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Abstract

We show that short bounded-depth Frege proofs of matrix identities,
such as PQ = I ⊃ QP = I (over the field of two elements), imply short
bounded-depth Frege proofs of the pigeonhole principle. Since the lat-
ter principle is known to require exponential-size bounded-depth Frege
proofs, it follows that the propositional version of the matrix principle
also requires bounded-depth Frege proofs of exponential size.

1 Introduction

Elementary principles of linear algebra can be formulated as tautologies in
propositional logic. This paper is concerned with assessing the complexity of
proofs required for these tautologies in various proof systems. We are partic-
ularly interested in the principle that a one-sided inverse of a square matrix
is also a two-sided inverse, that is to say, PQ = I ⊃ QP = I. We refer to
this implication as “the inversion principle,” or IP; we use IPn to refer to the
inversion principle restricted to n× n matrices.

Stephen A. Cook has suggested this principle as a tautology that may be hard
to prove in conventional systems of propositional logic. Specifically, he has asked
whether this principle has polynomial-size proofs in Frege systems (conventional
textbook-style proof systems that use schematic axioms and rules). If in fact the
principle requires super-polynomial size proofs in Frege systems then this would
provide a separation result between such systems and extended Frege systems,
that add to Frege systems the possibility of abbreviating complex formulas by
single variables. This is because short proofs of the inversion principle exist if
we allow the possibility of abbreviative definitions, and formalize the Gaussian
Elimination algorithm ([8]), or the Cayley-Hamilton theorem ([4] and [7]). On
the other hand, without such definitions, the usual proof apparently leads to
formulas of exponential size.
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In the first part of the paper, we show that the principle IPn requires proofs of
exponential size in a Frege system where the formulas are restricted to those of a
fixed depth. The method of proof is to show that when written in an appropriate
way as a formula of fixed depth (allowing unbounded fan-in conjunctions and
disjunctions), the assumption IPn, over the field of two elements, leads to a
short proof of a form of the pigeonhole principle. Since this latter tautology
requires exponentially large proofs in a bounded-depth Frege system, so does
the inversion principle.

The short proof of the pigeonhole principle obviously carries over to the
Frege system where we enlarge our class of bounded-depth formulas to in-
clude unbounded fan-in ⊕ (XOR) gates. It is conjectured in this case also that
the pigeonhole principle, appropriately formulated, requires exponentially large
proofs. If this conjecture is correct, then this implies that the inversion principle
is unprovable in a proof system for elementary linear algebra formulated by the
first author in his doctoral dissertation [7]. This proof system, called LA, is a
quantifier-free logical theory that is strong enough to prove all the ring proper-
ties of matrices, but weak enough so that all its theorems (over the field of two
elements) translate into families of tautologies with short bounded depth Frege
proofs with ⊕. A weaker (but still interesting) result than that IPn separates
Frege and Extended Frege would be whether IPn is independent of the theory
LA. We present briefly the theory LA in section 3.

It is also unknown whether IPn has quasi-polynomial size Frege proofs. Since
we can compute inverses in the class NC2 using Berkowitz’s algorithm, it would
seem natural to be able to conclude that NC2-Frege can prove IPn. However,
we do not know how to prove the correctness of Berkowitz’s algorithm in NC2-
Frege, and hence we do not know how to prove IPn in NC2 (i.e., with quasi-
polynomial size Frege proofs). We have feasible proofs of the correctness of
Berkowitz’s algorithm, but this only gives polysize Extended Frege proofs of
IPn (see [4]).

The excellent recent text of Clote and Kranakis [3] covers the basic back-
ground on proof systems assumed in the paper.

2 A lower bound for the inversion principle

In this section, we prove an exponential lower bound for bounded-depth Frege
proofs of the inversion principle over the two-element field.

The idea for the proof is the following: suppose that we can prove IPn in
polysize bounded-depth Frege. Then we could also prove PHPn in polysize
bounded-depth Frege, where PHPn is formulated as follows: an injective map-
ping from a set with n elements to a set with n elements is necessarily surjective.
To see this, assume that we have an injective mapping P : [n] −→ [n], and let Pn
be the n× n matrix where the (i, j) entry is 1 if P (i) = j, and zero otherwise.
Then, since P is injective, and hence each column of Pn has at most one 1,
PnP

t
n = In (P tn is the transpose of Pn). Using IPn we conclude that P tnPn = In

as well, so each column of Pn has at least one 1, and so P is surjective. In the
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rest of this section, we show how to formalize this argument with short bounded
depth Frege proofs.

There is an immediate difficulty in that the most obvious formalization of
the inversion principle results in formulas of unbounded depth. Let P,Q be n×n
square {0, 1}matrices; then the matrix equation PQ = I can be expressed by the
family of n2 Boolean equivalences:

∑n
k=1 PikQkj ≡ δij , where the summation

is over the two-element field, and δij is 1 if i = j, and 0 otherwise. However,
if we expand the sum x1 ⊕ · · · ⊕ xn in the obvious way, using the equivalence
(x ⊕ y) ≡ ¬(x ∨ y) ∨ ¬(¬x ∨ ¬y), then the result is a formula of unbounded
depth. We can surmount this difficulty by introducing auxiliary variables (also
called “extension variables”).

For each i, j, we introduce n − 1 new variables Ekij , F
k
ij , and the defining

equivalences Ekij ≡ (Ek−1
ij ⊕ PikQkj), F kij ≡ (F k−1

ij ⊕ QikPkj), for k > 1, and

E1
ij ≡ Pi1Q1j , F

1
ij ≡ Qi1P1j . The matrix equation PQ = I can then be written

as the conjunction of these defining equivalences, together with the n2 Boolean
equivalences Enij ≡ δij . With this formalization, the inversion principle IPn can

be written as a formula of bounded depth of size O(n3).
To formulate the Pigeonhole principle we use propositional variables Pij to

represent the statement P (i) = j, where P is a mapping. The antecedent of
PHPn is the conjunction of the following three formulas:∧

1≤i≤n

Pi1 ∨ · · · ∨ Pin;
∧

1≤i≤n,1≤k<j≤n

¬Pik ∨ ¬Pij ;
∧

1≤i<j≤n,1≤k≤n

¬Pik ∨ ¬Pjk

where the first formula states that the domain of P is {1, . . . , n}, the second
states that P is a function, and the third states that P is injective. The conse-
quent of PHPn is the formula:∧

1≤i≤n

P1i ∨ P2i ∨ · · · ∨ Pni,

which states that P is surjective.
The lower bound of this section is based on a fundamental lower bound

for bounded depth proofs of the pigeonhole principle (presented as theorem 2.1
below). It is the result of a series of papers [2, 5, 6] improving on the original
seminal result of Ajtai [1]. A simplified exposition of the lower bound is given
in [9]; see also Clote and Kranakis [3, Chapter 5].

Theorem 2.1 Let F be a Frege system and d > 4. Then for sufficiently large

n every depth d proof in F of PHPn must have size at least 2n
δ

, for δ < (1/5)d.

We now define a substitution instance IPσn of IPn; our main lemma shows
that PHPn can be deduced efficiently from this instance. The formula IPσn is
obtained from IPn by the substitution: Qij 7→ Pji, E

k
ij 7→ (Pi1Pj1∨· · ·∨PikPjk),

F kij 7→ (P1iP1j ∨ · · · ∨ PkiPkj). If A is a formula, then we denote the result of
applying this substitution to A by Aσ.
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Lemma 2.2 There is a bounded depth Frege proof of PHPn from IPσn of size
O(n5).

Proof. We will argue that if we have IPσn, and the antecedent of PHPn, then
we can conclude the antecedent of IPσn. Once we have the antecedent of IPσn,
we can obtain the consequent of IPσn, and hence the consequent of PHPn.

Assume IPσn, together with the antecedent of PHPn. Our first goal is to
deduce the antecedent of IPσn. It should be clear to the reader that all of the
proofs sketched below can be carried out in a relatively small fixed depth, though
we do not compute this depth explicitly.

The abbreviation [Ekij ≡ (Ek−1
ij ⊕ PikQkj)]σ is given by:

(Pi1Pj1 ∨ · · · ∨ PikPjk) ≡ ((Pi1Pj1 ∨ · · · ∨ Pi(k−1)Pj(k−1))⊕ PikPjk)

and it can be proven from ¬(Pi1Pj1 ∨ · · · ∨ Pi(k−1)Pj(k−1)) ∨ ¬(PikPjk), which
the reader can check is easily derivable from the antecedent of PHPn.

Since Enij ≡ (Pi1Pj1 ∨ · · · ∨ PinPjn), if i = j, then Enij ≡ 1, and if i 6= j,
then ¬(Pi1Pj1 ∨ · · · ∨ PinPjn) is derivable from ¬Pik ∨ ¬Pjk, so Enij ≡ 0. Since
(PQ = I)σ is (Enij)

σ, we have just shown the antecedent of IPn.
The last part of the derivation consists in deriving the consequent of PHPn.

To obtain this, note that we now have (QP = I)σ, so we have that (Fnii ≡ 1)σ,
or equivalently, we have (Fnii )

σ, which is just (P1iP1i ∨ . . .∨PniPni) from which
we can easily obtain (P1i∨ . . .∨Pni). We repeat this for every i, and obtain the
consequent of PHPn. �

We can now prove our main theorem by combining the previous lower bound
for the pigeonhole principle with the preceding lemma.

Theorem 2.3 Let F be a Frege system. Then there is a constant c so that for
d > c and sufficiently large n, every depth d proof in F of IPn must have size

2Ω(nδ), for δ < (1/5)d+1.

Proof. Choose the constant c > 3 so that it is at least as big as the depth
of the derivation constructed in Lemma 2.2. Let d > c, and in addition, let D
be a depth d derivation of IPn, of size s. Then the derivation Dσ obtained by
replacing all steps A by Aσ is a depth d + 1 derivation of IPσn of size O(ns).
By Lemma 2.2, we can convert Dσ into a depth d + 1 derivation of PHPn by
appending a derivation of size O(n5). By Theorem 2.1, Dσ must have size

at least 2n
δ

, for δ < (1/5)(d+1). Hence, sn ≥ (2n
δ − O(n5)), and therefore

s ≥ 2n
δ−log2 n − O(n4). We can choose a new δ, still < (1/5)d+1, so that for

sufficiently large n, the terms “log2 n” and “O(n4)” are eliminated. This gives
us the result. �

We can modify our definition of depth to allow unbounded fan-in ⊕ (XOR)
gates, in addition to unbounded AND and OR gates. With this modification,
it is not known whether the the pigeonhole principle PHPn still requires expo-
nentially large proofs, but this is generally conjectured to be the case. If this
conjecture is correct, then Lemma 2.2 applies to show exponential lower bounds
for the inversion principle in this case as well.
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3 The theory LA

LA is a quantifier-free, three-sorted logical theory, which can prove the ring
properties of matrices, such as commutativity of matrix addition or associativity
of matrix products. The matrix principle IPn can be stated in the language of
LA, but we conjecture that it is not a theorem of LA.

The theorems of LA (over the field of two elements) can be translated into
families of propositional tautologies with polynomial size bounded-depth Frege
proofs, with ⊕ gates of unbounded fan-in, i.e., in AC0[2]-Frege. Thus, to show
that IPn is independent of LA, it would be sufficient to show that AC0[2]-
Frege does not prove IPn. Thus, if AC0[2] does not prove PHPn, we could use
Lemma 2.2 to conclude that AC0[2]-Frege does not prove IPn, and hence that
IPn is independent of LA.

In this section we give a brief description of LA; for a full treatment of LA
see [7] and [4]. We also present other universal matrix identities, similar to IPn,
which can be proven equivalent to IPn in LA (and hence, their propositional
counterparts can be shown equivalent to IPn in AC0[2]). We also state the
general simulation result for the theorems of LA; that is, we will spell out in
detail the assertion that all the theorems of LA can be translated into families
of tautologies with short AC0[2]-Frege proofs, over the field F2.

The three sorts of LA are indices, field elements (or just elements of a com-
mutative ring), and matrices. We shall denote index variables by i, j, k, field
variables by a, b, c, and matrix variables by P,Q,R. We shall denote the for-
mulas of LA by α, β. LA has the usual arithmetic function symbols for indices:
addition, multiplication, subtraction, and also function symbols for division and
remainder. There is also addition and multiplication for field elements, as well as
additive and multiplicative inverses for field elements. When considering a com-
mutative ring rather than a field, the multiplicative inverse is not added. Thus, if
m,n are index terms, then so are (m+in), (m∗in), (m−in), div(m,n), rem(m,n)
(where the subscript “i” indicates that these are index operations), and if t, u
are terms of type field, then so are (t+f u), (t ∗i u), (−it), (t−1).

If T is a term of type matrix, then r(T ), c(T ) are terms of type index which
denote the number of rows and columns of T , respectively, and Σ(T ) is a term
of type field that denotes the sum of all the entries of T , and if m,n are terms of
type index, then e(m,n, T ) is a term of type field which denotes the (m,n) entry
of the matrix T . All matrix variables A,B,C, P,Q, . . . are matrix terms. We
construct new matrices using some rudimentary λ-calculus: if m,n are terms
of type index, and t is a term of type field, then λij〈m,n, t〉 is a constructed
term of type matrix (note that the index variables i, j cannot occur free in m,n).
That is, r(λij〈m,n, t〉) = m, c(λij〈m,n, t〉) = n, and e(i, j, λij〈m,n, t〉) = t.

If m,n, t, u, T, U are terms, then (m ≤ n), (m = n), (t = u), (T = U) are
atomic formulas of the appropriate kind (index, index, field, matrix, respec-
tively). We build general formulas in the usual way: if α, β are formulas, then
so are: (¬α), (α ∨ β) and (α ∧ β).

Finally, if α is a formula where all the atomic subformulas are of type index,
then condi(α,m, n) and condf (α, t, u) are terms of type index and field, respec-
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tively, and the idea is that condi(α,m, n) is m if α is true, and n otherwise, and
similarly for condf . The restriction that all the atomic subformulas of α are of
type index is there because in the translations into propositional formulas, all
the free index variables get values, and therefore, α will become true or false.

All the usual axioms for equality are in LA. We have the usual axioms
of Robinson’s arithmetic Q in LA together with axioms defining div, rem, and
cond, for elements of type index. The axioms for field elements are the usual field
axioms. The axioms for matrices define the behavior of constructed matrices,
and define the function Σ recursively (first on row matrices, and then on general
matrices). As LA is a quantifier-free theory, these are really axiom-schemes,
since we allow any substitution of terms for variables.

To prove theorems in LA, we have the usual Frege rules for propositional
consequence, and a rule for induction on indices, and a rule for concluding
equality of matrices. The induction rule is: α(i) ⊃ α(i+ 1) ` α(0) ⊃ α(n), note
that i must be an index variable, and must not occur free on the right-hand side
of the rule.

It turns out that LA is “strong enough” to prove all the ring properties of the
set of matrices (i.e., properties such as the associativity of matrix multiplication,
commutativity of matrix addition, etc.). In other words, all the ring properties of
matrices, expressed in the language of LA, are in LA. For the formal derivations
that place these ring properties in LA see [7, §3.1].

On the other hand, LA is “weak enough,” so that all the theorems of LA have
AC0[2]-Frege proofs; we state this more precisely below with two theorems, but
essentially this means that all the ring properties of matrices can be proven with
AC0[2]-Frege. We recall that LA is field (commutative ring, if the multiplicative
inverse function is ignored) independent. Thus, when translating the theorems
of LA into a propositional proof system, we have to fix the field. In the context
of this paper, we only consider the field of two elements {0, 1}. If the underlying
field were Fp, then the theorems of LA would translate into AC0[p]-Frege proofs.

The general method for translations is given in [7, §7]. There, we give a
natural recursive procedure that takes as input a formula α over the language
of LA, and produces a family of tautologies {‖α‖σ} parametrized by σ. The
important properties of the translation are given in the following theorem. Let
|σ| be the largest value in the assignment σ. Let ‖α‖σ be the translation of α
into a family of propositional tautologies, parametrized by σ; for each σ we get
a tautology of different size. (See [7, §7] for the proof.)

Theorem 3.1 If α is a formula over the language of LA, then, there exists
a polynomial pα and a constant dα such that for every σ, the size of ‖α‖σ is
bounded by pα(|σ|), and the depth of ‖α‖σ is bounded by dα. Furthermore, if α is
a true formula (in the standard model) then, the propositional formula ‖α‖σ is a
tautology. Furthermore, if α is a theorem of LA, then, there exists a polynomial
qα and a positive integer dα such that for every σ, ‖α‖σ has an AC0[2]-Frege
derivation πα,σ such that the size of πα,σ is bounded by qα(|σ|) and the depth of
πα,σ is bounded by the constant dα.

Thus, it is possible to state matrix principles, such as IPn in the language
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of LA, but we conjecture that LA is too weak to prove them. However, LA is
strong enough to prove the equivalence of a host of “hard” matrix identities,
such as: (PQ = I ∧ PR = I) ⊃ Q = R, PQ = I ⊃ (PR 6= 0 ∨ R = 0),
PQ = I ⊃ P tQt = I. Since all the theorems of LA translate into families
of propositional tautologies with short, bounded-depth, Frege proofs (with ⊕),
i.e., AC0[2]-Frege proofs, if we could show that IPn, or any of the above matrix
identities, is not provable in AC0[2]-Frege, we would have shown that they are
all independent of LA.

Therefore, showing that PHPn is not provable in AC0[2] would allow us
to conclude that IPn, and the above three matrix identities, as well as any
universal matrix identity equivalent in LA to IPn, are all independent of LA.
In other words, we would have shown that LA can prove ring properties of
matrices, but it is too weak to prove matrix identities which express properties
of inverses.
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