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Abstract
In 1906 Axel Thue founded stringology (combinatorics on words) by
describing an infinitely long sequence containing only three distinct
letters (say, a, b, c) that contains no repetition; that is, no pair of
adjacent equal substrings. Over the intervening century and a bit,
thousands of papers have been written on various aspects,
mathematical and computational, of this trivial mathematical object:
the string (or word or text or sequence). Today more than ever does
research flow – after all, DNA sequences are strings!

In this talk I discuss a collection of problem areas, easy to describe,
not so easy to deal with:

I efficient (appropriate) computation of repetitions;

I the mysterious combinatorics of overlapping squares;

I efficient computation on ”indeterminate” strings;

I characterizing strings by their ”regularities”;

I fast computation of global data structures.
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Repetitions, Runs & Periodicity

Repetitions arise out of local periodicity in strings:

1 2 3 4 5 6 7 8 9 10

x = a b a a b a b a a a
(1)

has repetitions a2, a3, (ab)2, (ba)2 and (aba)2.

(ab)2 and (ba)2 arise out of the same maximal periodicity or
run: ababa. The other repetitions are runs without a tail!



Some Hard-Won Facts about Runs & Repetitions

Suppose x = x [1..n] is a string:
I There may be as many as Θ(n log n) repetitions in x

(Fibonacci string) and they can be computed in O(n log n)
time [Cro81, AP83, ML84].

I Let ρ(n) be the maximum number of runs that can occur in
any string of length n. Then [KK99] there exist universal
positive constants k1, k2 such that ρ(n) ≤ k1n−k2

√
n log2 n.

Furthermore the runs in x can be computed in Θ(n) time
[Mai89, KK99].

I After many contributions by many researchers (for
example, [FSS03, Ryt06, PSS08, Gir08, CIT08, MKI+08]),
we now know [Sim10, BII+14, FSHIL15] that

0.944575712 · · · < ρ(n)/n < 0.9565 · · · .

So what is the big problem???



There Oughta Be a Faster Simpler Way!

Runs are
I local (independent of other segments of x)
I sparse (expected number 0.4n in binary strings, 0.02n in

strings on the English alphabet [PS08])
I independent of any ordering of the alphabet

but all current linear-time algorithms
I require heavy global data structures (suffix sorting)
I take no advantage of the expected sparsity of runs
I depend on an ordering of the alphabet



Suffix Trees, Suffix Arrays, et al. · · ·

1 2 3 4 5 6 7 8

x = a b a a b a b a
SAx = 8 3 6 1 4 7 2 5

LCPx = 0 1 1 3 3 0 2 2
LPFx = 0 0 1 3 2 3 2 1

BWTx = b b b $ a a a a
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Figure : Suffix tree, suffix array, LCP/LPF/BWT arrays



· · · then Lempel-Ziv [LZ77], finally Repetitions

LZ77        KK      AKO        CPS1       CPS2       CPS3         CI      CIS & CII      OS 

SA 

LCP

SA 

LPF

ESA 

LCP

ST 

LZ 

LCP 

SA QSA 

LPF

LCP 

SA 

BWT 

LCP 

ESA Sliding 

Window

 
Figure : From [AHCI+13]



A Recent Ray of Light: the Lyndon Array

If x is not a repetition, it is primitive. A Lyndon word is the
unique least rotation of a primitive word in some total ordering
of words.

Ḟor example, in lexorder with a ≺ b, u = aab is least among its
rotations R0(u) = aab,R1(u) = aba,R2(u) = baa.

In the Lyndon array λx = λx [1..n] of a word x = x [1..n], λx [i]
is the length of the longest Lyndon word beginning at position i
of x .

In a remarkable recent result, [BII+14] used the computation of
λx based on opposite orderings of the alphabet to show that
ρ(n) < n, then went on to show that λx could be used to
compute all the runs.

More later · · ·
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The Periodicity Lemma
If there is a “fundamental theorem” of combinatorics on words,
this is it (to avoid clutter, we write x = |x |):

Lemma (“Periodicity Lemma” [FW65])
Let p and q be two periods of x , and let d = gcd(p,q). If
p+q ≤ x +d, then d is also a period of x .

It took 30 years to begin to think about a third square:

Lemma (“Three Squares Lemma” [CR95])
Suppose u is primitive, and suppose v 6= uj for any j ≥ 1. If u2

is a prefix of v2, in turn a proper prefix of w2, then w ≥ u+v.

The Fibostring demonstrates that this result is best possible
(squares ending at positions 6, 10, 16 = 6+10, 26 = 10+16):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

x = a b a a b a b a a b a a b a b a a b a b a a b a a b



The “New Periodicity Lemma”
Lemma (NPL [FPST06, Sim07, FFSS12, KS12, BS15])
Suppose that x has prefixes u2 and v2, 3u/2 < v < 2u, and that w2 occurs
at position k+1 of x , where v−u < w < v, w 6= u, and 0 ≤ k < v−u. Then
for each of 14 subcases, the structure of x is given below:

Table : σ is the largest alphabet size consistent with u, v , k ,w ; d , d1
and d3 are prefixes of x with d = gcd(u, v ,w), d1 = gcd(u−w , v−u),
d2 = gcd(u, v−w), d3 = v mod d2.

Subcases S Conditions Breakdown of x
1, 2, 5, 6, 8–10 (∀x , σ = d) x = dx/d

3, 4, 7 (∀x) x = d1
u/d1 d1

v/d1 d1
(v−u)/d1

specified cases x = dx/d

11–14 σ = d or d2 ≤ 2u−v x = dx/d

otherwise x =
(
(d3

d2/d3)v/d2
)2

(For u < v ≤ 3u/2, a simpler result holds with even more
structure.)



“New Periodicity Lemma Revisited”

We call v2 a double square DS(u,v) if it has proper prefix u2.
We say that u is the primitive root of w if w = ue for some
greatest integer e ≥ 1 (for w = (ab)4, u = ab,e = 4).

Lemma (NPLR [BFS16])
Consider a double square DS(u,v) with v = uu′ for some
nonempty u′. Suppose that w2 is a proper substring of v2.
Then exactly one of the following holds:
(a) w < u;
(b) u ≤ w < v and the primitive root of w is a rotation of the

primitive root of u′.

NPLR applies to somewhat fewer w than NPL, but is more
precise in its characterization.



Where Do We Go From Here?

As yet no algorithm makes use of these results.

But they clearly relate to the identification of runs.

Perhaps digestion is required!
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Extending the Idea of a “String”
In DNA applications it can happen that a letter is not a, c,g, t ,
but some combination: {a, c}, {g, t}. A regular string is defined
on individual letters of an alphabet Σ; an indeterminate string is
defined on indeterminate letters — nonempty subsets of Σ.

We say that λ1 matches λ2, written λ1 ≈ λ2, if λ1 ∩ λ2 6= ∅; thus
{c} ≈ {c} and {a, c} ≈ {c,g}.

The fundamental difficulty is nontransitivity of matching:
possibly λ1 ≈ λ2 ≈ λ3, but λ1 6≈ λ3. For example,

λ1 = {a, c}, λ2 = {c,g}, λ3 = {g, t}.

Main goal: establish theory [SW09b], data structures
[SW08, CRSW15] and algorithms [SW09a, ARS15, ARS16] for
indeterminate strings that correspond to those for regular
strings.



The Prefix Array of an Indeterminate String — I

If u is a possibly empty proper prefix of x (0 ≤ u < x) that
matches a suffix u′ of x , then u is said to be a border of x . The
border array β = βx [1..n] gives in position i ∈ 1..n the longest
border of x [1..i]:

1 2 3

x = {a,b} {b, c} c
β = 0 1 2

For regular strings, if β[i] > 0, then β[β[i]] is the second
longest border of x [1..i], and so β gives all the borders of every
prefix of x . The border array can be easily computed in Θ(n)
time and is ubiquitous in regular string algorithms.

Alas, due to the nontransitivity of matching, this is not true for
indeterminate strings: to specify all the borders, a list needs to
be stored at each position of β.



The Prefix Array of an Indeterminate String — II
The prefix array π = πx [1..n] gives in position i the length of
the longest substring beginning at i that matches a prefix of x .

1 2 3

x = {a,b} {b, c} c
π = 3 2 0

For regular strings, β and π are “equivalent”: one can be
computed from the other in linear time. But for indeterminate
strings, the prefix array retains its useful properties: πx
implicitly specifies all the borders of x .

An integer array y = y [1..n] is said to be feasible if y [1] = n
and for every i ∈ 2..n, 0 ≤ y [i] ≤ n+1−i .

Lemma
Every feasible array is the prefix array of some (indeterminate)
string.



The Prefix Array of an Indeterminate String — III
Problem
Given a feasible array y , find a lexicographically least string x
(regular if possible) whose prefix array πx = y .

In [CCR09] a linear-time algorithm is described that, given a
feasible array y , computes a lexicographically least
corresponding regular string x , whenever this is possible, and
otherwise returns an error message.

In [BSBW14] it is shown that a lexicographically least
indeterminate string whose prefix array is y has alphabet size
σ ≤ n+

√
n. Then in [ARS15] an O(σn2)-time algorithm is

described that computes a lexicographically least indeterminate
string whose prefix array is y .

Question
Can this calculation be done any quicker? Can it be done in
less than O(n2) (worst case, average case) time?
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Periodicity & Quasiperiodicity
A string x = x [1..n] is said to have period p = n−b whenever it
has a border of length b. Sometimes (especially when x is a
repetition or near-repetition), the minimum period can be a
good descriptor of x :

x = (ab)m, (abac)mab; (2)

usually not:
x = abbabaa, abacabad , (3)

even when there is a lot of “regularity” in x .

In [AFI91] a quasiperiod q of x was introduced: the length of a
border of x such that every position of x is contained in some
occurrence of q = x [1..q]. Then q is called a cover of x .

[LS02] showed that the cover array γx [1..n] of x could be
computed in Θ(n) time from the border array, specifying all the
covers of every prefix of x . [ARS16] showed how to compute
γx using the prefix array, and thus extended the result to
indeterminate strings using O(n) time on average.



Seeds & k -Covers

Unfortunately, the quasiperiod doesn’t help very much:
x = (abac)mab in (2) has no cover, nor do the strings of (3).

A seed of x is a minimum cover of a superstring of x and can
be computed in O(n log n) time [IMP93]. Every periodic string
has a seed — for example, (abac)mab has seed abac. But a
seed may not help very much: in (3), abbabaa has seed
abbaba and the only seed of abacabad is itself.

These deficiencies led to the idea of a k -cover: a minimum
cardinality collection of strings, each of length k , that covers a
given string x . For example, both the strings of (3) have a
4-cover of size 2, perhaps not very helpful. Unfortunately,
computing a k -cover is NP-complete [CIMS05], though it can
be approximated to within a factor k in polynomial time [IMS11].



Enhanced/Partial String Covering

An enhanced cover u of x is a border of x that, over all the
borders of x , covers a maximum number of positions in x . The
enhanced cover array EC[1..n] gives the enhanced cover of
every nonempty prefix of x . EC can be computed in O(n log n)
worst-case time [FIK+13] and in O(n) expected time, both for
regular and indeterminate strings [AIR+16]. No help for strings
such as (3), whose borders are short and scarce.

Given an integer α ∈ 1..n, an α-partial cover of x is a substring
of x that covers at least α positions in x ; the shortest α-partial
cover can be computed for all α in O(n log n) time [KPR+15].
Similarly there are α-partial seeds [KPR+14], but computation
time increases.

New ideas (new regularities) are needed: both strings (3) are
one letter change away from being periodic!
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The Tale of the Suffix Array

Given x = x [1..n], the suffix array SA = SAx [1..n] is such that
for every i ∈ 1..n, SA[i] = j iff x [j ..n] is the i th suffix in some
global order (such as lexorder).

1990 SA invented [MM90, MM93] hopefully to
supplement the suffix tree [Wei73].

1995–2002 About 15 SACAs proposed, none of them
linear-time, none lightweight [PST07].

2003 Three linear-time SACAs proposed, all recursive,
all slow [KA03, KS03, KSPP03].

2004 SAs can do anything STs can do! [AKO04]
2009 A fast, recursive, linear-time, lightweight SACA is

discovered [NZC09], an efficient implementation is
made available on-line [Mor09].

2010– SA applications multiply, in bioinformatics and
elsewhere.



What about the Lyndon Array?

1983 Computing the Lyndon array of x is equivalent to
computing its Lyndon brackets, mentioned in
[Lot83].

2003 [SR03] describes an O(n2)-time algorithm to
compute Lyndon brackets, [HR03] hints at an
algorithm to compute the Lyndon array from the
suffix array.

2014 [BII+14] uses the Lyndon array to show ρ(n) < n
and to compute all the runs in given x in linear
time.

2016 [FHI+16] describes half a dozen algorithms to
compute λx , but none of them is both linear-time
and “elementary”.



λx = NSV(ISAx )
Definition (Next Smaller Value)
Given an array x [1..n] of ordered values, NSV = NSVx [1..n] is
the next smaller value array of x if and only if for every
i ∈ 1..n, NSV[i] = j , where
(a) for every h ∈ 1..j−1, x [i] ≤ x [i +h]; and
(b) either i +j = n+1 or x [i] > x [i +j].

1 2 3 4 5 6 7 8 9 10

x = 3 8 7 10 2 1 4 9 6 5
NSVx = 4 1 2 1 1 5 4 1 1 1

procedure NSVISA(x [1 . .n]) : λx [1 . .n]
Compute SAx ([NZC09, PST07])
Compute ISAx in place [PST07]
λx ← NSV(ISAx ) (in place) [FHI+16]
Hey Presto — linear time!



BUT ...

The suffix array SAx is more “global”, less “elementary” than
the Lyndon array λx : SA sorts all the suffixes of the string, λ
just computes a local property at each position i .

Why should we need to use SA to compute λ in linear time?
Why isn’t there a simpler (and linear-time) algorithm?

Will we find more applications for λ as we did for SA?
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