Trivial Object, Nontrivial Problems

Bill Smyth'2

"Department of Computing & Software
McMaster University, Hamilton ON, Canada
smyth@mcmaster.ca

2Department of Informatics
King’s College London

3School of Engineering & Information Technology
Murdoch University, Perth WA, Australia

Channel Islands, 14 March 2016

Outline

Abstract

Computing Repetitions

The Mysterious Combinatorics of Overlapping Squares
Indeterminate Strings

Characterizing Strings using Regularities

Fast Computation of Global Data Structures

Outline

Abstract

Abstract

In 1906 Axel Thue founded stringology (combinatorics on words) by
describing an infinitely long sequence containing only three distinct
letters (say, a, b, c) that contains no repetition; that is, no pair of
adjacent equal substrings. Over the intervening century and a bit,
thousands of papers have been written on various aspects,
mathematical and computational, of this trivial mathematical object:
the string (or word or text or sequence). Today more than ever does
research flow — after all, DNA sequences are strings!

In this talk | discuss a collection of problem areas, easy to describe,
not so easy to deal with:

>

>

>

efficient (appropriate) computation of repetitions;

the mysterious combinatorics of overlapping squares;
efficient computation on “indeterminate” strings;
characterizing strings by their "regularities”;

fast computation of global data structures.

Outline

Computing Repetitions

Repetitions, Runs & Periodicity

Repetitions arise out of local periodicity in strings:

1 2 3 4 5 6 7 8 9 10)
x=a b a a b ab a a a
has repetitions &2, &, (ab)?, (ba)? and (aba)?.

(ab)? and (ba)? arise out of the same maximal periodicity or
run: ababa. The other repetitions are runs without a tail!

Some Hard-Won Facts about Runs & Repetitions

Suppose x = x[1..n] is a string:
» There may be as many as ©(nlog n) repetitions in x

(Fibonacci string) and they can be computed in O(nlog n)
time [Cro81, AP83, ML84].

» Let p(n) be the maximum number of runs that can occur in
any string of length n. Then [KK99] there exist universal
positive constants ki, ko such that p(n) < kyn—ko+/nlog, n.
Furthermore the runs in x can be computed in ©(n) time
[Mai89, KK99].

» After many contributions by many researchers (for
example, [FSS03, Ryt06, PSS08, Gir08, CIT08, MKI*08]),
we now know [Sim10, BII* 14, FSHIL15] that

0.944575712 - < p(n)/n < 0.9565 - - - .

So what is the big problem???

There Oughta Be a Faster Simpler Way!

Runs are
» local (independent of other segments of x)

» sparse (expected number 0.4n in binary strings, 0.02n in
strings on the English alphabet [PS08])

» independent of any ordering of the alphabet

but all current linear-time algorithms
» require heavy global data structures (suffix sorting)
» take no advantage of the expected sparsity of runs
» depend on an ordering of the alphabet

Suffix Trees, Suffix Arrays, et al. - --

1 2 3 4 5 6 7 8
X=a b a a b a b a
SAx=8 3 6 1 4 7 2 5
ICPx=0 1 1 3 3 0 2 2
LPFx =0 0 1 3 2 3 2 1
BWIx=b b b $ a a a a

- then Lempel-Ziv [LZ77], finally Repetitions

LZ77 KK AKO CPS1 CPS2 CPS3 Cl CIS&CII (o]}
Sliding ST ESA SA SA QSA SA [SA } { ESA
Window l l ;

Y
LCP J [LCP } iLCP LCP LCP
v

Figure : From [AHCI*13]

A Recent Ray of Light: the Lyndon Array

If x is not a repetition, it is primitive. A Lyndon word is the
unique least rotation of a primitive word in some total ordering
of words.

For example, in lexorder with a < b, u = aab is least among its
rotations Ry(u) = aab, Ri(u) = aba, R»(u) = baa.

In the Lyndon array Ax = Ax[1..n] of a word x = x[1..n], Ax][i]
is the length of the longest Lyndon word beginning at position /
of x.

In a remarkable recent result, [BII*14] used the computation of
Ax based on opposite orderings of the alphabet to show that
p(n) < n, then went on to show that A\x could be used to
compute all the runs.

More later - - -

Outline

The Mysterious Combinatorics of Overlapping Squares

The Periodicity Lemma

If there is a “fundamental theorem” of combinatorics on words,
this is it (to avoid clutter, we write x = |x|):
Lemma (“Periodicity Lemma” [FW65])

Let p and q be two periods of x, and let d = gcd(p, q). If
p+qg < x-+d, then d is also a period of x.

It took 30 years to begin to think about a third square:

Lemma (“Three Squares Lemma” [CR95])

Suppose u is primitive, and suppose v # W for any j > 1. If u?
is a prefix of v, in turn a proper prefix of w?, then w > u+v.

The Fibostring demonstrates that this result is best possible
(squares ending at positions 6, 10, 16 = 6+10, 26 = 10+16):

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
X—abaababaabaababaababaabaalhb

The “New Periodicity Lemma”
Lemma (NPL [FPSTO06, Sim07, FFSS12, KS12, BS15])

Suppose that x has prefixes u? and v?, 3u/2 < v < 2u, and that w® occurs
at position k+1 of x, wherev—u < w < v, w # u, and0 < k < v—u. Then
for each of 14 subcases, the structure of x is given below:

Table : o is the largest alphabet size consistent with u, v, k, w; d, d;
and ds are prefixes of x with d = gcd(u, v, w), di = gcd(u—w, v—u),
d» = gcd(u, v—w), ds = v mod db.

Subcases S Conditions Breakdown of x
1,2,5,6,8-10 (VX,0 = d) x=d¥d
3,4,7 (vVx) X = /% dy /% g, (-0
specified cases x =d*/d
11-14 oc=dord <2u—v x=d"?
otherwise x = ((ds®/%)"/%)?

(For u < v < 3u/2, a simpler result holds with even more
structure.)

“New Periodicity Lemma Revisited”

We call v2 a double square DS(u, v) if it has proper prefix u?.
We say that u is the primitive root of w if w = u® for some
greatest integer e > 1 (for w = (ab)*, u = ab, e = 4).

Lemma (NPLR [BFS16])

Consider a double square DS(u, v) with v = uu’ for some

nonempty u’. Suppose that w? is a proper substring of v2.
Then exactly one of the following holds:

(a) w<u;
(b) u < w < v and the primitive root of w is a rotation of the
primitive root of u’.

NPLR applies to somewhat fewer w than NPL, but is more
precise in its characterization.

Where Do We Go From Here?

As yet no algorithm makes use of these results.
But they clearly relate to the identification of runs.

Perhaps digestion is required!

Outline

Indeterminate Strings

Extending the Idea of a “String”

In DNA applications it can happen that a letter is not a, ¢, g, t,
but some combination: {a, c}, {g, t}. A regular string is defined
on individual letters of an alphabet ¥; an indeterminate string is
defined on indeterminate letters — nonempty subsets of ¥.

We say that \; matches o, written A\ &~)Xo, if Ay N A\ # 0; thus
{c} =~ {c}and {a,c} ~ {c.g}.

The fundamental difficulty is nontransitivity of matching:
possibly A1 = Ao = A3, but A\ % A3. For example,

A1 = {37 C}7>\2 = {Cv g}v)‘3 = {gv t}'

Main goal: establish theory [SWO09b], data structures

[SW08, CRSW15] and algorithms [SW09a, ARS15, ARS16] for
indeterminate strings that correspond to those for regular
strings.

The Prefix Array of an Indeterminate String — |

If uis a possibly empty proper prefix of x (0 < u < x) that
matches a suffix u’ of x, then u is said to be a border of x. The
border array 8 = Bx[1..n] gives in position i € 1..n the longest
border of x[1..1]:

1 2 3
x= {ab} {b,c} c
B= 0 1 2

For regular strings, if B[i] > 0, then B[3][i]] is the second
longest border of x[1../], and so 3 gives all the borders of every
prefix of x. The border array can be easily computed in ©(n)
time and is ubiquitous in regular string algorithms.

Alas, due to the nontransitivity of matching, this is not true for
indeterminate strings: to specify all the borders, a list needs to
be stored at each position of 3.

The Prefix Array of an Indeterminate String — Il

The prefix array @ = mx[1..n] gives in position i the length of
the longest substring beginning at / that matches a prefix of x.

1 2 3
x= {ab} {b,c} c
T = 3 2 0

For regular strings, 8 and = are “equivalent”: one can be
computed from the other in linear time. But for indeterminate
strings, the prefix array retains its useful properties: = x
implicitly specifies all the borders of x.

An integer array y = y[1..n] is said to be feasible if y[1] = n
and forevery i € 2..n, 0 < y[i] < n+1—1.

Lemma
Every feasible array is the prefix array of some (indeterminate)
string.

The Prefix Array of an Indeterminate String — I

Problem
Given a feasible array y, find a lexicographically least string x
(regular if possible) whose prefix array wx = y.

In [CCROQ9] a linear-time algorithm is described that, given a
feasible array y, computes a lexicographically least
corresponding regular string x, whenever this is possible, and
otherwise returns an error message.

In [BSBW14] it is shown that a lexicographically least
indeterminate string whose prefix array is y has alphabet size
o < n++/n. Then in [ARS15] an O(on?)-time algorithm is
described that computes a lexicographically least indeterminate
string whose prefix array is y.

Question
Can this calculation be done any quicker? Can it be done in
less than O(n?) (worst case, average case) time?

Outline

Characterizing Strings using Regularities

Periodicity & Quasiperiodicity
A string x = x[1..n] is said to have period p = n—b whenever it
has a border of length b. Sometimes (especially when x is a
repetition or near-repetition), the minimum period can be a
good descriptor of x:

x = (ab)™, (abac)™ab; (2)

usually not:
X = abbabaa, abacabad, (3)

even when there is a lot of “regularity” in x.

In [AFI91] a quasiperiod g of x was introduced: the length of a
border of x such that every position of x is contained in some
occurrence of g = x[1..q]. Then q is called a cover of x.

[LS02] showed that the cover array ~x[1..n] of x could be
computed in ©(n) time from the border array, specifying all the
covers of every prefix of x. [ARS16] showed how to compute
~x using the prefix array, and thus extended the result to
indeterminate strings using O(n) time on average.

Seeds & k-Covers

Unfortunately, the quasiperiod doesn’t help very much:
x = (abac)™ab in (2) has no cover, nor do the strings of (3).

A seed of x is a minimum cover of a superstring of x and can
be computed in O(nlog n) time [IMP93]. Every periodic string
has a seed — for example, (abac)™ab has seed abac. But a
seed may not help very much: in (3), abbabaa has seed
abbaba and the only seed of abacabad is itself.

These deficiencies led to the idea of a k-cover: a minimum
cardinality collection of strings, each of length k, that covers a
given string x. For example, both the strings of (3) have a
4-cover of size 2, perhaps not very helpful. Unfortunately,
computing a k-cover is NP-complete [CIMSO05], though it can
be approximated to within a factor k in polynomial time [IMS11].

Enhanced/Partial String Covering

An enhanced cover u of x is a border of x that, over all the
borders of x, covers a maximum number of positions in x. The
enhanced cover array EC[1..n] gives the enhanced cover of
every nonempty prefix of x. EC can be computed in O(nlog n)
worst-case time [FIK™13] and in O(n) expected time, both for
regular and indeterminate strings [AIR™16]. No help for strings
such as (3), whose borders are short and scarce.

Given an integer « € 1..n, an a-partial cover of x is a substring
of x that covers at least « positions in x; the shortest a-partial
cover can be computed for all « in O(nlog n) time [KPR*15].
Similarly there are a-partial seeds [KPR™14], but computation
time increases.

New ideas (new regularities) are needed: both strings (3) are
one letter change away from being periodic!

Outline

Fast Computation of Global Data Structures

The Tale of the Suffix Array

Given x = x[1..n], the suffix array SA = SAx[1..n] is such that
for every i € 1..n, SA[i] = j iff x[j..n] is the it suffix in some
global order (such as lexorder).
1990 SA invented [MM90, MM93] hopefully to
supplement the suffix tree [Wei73].
1995-2002 About 15 SACAs proposed, none of them
linear-time, none lightweight [PSTO07].
2003 Three linear-time SACAs proposed, all recursive,
all slow [KA03, KS03, KSPPO03].
2004 SAs can do anything STs can do! [AKO04]
2009 A fast, recursive, linear-time, lightweight SACA is
discovered [NZCO09], an efficient implementation is
made available on-line [Mor09].

2010— SA applications multiply, in bioinformatics and
elsewhere.

What about the Lyndon Array?

1983

2003

2014

2016

Computing the Lyndon array of x is equivalent to
computing its Lyndon brackets, mentioned in
[Lot83].

[SR03] describes an O(n?)-time algorithm to
compute Lyndon brackets, [HRO03] hints at an
algorithm to compute the Lyndon array from the
suffix array.

[BlIT14] uses the Lyndon array to show p(n) < n
and to compute all the runs in given x in linear
time.

[FHI*16] describes half a dozen algorithms to
compute Ay, but none of them is both linear-time
and “elementary”.

Ax = NSV(ISAx)

Definition (Next Smaller Value)

Given an array x[1..n] of ordered values, NSV = NSV x[1..n] is
the next smaller value array of x if and only if for every

i €1..n, NSV[i] = j, where

(a) forevery he 1.j—1, x[i] < x[i+h], and

(b) eitheri+j = n+1 or x[i] > x[i+]].

1 2 3 4 5 6 7 8 9 10
x=3 87 10 2 1 4 9 6 5
NSVx=4 1 2 1 1 5 4 1 1 1

procedure NSVISA(x[1..n]) : Ax[1..n]
Compute SAxy ([NZCO09, PST07])
Compute ISAy in place [PSTO07]

Ax <+ NSV(ISAx) (in place) [FHIT16]
Hey Presto — linear time!

BUT ...

The suffix array SA x is more “global”, less “elementary” than
the Lyndon array Ax: SA sorts all the suffixes of the string, A
just computes a local property at each position i.

Why should we need to use SA to compute A in linear time?
Why isn’t there a simpler (and linear-time) algorithm?

Will we find more applications for A as we did for SA?

)

>

A. Apostolico, M. Farach, and C.S. lliopoulos.
Optimal superprimitivity testing for strings.
Inform. Process. Lett., 39:17—20, 1991.

Anisa Al-Hafeedh, Maxime Crochemore, Lucian llie,
Evguenia Kopylova, W. F. Smyth, German Tischler, and
Munina Yusufu.

A comparison of index-based Lempel-Ziv LZ77
factorization algorithms.

ACM Computing Surveys, 45:5:1-5:17, 2013.

Ali Alatabbi, A. S. M. Sohidull Islam, M. Sohel Rahman,
Jamie Simpson, and W. F. Smyth.

Enhanced covers of regular and indeterminate strings
using prefix tables.

2016.

arxiv.org/pdf/1506.06793.pdf.

Mohamed I. Abouelhoda, Stefan Kurtz, and Enno
Ohlebusch.
Replacing suffix trees with enhanced suffix arrays.

J. Discrete Algorithms, 2:53—86, 2004.

Alberto Apostolico and Franco P. Preparata.
Optimal off-line detection of repetitions in a string.
Theoret. Comput. Sci., 22:297-315, 1983.

Ali Alatabbi, M. Sohel Rahman, and W. F. Smyth.
Inferring an indeterminate string from a prefix graph.
J. Discrete Algorithms, 32:6—13, 2015.

Ali Alatabbi, M. Sohel Rahman, and W. F. Smyth.
Computing covers using prefix tables.

Discrete Appl. Math., 2016.

to appear.

Haoyue Bai, Frantisek Franek, and W. F. Smyth.
The new periodicity lemma revisited.

Discrete Appl. Math., 2016.

to appear.

Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto
Nakashima, Masayuki Takeda, and Kazuya Tsuruta.

The “runs” theorem.
2014.
arXiv:1406.0263Vv6.

Widmer Bland and W. F. Smyth.

Three overlapping squares: the general case characterized
& applications.

Theoret. Comput. Sci., 596:23—-40, 2015.

Francine Blanchet-Sadri, Michelle Bodnar, and

Benjamin De Winkle.

New bounds and extended relations between prefix arrays,
border arrays, undirected graphs, and indeterminate
strings.

In N. Portier and E. Mayr, editors, Proc. 31st Symp. on
Theoretical Aspects of Computer Science, pages 162—173,
2014.

Julien Clément, Maxime Crochemore, and Giuseppina
Rindone.
Reverse engineering prefix tables.

In Proc. 26th Symp. on Theoretical Aspects of Computer
Science, pages 289-300, 2009.

Richard Cole, Costas S. lliopoulos, Manal Mohamed, and
W. F. Smyth.

The complexity of the minimum k-cover problem.

J. Automata, Languages & Combinatorics, 10:641-653,
2005.

Maxime Crochemore, Lucian llie, and Liviu Tinta.
Towards a solution to the “runs” conjecture.

In P. Ferragina and G. Landau, editors, Proc. 19th Symp.
on Combinatorial Pattern Matching, LNCS 5029, pages
290-302. Springer-Verlag, 2008.

Maxime Crochemore and Wojciech Rytter.
Sqares, cubes, and time-space efficient string searching.
Algorithmica, 13(5):405-425, 1995.

Maxime Crochemore.
An optimal algorithm for computing the repetitions in a
word.

Information Processing Letters, 12(5):244—-250, 1981.

Manolis Christodoulakis, P. J. Ryan, W. F. Smyth, and Shu
Wang.

Indeterminate strings, prefix arrays and undirected graphs.
Theoretical Comput. Sci., 600:34—48, 2015.

Frantisek Franek, Robert C. G. Fuller, Jamie Simpson, and
W. F. Smyth.

More results on overlapping squares.

J. Discrete Algorithms, 17:2—8, 2012.

Frantisek Franek, Jan Holub, A. S. M. Sohidull Islam,
M. Sohel Rahman, and W. F. Smyth.

Algorithms to compute the Lyndon array.

2016.

Submitted for publication.

Tomas Flouri, Costas S. lliopoulos, Tomasz Kociumaka,
Solon P. Pissis, Simon J. Puglisi, W.F. Smyth, and Wojciech
Tyczynski.

Enhanced string covering.

Theoretical Computer Science, 506:102 — 114, 2013.

Kangmin Fan, Simon J. Puglisi, W. F. Smyth, and Andrew
Turpin.

A new periodicity lemma.

SIAM J. Discrete Math., 20:656-668, 2006.

Johannes Fischer, Stéfan Holub, Tomohiro I, and Moshe
Lewenstein.

Beyond the runs theorem.

2015.

arxiv.org/abs/1502.04644.

Frantisek Franek, R. J. Simpson, and W. F. Smyth.
The maximum number of runs in a string.

In Mirka Miller and Kunsoo Park, editors, Proc. 14h
Australasian Workshop on Combinatorial Algorithms,
pages 26—35, 2003.

N. J. Fine and H. S. Wilf.
Uniqueness theorems for periodic functions.
Proc. Amer. Math. Soc., 16:109—-114, 1965.

@® Mathieu Giraud.
Not so many runs in strings.
In Carlos Martin-Vide, Friedrich Otto, and Henning Fernau,
editors, Proc. 2nd Internat. Conf. on Language & Automata
Theory & Applications, LNCS 5196, pages 232—239.
Springer-Verlag, 2008.

¥ Christophe Hohlweg and Christophe Reutenauer.
Lyndon words, permutations and trees.
Theoret. Comput. Sci., 307(1):173-178, 2003.

¥ C.S. lliopoulos, D.W.G. Moore, and K. Park.
Covering a string.
In Proc. 4th Symp. on Combinatorial Pattern Matching,
number 684 in Lecture Notes in Comput. Sci., pages
54-62, Berlin, Germany, 1993. Springer—Verlag.

¥ Costas S. lliopoulos, Manal Mohamed, and W. F. Smyth.
New complexity results for the k-covers problem.
Information Sciences, 181:2571-2575, 2011.

¥ Pang Ko and Srinivas Aluru.
Space efficient linear time construction of suffix arrays.
In Proc. 14th AnnualSymp. on Combinatorial Pattern
Matching, pages 200—-210, 2003.

¥ Roman Kolpakov and Gregory Kucherov.
On maximal repetitions in words.
J. Discrete Algorithms, 1:159-186, 1999.

¥® Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski,
Woijciech Rytter, and Tomasz Walen.
Efficient algorithms for shortest partial seeds in words.
In Proc. 25th Symp. on Combinatorial Pattern Matching,
LNCS 8486, pages 192—201. Springer-Verlag, 2014.

¥ Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Walen.
Fast algorithm for partial covers in words.
Algorithmica, 73:217—233, 2015.

¥ Juha Karkkainen and Peter Sanders.

Simple linear work suffix array construction.

In Proceedings of the 30th international conference on
Automata, languages and programming, ICALP’03, pages
943-955, Berlin, Heidelberg, 2003. Springer—Verlag.

¥ Evguenia Kopylova and W. F. Smyth.
The three squares lemma revisited.
J. Discrete Algorithms, 11:3—14, 2012.

¥ Dong Kyue Kim, JeongSeop Sim, Heejin Park, and Kunsoo
Park.
Linear-time construction of suffix arrays.
In Ricardo Baeza-Yates, Edgar Chavez, and Maxime
Crochemore, editors, Proc. 14th AnnualSymp. on
Combinatorial Pattern Matching, pages 186—199, 2003.

¥ M. Lothaire.
Combinatorics on words, Encyclopedia of Mathematics and
its Applications.
Addison-Wesley Publishing Co., Reading, Mass., 1983.

¥ Yin Li and W. F. Smyth.

Computing the cover array in linear time.
Algorithmica, 32—1, 95—106, 2002.

A. Lempel and J. Ziv.
A universal algorithm for sequential data compression.
IEEE Trans. on Information Theory, |T-23:337-343, 1977.

Michael G. Main.
Detecting leftmost maximal periodicities.
Discrete Applied Maths., 25:145—153, 1989.

Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo
Bannai, and Ayumi Shinohara.

New lower bounds for the maximum number of runs in a
string.

In Jan Holub and Jan Zdarek, editors, Proc. Prague
Stringology Contf., pages 140—145, 2008.

Michael G. Main and Richard J. Lorentz.
An O(nlog n) algorithm for finding all repetitions in a string.
J. Algorithms, 5:422-432, 1984.

¥ Udi Manber and Gene Myers.
Suffix arrays: A new method for on-line string searches.
In Proc. 1st ACM-SIAM Symp. Discrete Algs., pages
319-327, 1990.

¥ Udi Manber and Eugene W. Myers.
Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935-948, 1993.

¥ Yuta Mori.
libdivsufsort.
2009.
http://code.google.com/p/libdivsufsort/.

¥ Ge Nong, Sen Zhang, and Wai H. Chan.
Linear time suffix array construction using D-critical
substrings.
In Gregory Kucherov and Esko Ukkonen, editors, 20th
Annual Symp. on Combinatorial Pattern Matching, volume
5577 of Lecture Notes in Computer Science, pages 54—67.
Springer-Verlag, 2009.

¥ Simon J. Puglisi and R. J. Simpson.

>

The expected number of runs in a word.
Australasian J. Combinatorics, 42:45-54, 2008.

Simon J. Puglisi, R. J. Simpson, and W. F. Smyth.
How many runs can a string contain?
Theoret. Comput. Sci., 401:165-171, 2008.

Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin.
A taxonomy of suffix array construction algorithms.
ACM Comput. Surv., 39(2):1-31, July 2007.

Wojciech Rytter.

The number of runs in a string: improved analysis of the
linear upper bound.

In B. Durand and W. Thomas, editors, Proc. 23rd Symp. on
Theoretical Aspects of Computer Science, LNCS 2884,
pages 184—195. Springer-Verlag, 2006.

R. J. Simpson.
Intersecting periodic words.

Theoret. Comput. Sci., 374:58—65, 2007.

Jamie Simpson.

Modified Padovan words and the maximum number of runs
in a word.

Australasian J. Combinatorics, 46:129—145, 2010.

Joe Sawada and Frank Ruskey.

Generating Lyndon brackets: an addendum to “Fast
algorithms to generate necklaces, unlabeled necklaces
amd irreducible polynomials over GF(2)”.

J. Algorithms, 46:21-26, 2003.

W. F. Smyth and Shu Wang.

New perspectives on the prefix array.

Proc. 15th String Processing & Inform. Retrieval Symp.
(SPIRE), 5280:133—-143, 2008.

W. F. Smyth and Shu Wang.
An adaptive hybrid pattern-matching algorithm on
indeterminate strings.

Internat. J. Foundations of Computer Science,
20(6):985—-1004, 2009.

¥ W. F. Smyth and Shu Wang.
A new approach to the periodicity lemma on strings with
holes.
Theoret. Comput. Sci., 410(43):4295-4302, 2009.

® Peter Weiner.
Linear pattern matching algorithms.
In Proc. 14th Symposium on Switching and Automata
Theory, pages 1-11, 1973.

	Abstract
	Computing Repetitions
	The Mysterious Combinatorics of Overlapping Squares
	Indeterminate Strings
	Characterizing Strings using Regularities
	Fast Computation of Global Data Structures

