(—l)”_l(pM)o — RadJ(M)S

even power _ |
-

by manipulating powers of (—1) and by Lemma 5.1.2, (—1)
= ayy det(M) — Radj(M)S

This argument can be clearly formalized in LAP. 0

Lemma 5.1.4 LAP proves that for any A, (pa), = 1, i.e., p4 is a monic polynomial of

degree n.
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Proof. This can be easily proven by induction on n; just note that the top entry of
the first column of any C; (recall that py = C1Cy---C,,) is 1, and the C;’s are lower
triangular. Thus, the top entry of C;C;,1 - - - C,, is always 1. More formally, suppose that
(par)n—1 = 1. By Berkowitz’s algorithm, (pa), = (par)n—1 and we are done. O

Lemma 5.1.5 LAP proves that for any A, (pa)n—1 = —tr(A) = =Y, a;.

Proof. This can also be proven easily by induction on n. So suppose that the claim

holds for M, that is, (pas)n—2 = —tr(M). From Berkowitz’s algorithm we can see that

(PA)n-1 = —a11 - (Pm)n—1 + 1 - (Par)n—2. By Lemma 5.1.4, (pa)n—1 = 1 and by the
induction hypothesis (pas)n—o = —tr(M), so (pa)n—1 = —a; — tr(M) = —tr(A). O

The matrix [;; is obtained from the identity matrix by interchanging the i-th and the
J-th rows. The effect of multiplying A on the left by I;; is that of interchanging the ¢-th
and the j-th rows of A. On the other hand, AI;; is A with the i-th and j-th columns

interchanged. We sometimes abbreviate I;;41) by /;. In Section 6.1 we show that:

Lij = Ligien Lavnere) - LG-0ilG-G-2) - L

that is: any permutation can be written as a product of transpositions; see proof of the

Corollary 6.1.1.

Lemma 5.1.6 LAP proves that, for ¢ # j, det(l;;) = —1.

Proof. We prove the lemma by induction on the size of I;;. Suppose first that 7,5 > 1.

( )

where I(;_1)j—1) is of size one less than I[;;. By Berkowitz’s algorithm we have that
det(I;;) = det(I(;_1y(j—1)), and by the Induction Hypothesis, det(/;_1)(j_1)) = —1, so we
are done in this case.

Otherwise, suppose that i = 1, j > 1. From Berkowitz’s algorithm we have that:
det([lj) =0- det([lj[l\l]) — ejadj(llj[lll])ej

and adj(/q;[1]1]) is a matrix of zeros, except for the (j, j)-th position where it has a 1.

To show this we argue by induction on the size of I1;[1|1] (it is not a difficult proof using
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the definition of the adjoint, and the fact that I;,;[1|1] is a “constant” matrix of 1s on the
diagonal, zeros everywhere else, except for a single zero in the (j, j) position). From this

we have that det(/;;) = —1 as required. O

Lemma 5.1.7 LAP proves that A and A! have the same char poly, i.e., pg = pa:.

Proof. The proof is by induction on the size of A. The Basis Case is trivial because
(a)® = (a). Suppose now that A is an n X n matrix, n > 1. By the ITH we know that
pyv = puet. Furthermore, if we consider the matrix ') in the definition of Berkowitz’s
algorithm, we see that the entries 1 and —aq; do not change under transposition of A, and
also, since S(M*)*R is a 1 x 1 matrix, it follows that S(M")*R = (S(M*)*)R)! = RM*S,

so in fact Cy is the same for A and A’. This gives us the result. O

5.2 Triangular matrices

For the proofs in this section we are going to abuse notation a little bit, and write p4(x)
for the characteristic poly of A, even though technically the char poly in LAP is a column
vector p4 containing the coefficients of the char poly of A. This will simplify our proofs.

Also note that in the Lemmas and Corollaries below, we always show that some
property can be proven in LAP. We do this by giving a high-level proof of this property,
where we only indicate what would the formal LAP proof consist of. It would be tedious
and unreadable to give complete LAP proofs in each case. LAP has been designed in
a way that permits us a certain degree of freedom when presenting proofs that can be
formalized in LAP.

Basically we assume that any proof that relies on matrix powering, and induction on

terms of type index, and uses basic matrix properties, can be formalized in LAP.
Lemma 5.2.1 LAP proves that if for all i, R; =0 or S; = 0, then p4a(A4) = 0.
Before we prove this Lemma, note that pa(A) denotes the matrix given by:
(Pa)n A" + (Pa)na A+ (a1 A+ (Pa)ole(a)

so in fact, pa(A) = 0 should really be stated as:

r(A) = c(A) = pa(A) = Or(a)e(a)
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where pa(A) is an abbreviation for the following constructed matrix:
Xij(r(A), c(A), e(pa - AkU(r(A), 1,e(P(r(A) =k, A),4, 7)), %, 5)

where p4 has been defined on page 52, definition (4.9).
Proof. The proof is by induction on the size of A. The Basis Case is trivial. For the

Induction Step assume that A is of the usual form:

A= a1 R
S M

Suppose that S = 0 (the case where R = 0 is analogous). Then, from Berkowitz’s

algorithm, we have that:
pa(z) = (r — an)pm(z)

s0 pa(A) = (A — a1 )pun(A), and:

_ pa(an) X
pu(A) = ( 0 par(M) )

where X is some 1 X (n — 1) matrix. Now, using the IH, py; (M) = 0. Thus:

(A anD)pa(A) < 8 M_Ra [ ) (pM(Oau) )0( ) _ 0

Thus, pa(A) = 0. O

Corollary 5.2.1 LAP proves the C-H Theorem for triangular matrices.

Proof. By Lemma 5.2.1, pa(A) = 0 if for all i R; =0 or S; = 0. If A is triangular, then
R; =0 for all i or S; = 0 for all 7. O

Lemma 5.2.2 LAP proves that if for all i, R; =0 or S; = 0, then det(A) =[], as.

Proof. First of all, we can express [[_, a; in LAP as follows:
e(n+1,n+ 1,P(n, Xij(n + 1,n + 1, cond(e(i, i, A), Ogela, J = 7 + 1))) (5.3)

(that is, as the (n + 1,n + 1) entry of the n-th power of the matrix with the a;;’s on the

diagonal above the main diagonal, and zeros elsewhere). Suppose now that A is such
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that for all 7, R; =0 or S; = 0. Then:

1 0O ... 0
—a1q 1 ... 0
pa=CCy---C,, where C; = (5.4)
1
0 Qg

Now, using induction on n, we can show that the bottom row of p,4 is equal to (5.3). The
Basis Case is n = 1, and it is easy since the bottom entry of A is just ai1, and (5.3)
is just aq; as well. For the Induction Step assume that this holds for n x n matrices,
so that the bottom row of CyC5---C), is equal to azass - - apmi1ymn+1)- Now multiply

CyC5 - - - C, by C' on the left to get the result. O

Corollary 5.2.2 LAP proves that the determinant of a triangular matrix is the product

of the elements on the diagonal.

Proof. By Lemma 5.2.2 the determinant is the product of the elements on the diagonal
if for all 7, R; = 0 or S; = 0. In the case of a triangular matrix one or the other always
holds. 0

Lemma 5.2.3 LAP proves that if A and B are both upper or lower-triangular, then
det(AB) = det(A) det(B).

Proof. Suppose that A, B are both upper triangular matrices (the case of lower triangular
matrices is analogous). Then AB is also an upper triangular matrix. To see this consider
the entry (i, 7) of AB where ¢ > j. This entry is given by > 7'_, a;xbg;. Since both A, B
are upper triangular, it follows that a;;by; = 0 if 4 > k or j < k which is always the case
as i < j. Thus the (i, j)-th entry of AB is zero when i < j, so AB is upper triangular.
By Corollary 5.2.2 the determinants of A, B and AB are the products of the elements on
the respective diagonals. It is easy to show that the (i,4) entry of AB is just a;b; (using
the same argument that we did to show that AB is upper triangular). The Lemma now
follows. 0
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5.3 Hard matrix identities

In this section we show that AB = I — BA = I, and hence all hard matrix identities,
follow (in LAP) from the Cayley-Hamilton Theorem. It is interesting to note that we
know nothing about the converse; that is, what role do hard matrix identities play in the
proof of the C-H Theorem? Our proof of the C-H Theorem, given in Chapter 8, does not

come anywhere near hard matrix identities.

Theorem 5.3.1 LAP proves that the Cayley-Hamilton Theorem implies hard matrix

identities.

Proof. Suppose that AB = I, and let p be the char poly of A. First note that it can
be proven (in LA in fact) that AB = I — A(BA — I) = 0. To see this note that
AB = I implies that (AB)A = IA = A, and by associativity A(BA) = (AB)A = A, so
A(BA)+ (-1)A=0,s0 A(BA+ ((—1)A)I =0, so A(BA) + A((—1)I) = 0. Now using
distributivity we obtain A(BA + (—1)I) = 0.

Thus, to show that BA = I, it is enough to show that A has some left inverse C
(which of course turns out to be B) and use the identity AB =1 — A(BA—1)=0 as
follows: C(A(BA — I)) = 0 implies (by associativity) that (CA)(BA —I) =0, and if C
is the left inverse of A, we obtain [(BA — I) =0, from which BA = [ follows.

We construct the left inverse of A using:

The Cayley-Hamilton Theorem: p(A) =0 (p = pa)
and the identity: 1 <i,AB=1 — A'B' =1

The identity follows in LAP by induction on ; just note that the Basis Case is the claim
AB = I, and the Induction Step can be proven as follows: A" B! = (A A)(BB?), and
now using associativity, this is equal to A"(AB)B" which is just A*B’, which is I by the
induction hypothesis.

We now concentrate on the characteristic polynomial of A, p. By the C-H Theorem
p(A) = 0. Let pp, pn_1, - - ., po be the coefficients of the characteristic polynomial, so that
p(A) = p A" + pp 1 A"+ - -+ pol = 0. Suppose that py is not zero. Then:

(P A"+ pp AV o DA = —pol

Dividing both sides by —py we obtain the left inverse of A as desired.
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Suppose now that pg = 0. Let ¢ be the largest index such that po=p; =...=p; =0
and p;+1 # 0. Note that such an i exists, and furthermore, i + 1 < n, since p, = 1 (as
was proven in LAP, by induction on n, in Lemma 5.1.4). Let ¢ be the polynomial with
coefficients p,, pn_1, - - ., Pit1, so that 0 = p(A) = q(A)A’. Since by the above A'B’ = I,
it follows that 0 = 0B* = q(A)A'B* = q(A)I = q(A). Since the constant coefficient of ¢

is p;11 # 0, we can repeat the above argument to conclude that A has a left inverse. [J

In Chapter 8 we give a feasible proof of the C-H Theorem, which, together with
Theorem 5.3.1 gives us a feasible proof of AB =1 — BA = I, and hence, by results in
Section 3.2, feasible proofs of hard matrix identities.

Note that the main thing that we need in the above proof is an annihilating poly-
nomial. The C-H Theorem states that the char poly is an annihilating polynomial, so
AB =1 — BA = [ follows from the C-H Theorem, but any annihilating polynomial
would do.

Since {I, A, A% ..., A”Q} is a linearly dependent set of matrices, for A an n X n matrix,
there are non-zero coefficients that constitute an annihilating polynomial of A; if we could
compute theses coefficients (without using Gaussian Elimination, but rather in NC?), and
show, in LAP, that they form an annihilating polynomial, we would have an LAP proofs

of hard matrix identities without the C-H Theorem; is that possible?



Chapter 6
Equivalences in LAP

In this Chapter we show that LAP proves the following implications:

C-H Theorem = Axiomatic dfn of det (Section 6.1)
Axiomatic dfn of det == Cofactor Expansion (Section 6.2)
Cofactor Expansion == C-H Theorem (Section 6.3)
Multiplicativity of det == C-H Theorem (Section 6.4)

Table 6.1: Flowchart for Chapter 6

In Section 6.4 we show that LAP also proves the multiplicativity of the determinant
from the C-H Theorem and the following identity:

det(A) =0 — AB # I (6.1)

Thus, LAP proves the equivalence of the C-H Theorem, the axiomatic definition of the
determinant, and the cofactor expansion. In Chapter 8 we will give a feasible proof of
identity (6.1) (but not an LAP proof), from which it follows that we can give a feasible
proof of the multiplicativity of the determinant from the C-H Theorem.

It is an open question whether identity (6.1) has an LAP proof, and whether we
can prove, in LAP, that the multiplicativity of the determinant follows from the C-H
Theorem. In fact, our proof of identity (6.1) (see Section 8.3.2) relies on the Gaussian

Elimination algorithm.

71
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6.1 The axiomatic definition of determinant

The axiomatic definition of the determinant states that for any matrix A, the following

three conditions hold:
e det is multilinear in the rows and columns of A
e det is alternating in the rows and columns of A
o if A=1, then det(A) =1

In this section we show that the axiomatic definition of the determinant follows from the
Cayley-Hamilton Theorem, and that this can be shown in LAP. The condition det(A) = 1
is easy, and multilinearity in the first row (and column) is easy as well. Thus the whole
proof hinges on a LAP proof of alternation from the C-H Theorem. Our final result,
Corollary 6.1.2, shows that alternation for a matrix A follows (in LAP) by applying the
C-H Theorem to minors of permutations of rows and columns of A.

Note that from this it follows that det (as defined in 4.2.5), is the true determinant.

Multilinearity in the first row and column follows immediately from the algorithm;
thus, we will have multilinearity for all rows and columns if we prove alternation. By
Corollary 5.2.2, det(I) = 1 as required. Thus, all we have to prove is alternation, which
is the difficult part of the proof.

It is in fact enough to prove alternation in the rows, as alternation in the columns
will follow from alternation in the rows by det(A) = det(A*)—Lemma 5.1.7.

The strategy for showing alternation in the rows is the following: we first show that
for any matrix A, A and I; Al; have the same char poly (Lemma 6.1.1). Recall that I;
is an abbreviation for I;5, which in turn is the matrix obtained from the identity matrix
by permuting the first two rows. In general, I;; is the identity matrix with rows ¢ and
J interchanged. Therefore [;;A is A with rows 7 and j interchanged, and Al;; is A with
columns ¢ and j interchanged. Finally, I; abbreviates I;(;11).

Once we prove that A and I; Al; have the same char poly, we can also show that
A and I;AI; have the same char poly (Lemma 6.1.2). From this we get that A and
I,;Al; have the same char poly (as any permutation is a product of transpositions; see
Corollary 6.1.1).

Also in Lemma 6.1.1 we show that det(A) = —det(/;A). From this it follows that

det(A) = — det([};A) for all 4, since we can bring the i-th row to the second position (via
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I5;Aly;), apply Lemma 6.1.1, and reorder things (by applying I5; Aly; once more). Since
I;; = I;1,;1;, this gives us alternation in the rows.

Note that we require the Cayley-Hamilton Theorem in the proof of every Lemma.
Also note that we prove that A and I;; AI;; have the same char poly, i.e. pr ar,; = pa, to

be able to reorder the matrix to prove alternation.

Lemma 6.1.1 Let A be an n x n matrix, and let M be the second principal submatrix
of A (i.e., My is A without the first two rows and the first two columns). Then, LAP
proves that py, (My) = 0 implies:

® pran) = pa (i.e., [;Al; and A have the same characteristic poly)
o det(A) = —det([1A)

Proof. The proof consists of Claims 6.1.1 and 6.1.2, given below. O

Since we want to study the effect of interchanging the first two rows and columns of

A, we let A be of the following form:

a b R
A= c d P
S Q M,

where M, is an (n—2) x (n—2) matrix, a, b, ¢, d are entries, and R, P, S*, Q" are 1 x (n—2)
matrices. We are going to consider Iy Al; and I;A. To this end we define ¢ A := [{AlL

and we define TA := [} A. In terms of entries of A, o and 7 are given as follows:

a,b,e,d > d,c,b,a a,b,e,d > e, d,a,b
R,S,P,Q+% P,Q,R,S R, P+ PR
M2 'i)MQ SvQ7M2 'stQ?MQ

To illustrate the main idea, we show that A and oA have the same char poly, in the
case where M, is a 1 X 1 matrix (so A is a 3 X 3 matrix). Let py = C1C2Cs.

From Berkowitz’s algorithm, C;C5 is given by:
1 0 0

—d

d P ¢ c e
a3 () 0 n(s) -
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which is:
1 0

—a—d 1
—bc — RS + ad — PQ) —a—d
—bPS — cRQ — RM5S5 + dRS + aPQ) —bc— RS + ad

(6.2)

It is easy to see that all the entries in (6.2), except for those in the last row, remain
invariant under o.

However, the same is not true for the two entries in the bottom row. If we permute
the first two rows and columns, the left entry of the bottom row is left with —PM5(@) in
place of —RM>S, and the right entry is left with —P(), in place of —RS; neither term
appears before the permutation.

The reason why —P M@ and —P(Q do not matter is because, when we multiply (6.2)
by C3 = (1 —M, ) (which is the char poly of the 1 x 1 matrix M,) these two terms
cancel each other out: —PM,Q + PQM, = 0.

In general, if A is any n X n matrix, then we can show that all the entries in C1C5 are
invariant under o, except for the entries in the last row. These entries will be left with
the following terms:

~PMy~*Q —PMy=3Q ... —PQ (6.3)

which did not appear before we applied o. However, as before, they do not matter,
because C3CY - - - C,, computes the char poly of Ms, so when we multiply all the matrices
out, the terms in (6.3) will simply disappear (by the Cayley-Hamilton Theorem).

To prove Lemma 6.1.1 we start by showing that all the entries in C;C5, except those

in the last row, are invariant under ¢. This is Claim 6.1.1.

Claim 6.1.1 Let A be an n x n matrix, for some n > 3. Then, LAP proves that all the

entries in C'1Csy, except for those in the last row, remain invariant under o.

Proof. Note that (C1Cy)[n + 1|—] is a lower-triangular Toeplitz matrix. We consider the
first column of (C;Cy)[n + 1|]—|. The top three entries of the first column are:

1
—a—d

—(b R)(;)Jrad—PQ:—bc—RSJrad—PQ

By inspection, they are all invariant under o.



CHAPTER 6. EQUIVALENCES IN LAP 75

The (k + 1)-st entry in the first column, for & > 3, is given by taking the dot-product

of the following two vectors:

—PMy™*Q
_<b3)<;) ~PMEQ

Gl )@ | e |

—d

ea(an) (5) L

We are going to prove that this dot-product is invariant under o, by induction on k. The

Basis Case is k = 3, where the dot product is given by:

_<b R)(Zl?]\];)(;)jwi(b R><;>+aPQ—PM2Q (6.5)

and the invariance under ¢ again follows by inspection.
For the Induction Step, consider the (k + 1)-st entry (k > 3) of the first column of
(0102)[71 + 1|—]I

X
( b R ) ( ;”i Z ) ( ; ) +aPME3Q — PME2Q (6.6)

where w, X, Y, Z are given as follows:

<wx> <d p)“ <d p)
= — +d
Y 7 Q M, Q M,

Assume that (6.6) is invariant under o (this is our Induction Hypothesis). The (k+2)-nd
entry (k > 3) of the first column of (C1C3)[n + 1|—] is given by:

d P w X k—3 ¢ k-2, k—1
<b R)((Q M2><Y Z)+(PM2 Q)I><S>+aPM2 Q — PME1Q

(6.8)

We must show that (6.8) is invariant under o using the Induction Hypothesis. To see

k—3

i . i r\
PME—4— 6.7
+; ) Q( 0 M) (6.7)

2

this, first note that the expression:

d P w X - (PMEO)
O M, )\Y Zz ?
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in (6.8) is just (6.7) where instead of k — 2,k — 3,k — 4 we have k — 1,k — 2,k — 3. Since
in (6.8) we have aPMy—2Q — PMy'Q (as opposed to aPMy—2Q — PM}y~2Q in (6.6)) it
follows that the symmetry under o is preserved. This is an elementary argument, using

powers of matrices and induction on indices, and hence it can be formalized in LAP. [

Claim 6.1.2 Let A be an n X n matrix, for some n > 3. Then, LAP proves that
P (Ms) = 0 implies that the entry in the bottom row of C;CyCj - - - C), remain invariant

under o and changes sign under 7.

Proof. The bottom row of C1C5 is given by the dot product of the two vectors in (6.4)
without their top rows. Thus, in the bottom row of C,Cs, we are missing —PMy—2Q’s
in the summations.
If we add these missing terms accross the bottom row (starting with the left-most),
that is, if we add:
—~PM372Q, —PMy—3Q, ..., —PMyQ, —PQ (6.9)

to the entries in the bottom row, respectively, we can conclude, by the previous claim,
that the result is invariant under o.

We have that py, (M) = 0, so —Ppy, (M3)Q = 0, and since pyy, = C5Cy ... Cy, it
follows that if we multiply the bottom row of C;Cy, where the terms listed in (6.9) have
been added, by pas, = C3Cy - - - C),, these terms will disappear.

Hence, to prove the invariance under o of the bottom entry of C;C5---C,,, we first
add the extra terms in (6.9) to the bottom row of C;Csy, use the previous claim to
conclude the invariance of the resulting bottom row of C;Cy under ¢ (which does not
affect C3Cy - - C,,), and then show that the extra terms disappear by pys, (Ms) = 0 (that
is, by the Cayley-Hamilton Theorem applied to My).

The fact that the bottom row of C1C5C5 - - - (), changes sign under 7 is also a small

variation of the argument given here and given in the proof of Claim 6.1.1. U

Lemma 6.1.2 Let A be an nxn matrix. Then LAP proves that pyy,, , (M;11) = 0 implies
Pu;AL) = PA-
Proof. See Figure 6.1, and note that if ¢ > n — 1 then M, is not defined, but this is not

a problem, since we do not need the C-H Theorem to prove p;, a1, , = pa.

The case © = 1 is Lemma 6.1.1, so we can assume that 1 <7 <n — 1.



CHAPTER 6. EQUIVALENCES IN LAP 77

Using the fact that I? = I, we have:
RM’S = R(LL) M’ (LI)S = (RL) (LMY L) (1;S) = (RL)(I; M) (1,5) (6.10)

Here we use induction on j in the last step. The Basis Case is j =1, so [MI; = I;MI;
just by equality axioms. For the Induction Step, note that:

and by the induction hypothesis, I; M7I; = (I; M I;)?, so we are done.
From Berkowitz’s algorithm we know that the char poly of A is given by the following

product of matrices:
C\Cy---Cis G-+ C,

Let C1CY - - - C], be the char poly of I, AI;. As an aside, note that we defined Berkowitz’s
algorithm as a term over Ly, ap in Section 4.2.3. There, we padded the matrices C, ..., C,
with zeros to make them all of equal size, and we put them in one big matrix C. Then,
by computing the n-th power of C, we obtain the iterated matrix product C;Cy---C),.
Here, whenever we talk of iterated matrix products, we have this construction in mind.

Using Lemma 6.1.1 and pyy,,, (M) = 0, we know that if we interchange the first

two rows and the first two columns of M;_; (which are contained in the i-th and (i+1)-st

rows and columns of A), the char poly of M;_; remains invariant. This gives us:
CiCipr---C, =CiC,---C), (6.11)

Now we are going to prove that for 1 < k£ < i — 1, Cy = C}. To see this, consider
the first column of C), (it is enough to consider the first column as these are Toeplitz

matrices). We are going to examine all the entries in this columns:

e The first entry is 1, which is a constant.

e The second entry is ag, just as in C}, since k <1 — 1.
° RkM,sz is replaced by (Rgliy1-%)(Liz1—1Miliv1-1)? (Iix1-£Sk), but by (6.10) these
two are equal. (Note that 0 < j <n—Fk —1).

Thus, Cy, = C}, for 1 <k <i—1and so C1Cy---C;_y = C1C4---C/_;. Combining this
with (6.11) gives us:
CCy---C,=C1C---C

and so A and [;AI; have the same char polynomial, i.e., p(;,ar,) = pa. O
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e
A Miq
© TOW 1
C \ .
orow 1+1
M i+1
. column i
“--- column i+1

Figure 6.1: Matrix A: pa,,,(M;11) = 0 = pr,an) = pa

Corollary 6.1.1 Let A be an n x n matrix, and let 1 <i < 7 < n. LAP proves, using
the C-H Theorem on (n — 1) x (n — 1) matrices, that pr, as,;, = pa.

Proof. First of all, to prove this Corollary to Lemma 6.1.2, we are going to list explicitly
the matrices for which we require the C-H Theorem: we need the following principal
submatrices of A: {M1,..., M;} as well as the matrices {M;_,,..., M} which are
obtained from the corresponding principal submatrices, by replacing, in A, the j-th row

by the i-th row, and the j-th column by the i¢-th column. The details are given in

Figure 6.2.
My My
""" Mio M,
""" Mio M,
. M, o M
J f J

“i-th col in j-th position

R i-th row in j-th position

Figure 6.2: {M;41,...,M;} and {Mj’-fl, oMY
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To see why we require the C-H Theorem on precisely the matrices listed above,
we illustrate how we derive pj,,ar,) = pa (see Figure 6.3). Using pag,(Mz) = 0 and
Lemma 6.1.2 we interchange the first two rows (and the first two columns, but for clarity,
we do not show the columns). Then, using paz, (M3) = 0 and Lemma 6.1.2, we interchange
rows two and three, so at this point, the original row one is in position. We still need
to take the original row three from position two to position one. This requires the use
of pagy(M;) = 0 and Lemma 6.1.2. The prime comes from the fact that what used to be
row three, has now been replaced by row one. So using pMé(Mé) = 0, we exchange row
two and one, and everything is in position.

Now the same argument, but in the general case, relies on the fact that:

Lij = Lty I av2) - Ig-0ilG-1G-2) - L1y (6.12)

i.e., any permutation can be written as a product of transpositions. Using Lemma 6.1.2
at each step, we are done. Equation (6.12) can be proven in LAP as follows: first note
that I;; = 11,1111, so it is enough to prove that Iy; is equal to a product of transpositions,
for any .

We use induction on i. The Basis Case is ¢ = 2, and [;5 is a transposition, so there
is nothing to prove. Now the Induction Step. Assume the claim holds for Iy;, and show

that it holds for I(;41). This follows from the fact that 111y = Iiili1) L1 ]

Figure 6.3: Example of p(,,41,5) = pa
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Corollary 6.1.2 LAP proves, using the C-H Theorem, that det is alternating in the
rows, i.e., det(A) = —det(I;;A).

Proof. Since I;; = I1;11;11;, it is enough to prove this for [;;. If j = 2 we are done by
Lemma 6.1.1. If j > 2, then use I; to bring the j-th row to the second position, and
by Corollary 6.1.1, A and I;Aly; have the same char polynomials. Now apply 1, with

Lemma 6.1.1, and use I5; once again to put things back in order. 0

Example 6.1.1 Suppose that we want to show that det(A) = —det(l;5A). Consider:
(1) (2) (3) _
A — Iy Alss — L19lo5Alos — Io5119195Alo5105 = I15A

By Corollary 6.1.1, (1) preserves the char poly, and hence it preserves the determinant.
By Lemma 6.1.1, (2) changes the sign of the determinant. By Corollary 6.1.1 again, (3)
preserves the determinant. Therefore, det(A) = — det([15A).

6.2 The cofactor expansion

Let A be an n x n matrix. The cofactor expansion formula for A states the following:
for 1 <i<mn, det(A) =Y (—1)"ay; det(A[ilj]) (6.13)
j=1
where Ali|j] denotes the matrix obtained from A by removing the i-th row and the j-th
column. For each i, the RHS of the equation is called the cofactor expansion of A along
the i-th row, and (6.13) states that we obtain det(A) expanding along any row of A.
Note that from (6.13), it follows by Lemma 5.1.7 that we also have the cofactor

expansion along columns.

Lemma 6.2.1 LAP proves that the cofactor expansion formula (6.13) follows from the

axiomatic definition of the determinant.

Proof. We first show that the cofactor expansion of A along the first row is equal to
det(A). Define A;, for 1 < j < n, to be A, with the first row replaced by zeros, except
for the (1, 7)-th entry which remains unchanged. Then, using multilinearity along the

first row of A, we obtain:

det(A) = det(Ay) + det(Ay) + - - - + det(A,) (6.14)
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Consider Aj, for j > 1. If we interchange the first column and the j-th column, and then,
with (j — 2) transpositions we bring the first column (which is now in the j-th position)

to the second position, we obtain, by alternation and Lemma 5.1.3, the following:
det(A;) = (=1)"tay; det(A[1]5]) = (=1)"ay; det(A[1]5])

From this, and from equation (6.14), we obtain the cofactor expansion along the first
row, that is, we obtain (6.13) for i = 1.

If we want to carry out the cofactor expansion along the i-th row (where i > 1), we
interchange the first and the i-th row, and then we bring the first row (which is now in
the i-th position) to the second row with (i — 2) transposition. Denote this new matrix
A’, and note that det(A’) = (—1)""!det(A). Now, expanding along the first row of A’,
we obtain (6.13) for i > 1. O

6.3 The adjoint as a matrix of cofactors

In this section we show that LAP proves the Cayley-Hamilton Theorem from the cofactor
expansion formula (i.e., from (6.13)). To this end, we first show that (6.13) implies the

axiomatic definition of determinant:

Lemma 6.3.1 LAP proves the axiomatic definition of the determinant from the cofactor

expansion formula.

Proof. We want to show that we can get multilinearity, alternation and det(I) = 1
from (6.13). To show multilinearity along row (column) i, we just expand along row
(column) i. To show det(I) = 1 use induction on the size of I; in fact, showing that
det(I) =1 can be done in LAP without any assumptions—see Corollary 5.2.2.

Alternation follows from multilinearity and from:
If two rows (columns) of A are equal — det(A) =0

To see that alternation follows from these two things:

R+ R; R; R; R, R,
0 = det = det + det + det + det
R; + R; R; R; R; R;
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using multilinearity on rows R; and R;; note that the first and last expressions on the
RHS are zero, since two rows are equal. So suppose that rows ¢ and j of A are identical.

To show that det(A) = 0, we expand along row ¢ first to obtain:

n

det(A) =Y (1) ay det(A[ilk])

k=1
and then we expand each minor A[i|k] along the row that corresponds to the j-th row of
A. Note that we end up with n(n — 1) terms; polynomially many in the size of A. Since
row ¢ is identical to the row j, we can pair each term with its negation; hence the result
is zero, so det(A) = 0. O

The following lemma shows that LAP proves, from the axiomatic definition of det,
that our definition of the adjoint is equivalent to the usual definition of the adjoint as

the transpose of the matrix of cofactors.

Lemma 6.3.2 LAP proves that adj(A) = ((—1)"* det(A[j|i])):;, 1.e. that adj(A) is the

transpose of the matrix of cofactors of A, from the axiomatic definition of det.

Proof. Consider the following matrix:

0 e
O pu—
€; A

where e; is a column vector with zeros everywhere except in the i-th position where it
has a 1, and e; is a row vector with a 1 in the j-th position. By Lemma 5.1.3, we have
that:

det(C) = —efadj(A)e; = (i, j)-th entry of —adj(A)

On the other hand, from alternation on C, we have that det(C) = (—1)"*! det(A[j]]).
To see this, note that we need (j + 1) transpositions to bring the j-th row of A to the

first row in the matrix C, to obtain the following matrix:

Ty
C'=10 ¢
0 Afjl-]

where A; denotes the j-th row of A, and A[j|—] denotes A with the j-th row deleted.
Then, by Lemma 5.1.3, we have:

det(C") = de e
" t(fl[j\—])
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et
and now with ¢ transpositions, we bring the ¢-th column of ( A ; | to the first
j —

1 0
column, to obtain: < -

0 Aljld]
proof of the Lemma. 0

). Therefore, det(C") = (—1)"det(A[j]4]) finishing the

Since by Lemma 6.3.1 the axiomatic definition of det follows from the cofactor ex-

pansion formula, we have the following Corollary to Lemma 6.3.2:

Corollary 6.3.1 LAP proves that adj(4) = ((—1)"*7 det(A[j]i]));; from the cofactor

expansion formula.

Note that pa(A) = 0 can also be stated as Aadj(A) = det(A)I, using our definitions
of the adjoint and the determinant (see page 51). Thus, the following Lemma shows that

LAP proves the C-H Theorem from the cofactor expansion formula.

Lemma 6.3.3 LAP proves Aadj(A) = adj(A)A = det(A)I from the cofactor expansion

formula.

Proof. We show first that Aadj(A) = det(A)I. The (i,7)-th entry of Aadj(A) is by
Corollary 6.3.1 equal to:

ain (=17 det(A[[1]) + -+ + ain(=1)"*" det(A[j]n]) (6.15)

If i = j, this is the cofactor expansion along the i-th row. Suppose now that i # j. Let
A’ be the matrix A with the j-th row replaced by the i-th row. Then, by alternation
(which we have by Lemma 6.3.1), det(A’) = 0. Now, (6.15) is the cofactor expansion of
A’ along the j-th row, and therefore, it is 0. This proves that Aadj(A) = det(A)I, and
by definition of the adjoint, adj(A)A = Aadj(A), so we are done. O

6.4 The multiplicativity of the determinant

The multiplicativity of the determinant is the property: det(AB) = det(A) det(B). This
turns out to be a very strong property, from which all other properties (including the

Cayley-Hamilton Theorem) follow readily in LAP.

Lemma 6.4.1 LAP proves that the multiplicativity of the determinant implies the C-H

Theorem.
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Proof. From the multiplicativity of the determinant we have that (by Lemma 5.1.6)
det(I19Al5) = det(l;) det(A) det(l;) = det(A) for any matrix A. Suppose we want to

prove the C-H Theorem for some n x n matrix M. Define A as follows:

a b R 0 0 €
A=\ ¢ d P = 0 0 O
S Q M € 0 M

Let C1C5C5 -+ - Cp 12 be the char poly of A (and Cj - - - C,,12 the char poly of M). From
Berkowitz’s algorithm it is easy to see that for A defined this way the bottom row of
C1C5 is given by:

etMme; etM"le; ... elle; 0
so the bottom row of C1CyC5 - - - 40 is simply efp(M)e; where p is the char poly of M.

On the other hand, using det(A) = det(I12Al12) and Berkowitz’s algorithm, we have
that:

0 0 O
det(A) =det | 0 0 e | =0
0 €j M
so that elp(M)e; = 0, and since we can choose any i, j, we have that p(M) = 0. O

What about the other direction? That is, can we prove the following implication in
LAP: C-H Theorem = Multiplicativity of the determinant? The answer is “yes”, if

LAP can prove the following determinant identity:
det(A) =0— AB # 1 (6.16)

That is, LAP can prove the multiplicativity of the determinant from the C-H Theorem
and (6.16). We suspect, however, that LAP can prove (6.16) from the C-H Theorem, so
that the C-H Theorem is enough to prove multiplicativity. At this point, we do not have
a LAP proof of (6.16)! from the C-H Theorem.

Lemma 6.4.2 LAP can prove the multiplicativity of the determinant from the C-H
Theorem and the property given by (6.16).

"However we have a feasible proof of (6.16) based on Gaussian Elimination—see Section 8.3.2. There-
fore, since we have a LAP proof of multiplicativity of det from the C-H Theorem and from (6.16)—see
Lemma 6.4.2, it follows that we have a feasible proof of multiplicativity of det from the C-H Theorem,;
Open Problem 9.4: is there a direct LAP proof of multiplicativity of det from the C-H Theorem?
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Proof. We prove the Lemma by induction on the size of the matrices; so assume that
A, B are square n X n matrices. Since we assume the Cayley-Hamilton Theorem, by the
results in the previous sections we also have at our disposal the cofactor expansion and
the axiomatic definition of the determinant.

Suppose first that the determinants of all the minors of A (or B) are zero. Then, using
the cofactor expansion we obtain det(A) = 0. We now want to show that det(AB) = 0
as well.

Suppose that det(AB) # 0. Then, by the C-H Theorem, AB has an inverse C, i.e.,
(AB)C = I. But then A(BC) = I, so A is invertible, contrary to (6.16). Therefore,
det(AB) = 0, so that in this case det(A) det(B) = det(AB).

Suppose now that both A and B have a minor whose determinant is not zero. We
can assume that it is the principal submatrix whose determinant is not zero (as A and
I,;AlL; have the same determinant, so we can bring any non-singular minor to be the

principal subminor). So assume that M4, Mp are non-singular, where:

A= a RA B— b RB
SA MA SB MB

By the Induction Hypothesis we know that det(M Mp) = det(M,) det(Mp). Also note

that:
AB — ab+ RASg aRp + RaMp
bSa+ MySp SsRp + MyMpg

Now using Berkowitz’s algorithm:
det(A) det(B) = (adet(Ma) — Raadj(Ma)Sa)(bdet(Mp) — Rgadj(Mp)Sg)  (6.17)
We want to show that det(AB) is equal to (6.17). Again, using Berkowitz’s algorithm:

det(AB) = (ab + RASB) det(SARB + MAMB)

(6.18)
— (&RB + RAMB)adj(SARB -+ MAMB)(bSA + MASB)
We now show that the right hand sides of (6.17) and (6.18) are equal.
By Lemma 6.4.3:
det(SARB + MAMB) == det(MAMB) + RBadj(MAMB)SA (619)

Using the TH, det(MsMp) = det(Ma)det(Mp), and using Lemma 6.3.3 and the fact
that det(Ma) # 0 and det(Mp) # 0 we obtain: adj(MaMp) = adj(Mp)adj(M,). To
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see this note that by the C-H Theorem (M Mpg)adj(MsMp) = det(MsMp)I. We now
multiply both sides of this equation by adj(M,) to obtain, by the C-H Theorem again,
det(Ma)Mpadj(MaMp) = det(MaMpg)adj(M4). Now multiply both sides by adj(Mpg)
to obtain:

det(Ma) det(Mp)adj(MaMp) = det(MaMp)adj(Mp)adj(Ma)

Since det(MaMp) = det(M4) det(Mp), and det(M,) det(Mp) # 0, we obtain our result.
Therefore, from (6.19) we obtain:

det(SARB + MAMB) = det(MA) det(MB) + RBadJ(MB)adJ(MA)SA (619/)
Using Lemma 6.4.4 and adj(MsMg) = adj(Mp)adj(M,), we obtain:

RBadj(SARB + MAMB) = RBadJ(MB)adJ(MA)
adj(SaRp + MsMp)Ss = adj(Mp)adj(M4)Sa

(6.20)

Finally, we have to prove the following identity:
RAMBadj(SARB—f-MAMB)MASB =
RASB det(MA) det(MB) —RBadj(MB)SBRAadj(MA)SA (621)
+ (RASB)RBadJ(MB)adJ(MA)SA

First of all, by Lemma 6.3.3 we have:
(SaRp + MaMp)adj(SaRp + MsMp) = det(SaRp + MsMpg)
Using Lemmas 6.4.3 and 6.4.4, we get:
SaRpadj(MaMp) + MaMpadj(SaRp + MsMp) = (det(MsMp) + Rpadj(MaMp)Sa)l

We have already shown above that adj(MsMp) = adj(Mp)adj(M,) using our Induction
Hypothesis: det(MaMp) = det(M4) det(Mp). So, if we multiply both sides of the above
equation by adj(M,) on the left, and by M4 on the right, we obtain:
adJ(MA)SARBadJ(MB) det(MA) + det(MA)MBadj(SARB + MAMB)MA =

det(My4)(det(M,) det(Mp) + Rpadj(Mp)adj(Ma)Sa)l
Since by assumption det(M,) # 0, we can divide both sides of the equation by det(My)
to obtain:

adj(MA)SARBadj(MB) + MBadj(SARB + MAMB)MA =
(det(Ma) det(Mp) + Rpadj(Mp)adj(Ma)Sa)l
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If we now multiply both sides of the above equation, by R4 on the left, and by Sp on
the right, we obtain (6.21) as desired.

We now substitute (6.19), (6.20), and (6.21) into (6.18), and we obtain that the right
hand side of (6.18) is equal to the right hand side of (6.17), and we are done. O

Lemma 6.4.3 LAP proves, from the axiomatic definition of det, that:
det(SR+ M) = det(M) + Radj(M)S (6.22)

Proof. Consider the matrix:

Using Berkowitz’s algorithm (the definition of det given in 4.8), it follows that:
det(C) = det(M) + Radj(M)S

We can add multiples of the first row of C' to the remaining rows of C', to clear out S,

and obtain:
1 —R

C'=
0| SR+M

Using the axiomatic definition of det, we can conclude that det(C’) = det(C), and
using (4.8) on C” we obtain:

det(C") = det(SR + M)

and hence the Lemma follows. O

Lemma 6.4.4 LAP proves, from the Cayley-Hamilton Theorem, that:

Radj(SR + M) = Radj(M)
adj(SR+ M)S = adj(M)S
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Proof. By Lemma 6.3.2 we know that adj(A) is the transpose of the matrix of cofactors

of A. From this we can deduce the following identity:

det(M) — Radj(M) ) (6.23)

adj(4) = ( —adj(M)S (1 +an)adj(M) —adj(SR+ M)

To see this we are going to consider the four standard submatrices. First of all, the (1, 1)
entry of adj(A) is the determinant of the principal minor of A times (—1)'! i.e. det(M).
The remaining entries along the first row are given by (—1)** det(A[i|1]), for 2 < i < n.
Note that for 2 < i < n, A[i|l] is given by:

R
6.24
(i) =

where M|[i|—] denotes M without the i-th row. To compute the determinant of the
matrix given by (6.24) expand along the first row to obtain: Z;:ll ri(—1)"* det(MTil7]).
This gives us —Radj(M) as desired. In the same way we can show that the entries in the
first column below (1, 1) are given by —adj(M)S.

We now show that the principal submatrix is given by (1+a1;)adj(M)—adj(SR+ M).
To see this first note that (SR+ M)[i|j] = S[i]R[j] + M][i|j], where S[i], R[j] denote S, R
without the ¢-th row and j-th column, respectively. Now using Lemma 6.4.3 we have
that det((SR + M)[i|j]) = det(M[i|j]) + R[jladj(M][i|7])S[i]. The (i + 1,7+ 1) entry of
adj(A), 1 <i,j < mn, is given by:

(=1)"™ (ax det(M[il]) — Rljladj(Mlilj])S[i])

as can be seen from Figure 6.4.

Therefore, the (i + 1,5 + 1) entry of adj(A)’ is given by:
(=1)"(an det(M[ilj]) + det(M[i]5]) — det((SR + M)[i|]))

and we are done.

By Lemma 6.3.3 we know that:

<a11 R > ( det(M) —Radj(M)

) = det(A)I
S M —adj(M)S (1 +ay)adj(M) — adj(SR + M)

In particular this means that:

—ay Radj(M) + R(1 + ay1)adj(M) — Radj(SR + M) =0
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SRR column j+1

© row i+1

Figure 6.4: Showing that adj(A)[1|]1] = (1 + a11)adj(M) — adj(SR + M)

and from this it follows that Radj(SR + M) = Radj(M). Similarly, we can prove the
second identity. O

Corollary 6.4.1 LAP proves, from the C-H Theorem, the anti-multiplicativity of the

adjoint for non-singular matrices, i.e.,
det(A) # 0,det(B) # 0 — adj(AB) = adj(B)adj(A)
Proof. The proof is given in the proof of Lemma 6.4.2. U

As a closing remark, note that our proof of multiplicativity of the determinant from
the Cayley-Hamilton Theorem is quite long and complicated. Of course, conceptually the
simplest proof is based on the cofactor expansion, but then we must prove the induction
hypothesis for too many matrices, ren