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Abstract

In this thesis, we first establish a conjecture given in [Christodou-
lakis et al., Indeterminate strings, prefix arrays and undirected
graphs, Theoret. Comput. Sci. 600—4 (2015)] that the cardinality of
a basis B of the maximal cliques in a finite simple graph G of order
n is exactly the size ¢ of the minimum alphabet of an indeterminate
string * = x[l..n] whose associated graph Gy = G. We go on to
prove that the computation of such a B for given G is an NP-complete
problem, and then we describe a heuristic algorithm that computes
a basis B/, |B'| > |B|, which covers G. We also show that, for any
graph G without 3-cliques, |B'| < [n?/4]; hence that, on such graphs
with exactly [n?/4] cliques, our algorithm is optimal. We continue
by showing, using previous results, that [n?/4] is in fact the upper
bound for the size of a basis for all graphs.
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1 Introduction

In this thesis, we seek to extend the connections between graph theory and
stringology explored in [5]. We consider a string * = x[l..n] to be a se-
quence of letters x[i], 1 < i < n, that are nonempty subsets of the elements
of a given finite set 3, called the alphabet. If x[i] is a subset of cardinality
1, it is said to be a regular letter; otherwise, indeterminate. Similarly,
if & contains only regular letters, it is said to be regular; otherwise, in-
determinate. For example, on ¥ = {a,b,c}, & = ababe is regular, while
y = {a,b}ba{b, c}b is indeterminate.

Given string = x[1..n], we say that for 1 <i,j <n, x[i] matches z[j]
(written x[i] =~ x[j]) if and only if x[i] N x[j] # 0. Thus z[i] = z[j] =
x|i] ~ x[j]. As defined in [5], the associated graph Gx = (Vg,Ex) of
is the simple graph whose vertices are positions 1,2,...,n in  and whose
edges are the pairs (7, j) such that @[i] ~ x[j]. We say that x is essentially
regular whenever x[i| ~ x[j] = x[i] = x[j] for every 7,j. Hence every
essentially regular string can be replaced by an equivalent regular one, and
the associated graph of « is a collection of cliques if and only if x is essentially
regular.

For indeterminate strings, however, Gz is more interesting. In Section 4
we begin by proving a conjecture stated in [5], that given a finite simple graph
G whose maximal cliques have basis B, then |B| is the minimum alphabet
size of any string & whose associated graph Gz = G. We go on in Section 5
to show that the problem of determining a basis for a given graph G is NP-
complete. Section 6 describes an algorithm that approximates a basis of G by
assigning letters to the vertices of cliques until all vertices are labeled, thus
effectively computing a string & for which G = G. Experimental results of
Algorithm 1 are shown in Section 7. We will begin with Section 3, examining
preliminary research which motivates this thesis.

This is an example of the “reverse engineering” of a data structure, a
class of problem initiated in [12, 11] for the border array, and extended to
other structures in, for example, [2, 13, 6].

2 Contribution

This author was a contributor on [15], on which this thesis is based, along
with the other three authors. The paper [15] was published in the Journal



of Theoretical Computer Science.

This author’s specific contributions include: the proposal and develop-
ment of Algorithm 1, the correctness and upper bounds for the number of
symbols needed to label a graph as shown in Lemmas 6, 8,9, and 10. This au-
thor also implemented Algorithm 1 in Python to produce Figures 4, 5, and 3
to provide feedback on the general performance of Algorithm 1. Addition-
ally, this author created Figures 2 and 6 to provide examples of the output
of Algorithm 1.

3 Background

String algorithms have focused on searching for a pattern, a specified se-
quence of characters, in a much larger corpus of text. Very efficient pattern
search algorithms were presented in [4] and [18] that greatly improve upon
the naive approach by pre-processing of the pattern to enhance the speed on
the search by allowing the search to skip parts of the text being searched.
The naive approach does a character by character comparison of the pattern
and searched text which has a worst-case time complexity of O(nm), where n
is the length of the pattern and m is the length of the text. The algorithm put
forward in [4], known as the Boyer-Moore algorithm, is interesting, because
instead of starting the search by comparing the first character in the pattern
with the first character in the text, it starts comparisons at the end of the
pattern. The preprocessing that is done on the pattern produces multiple
tables of information which determines how many characters to the right to
shift the pattern in the search string and begin comparisons again to max-
imize the amount of comparisons that are skipped. This algorithm is able
to search for the pattern much more quickly than the naive approach and
works best on text that uses a large alphabet (i.e. natural language). The
Knuth-Morris-Pratt algorithms [18], conversely, searches the text similarly
to the naive algorithm, but uses a single “Partial Match” array to determine
how part to shift the pattern to the right for comparisons. This algorithm
works very well for strings with very small alphabets such as DNA sequences
which only use A, T, G, and C.

The second major area of focus for string algorithms is repeating sub-
strings (of any length), referred to as repetitions. The first paper on Stringol-
ogy by Axel Thue [27] demonstrated an algorithm to generate an infinite
string on an alphabet of only three letters. For repetitions, the most famous



theoretical result in the area of repetitions is the “periodicity lemma”:

Lemma 1 [9] Let p and q be two periods of x, and let d = gcd(p,q). If
p+q <|z|+d, then d is also a period of x.

This lemma provides a mechanism to calculate the lengths of periods in
strings. Aside from the string search algoritm that is shown in [18], the
“Partial Match” array used for the algorithm is equivalent to calculating the
period length of each prefix of a string. This is also called the Border Array:

Definition 2 /5] If a string & can be written * = w1v and € = wuy for
nonempty string v, w, where uy; &~ usy, then x is said to have a border of
length |u1| = |ual.

The border array of a string x = x[l..n| is an integer array B[1..n]
such that B[i] is the length of the longest border of x[1..1].

However, the border array specifies the border of every prefix of @, but,
for indeterminate strings and their intransitive match characteristics, that is
not necessarily true. The prefix array has no such deficiencies:

Definition 3 /5] The prefix array of a string € = x[l..n] is the integer
array y = y[l..n] such that for every i € 1..n,yl[i| is the length of the longest
prefix of x[i..n] that matches the prefix of x.

Let w = aa{a, b}b, then the prefix array y = 4310. The prefix array also
specifies all of the borders of every prefix, which the border array cannot for
indeterminate strings [25].

Indeterminate strings were first introduced in [10] as using a ”Don’t Care”
symbol in the alphabet of both the pattern and the search text as a general-
ization of the algorithm presented in [18]. One of the main areas of research
for indeterminate strings is pattern matching which is motivated by its appli-
cations to the field of computation biology introduced further below. Pattern
matching for indeterminate strings adds complications to the existing algo-
rithms, because the definition of match is expanded. The authors of [26]
have created a novel approach to pattern matching by combining other al-
gorithms to remove the dependence on the border array which is no longer
accurate for indeterminate strings. Other authors have also put forward
efficient algorithms for indeterminate strings, see [22, 23].



Indeterminate strings have been useful in various application areas, in-
cluding bioinformatics, crytpanalysis, search engines, etc. In computational
biology, DNA sequences can be encoded as long text strings, moreover finding
a pattern in the string allows for the letters A/T to be swapped with C/G,
repectively, and still be considered a match for the pattern. Pattern match-
ing is used in bioinformatics to identify proteins and DNA sequences with
the concept of alignment. Alignment is matching the pattern sequence of
DNA with a sequence that exists in the database. Two major software suites
are used to query sequence databases, BLAST [1] and FASTA [21], which
are used in a significant amount of computational biology research. An ex-
ample in bioinformation can be found in [7], where Doerr et al. created an
efficient computational model to predict the occurence of gene clusters in
chromosomal genetic data by looking at the common intervals of the inde-
terminate strings. The common interval of indeterminate strings, s and ¢, is
when C(s[i..j]) = C(t[p..q]) and C'is the set of characters in the substring of
the indeterminate string. Using such data, Doerr et al. was able to infer the
family of the gene clusters of the chromosomal DNA, which was required as
input in previous work. Another example of indeterminate strings in biol-
ogy is from [17]. Pattern matching on indeterminate patterns and text with
multiple patterns, and looking for the maximal overlap in matching regions.
The algorithms can also be applied to computer vision to combine multiple
images of the same object.

Indeterminate strings can be used in cryptanalysis. With more users, it
is inceasingly necessary to utilize cloud infrastructure to host users data. For
their data to be secure, however, the data must be encrypted. The use of
encrypted searches can be used to ensure that users will be able to securely
be able to access their data, which will never need to be decrypted for the
search. A Cyphertext-Policy Hidden Vector Encryption scheme allows from
encrypted searches while still allowing only policy based access to certain
parts on the text [3]. The scheme detailed in [28] allowed wildcards to cre-
ate policies for users. These policies allow the search of encrypted data by
multiple users by selecting wildcards when choosing which user is allowed
to access a particular search.An example would be a two departments, one
with access and one without access, trying to search an encrypted database.
The department without access would not be able to search any of the data,
while the department with access would be able to send search queries even
through all of the members of that deparment have different keys.

Indeterminate strings can also play a role in traffic phasing problems as
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described in [24]. The traffic phasing problem takes streams of traffic and
schedules times that each stream is able to access some resource. Streams
that are compatible are able to overlap. The problem can be represented
by a graph G where each vertex is a stream, and there is an edge between
vertices that have compatible time periods, S(x), where S(x) is the set of
time periods that a stream needs at a resource. We can the define compata-
bility as S(x) N S(y) # 0 [24]. This problem may be able to be mapped
onto indeterminate strings with the goal being a reduction in the number of
symbols that would be used to label the associated graph.

The previous research that inspired this thesis was [5], which showed a
link between prefix arrays, indeterminate strings, and undirected graphs. We
provide Algorithm 1 as a solution to the “reverse engineering” problem of
converting from an undirected graph to an indeterminate string, and provide
put forward properties of those indeterminate strings pertaining particularly
to the number of symbols they use.

4 Maximal Cliques in the Associated Graph
Ox

Let G be a finite simple graph. Recall that a clique C' is a complete subgraph
of G; C is said to be maximal if it is not a subgraph of any other clique.
Let S be the set of all maximal cliques in G, and let B be a smallest subset
of § such that every vertex and every edge of G occur in some member of B.
Then B is said to be a basis of the maximal cliques of G. Note that there
may be more than one basis for a given G (for an example, see Figure-1).

Lemma 4 Suppose that a finite simple graph G with vertex set V.= {1,2,...,n}
has a basis B of maximal cliques of cardinality o. Then there is a string x
on a base alphabet of size o whose associated graph G = G. No string on a
smaller alphabet has this property.

Proof. Let B = {C1,Cs,...,Cy}. Let {A:}7_; be distinct letters. We
construct a string x as follows. For each ordered pair (s,i) with 1 < s <o
and 1 < i < n, assign Ay to x[i] if vertex ¢ occurs in the maximal clique
Cs. It is clear from the definitions that the string @ so constructed satisfies

gr=0.



Figure 1: Graph on six vertices that can be partitioned into four maximal
cliques in two ways: {123, 146, 245, 356} or {456, 124, 235, 136} [5].

Now consider any string @ of length n for which G = G and let 7 be the
number of distinct (ordinary) letters occurring in @. For each such letter A,
there is a clique C) of G whose vertices are those i for which A € x[i]. Of
course, these cliques may not be maximal, but each C\ can be extended to
a maximal clique C{. Note that every vertex and edge of G occurs in one
of the cliques C) and a fortiori in one of the maximal cliques C}. However,
the ('}, might not all be distinct. Let 7" be the number of distinct . Then
7 > 7' > 0, the latter inequality following from the fact that there is a basis
of cardinality o. This shows that 7 cannot be less than o and completes the
proof. 0

5 Computing Maximal Cliques is NPC

As mentioned at the end of Section 1, we are interested in “reverse engi-
neering” a data structure, which in our case means that for a given G we
want to find a string @ such that G = G, where we may impose additional
conditions on G and x. At an abstract level, the problem may be stated
as follows: given an “empty” data structure that satisfies certain properties,
can we populate it with data that satisfies those properties? It is easy to see
that this is the problem of satisfiability in disguise, and so the NPC results
of this section are to be expected. Here we show that, given a graph G and
a parameter K, the problem of finding & over an alphabet ¥, [¥| < K, such
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that G = G, is NPC.
Problem [GT17] in [14, p. 194], COVERING BY CLIQUES, is defined as
follows:

INSTANCE: Graph G = (V, E), positive integer K < |E|.

QUESTION: Are there k < K subsets Vi, V5, ..., V, of V such that each
V; induces a complete subgraph (clique) of G' and such that for each
edge (u,v) € E there is some V; that contains both u and v?

For a given graph G we are interested in computing o, the minimum
number of labels necessary to label G in such a way that two nodes share a
label if and only if they share an edge. By Lemma 4 we know that o is the
size of any basis B of G. Since we know that |B| < |E| < |V|*> = n?, we can
reduce the computation of ¢ to COVERING BY CLIQUES in polynomial
time by doing a binary search for the smallest K for which the answer to the
question is “yes.” This smallest K is our o. On the other hand, COVERING
BY CLIQUES can also be reduced in polynomial time to our problem of
computing ¢ as follows: if K > o, then the answer to COVERING BY
CLIQUES is clearly “yes,” as k = |B] = ¢ < K; while if K < o, then the
answer is “no.” To see this, note that if V, V5, ..., Vi, k < K were a covering
by (not necessarily maximal) cliques, then each V; could be extended to some
maximal V;, and so, eliminating possible duplicates, V/,VJ ..., V}’k,, where
k' <k < K < o, would be a basis, giving us a contradiction.

Thus computing the size of B for a given graph G is NPC, which by
Lemma 4 means that given a graph G, computing the size of the smallest
alphabet for an indeterminate @ such that G = G is also NPC. In other
words:

Lemma 5 Given a graph G, finding an indeterminate x on a minimum
alphabet such that G = G is an NPC problem.

6 Graph Labeling Algorithm

In this section we introduce an algorithm which takes as input a graph G,
and outputs a labeling that respects its edge relations, thus effectively an
such that G = G. Our algorithm works by exploring maximal cliques, and
assigning all the vertices in a given clique the same symbol; as in general
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vertices may be located in several cliques, they may get several labels. We
want the labeling to be as frugal as possible, but since in the last section we
showed that the problem of finding a string with minimum alphabet size is
NPC, we cannot expect a polynomial time procedure, such as Algorithm 1,
to furnish us with an optimal labeling. Nevertheless, Algorithm 1 is simple,
and performs well, as we discuss in this section. Essentially, it inspects all
vertices w adjacent to each vertex v; then, by considering all other vertices ¢
also adjacent to v, it seeks to find a largest clique containing the edge (v, w).

Algorithm 1 Given the adjacency lists of the n vertices of G, compute a
set of cliques that cover G so that each vertex ¢ has a set of labels (letters)
specifying a corresponding string entry x[i].

1: procedure LABELGRAPH(v.adj:Adjaceny List for v, v.label:{} ¥V v)

2: A1

3 for v < 1 to n do

4 if v.degree = 0 then

5: v.dabel < {\}

6: A= A+1

7 else

8 for all w € v.adj do

9: if v.label Nw.label = () then
10: v.label < v.label U {\}
11: w.label « w.label U {\}
12: clique + {w}
13: for all g € v.adj — {w} do
14: if clique C q.adj then
15: q.label < q.label U {\}
16: clique + clique U {q}
17: A A+1

Lemma 6 Algorithm 1 is correct; i.e., given G as input, it outputs & such

Proof. First note that X is updated on every pass in which a label is assigned.

Thus every label assigned determines a unique v, namely the pass in which
that label is assigned. In particular, each vertex of degree 0 is assigned its
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own unique label. We now show that for vertices of positive degree,
x[v] = z[w] <= (v,w) € E (where G = (V| E)). (1)

Suppose that (v,w) € E. In step v of the outer for-loop on line 3, we will
eventually consider w as w € v.adj on line 8. If v.label Nw.label # () on line
9, then x[v] ~ x[w]|. Otherwise, we assign A to both (line 10,11), and reach
the same conclusion.

Conversely, suppose that @[w;] &~ x[w;y]. Then there is a label A that the
algorithm assigns to w; and wy. These assignments take place on a specific
pass, say v. If v ¢ {wy,ws}, we must have (in order for any assignments to
occur), w € v.adj with v.label N w.label = (). Then ) is assigned to v and w
and clique is set equal to w. If w ¢ {w;,wy}, then the assignments of A to
wy and wy must take place in line 15. This requires that one of them (say
wy ) is adjacent to w and then wy is adjacent to both w and wy. In particular,
(wy,wy) € E. On the other hand, if w = w; (or equivalently, ws), then wy
must be assigned the label A in line 15, which requires that w, is adjacent to
wy, the only element of clique at this point.

Now consider the possibility that v € {w;, wy}. Without loss of generality,
v =w;. If wy € v.adj, then (w1, ws) € E. Otherwise, there exists w € v.adj
and both v and w are assigned the label A in lines 10 and 11 respectively. In
order for wy to be assigned the label A in line 15, we need ws to be adjacent
to v = ws.

Thus, we may conclude x[w;] ~ x[ws] implies (wy,ws) € F. 0

Note that the worst-case running time of Algorithm 1 is O(n*), due to the
three nested for loops at lines 3, 8, 13 and the check on line 14 that clique
is a subset of ¢g.adj which takes a linear amount of time. Also note that we
assume that the adjacency relation is given as a set of lists: each vertex v
has an associated adjacency list v.adj that lists all the other vertices that are
connected to it by an edge. A lot depends on how these lists are populated;
i.e., how G is implemented. Suppose that G is presented as follows: for each
clique C; in a basis B, we select a representative vertex v;, and reorder the
vertices in V' so that vy, vs,...,v, are processed first, therefore considered
first in the loop on line 3. Then by listing all the w’s in C; first in the
adjacency list of v; — that is, in v;.adj — we will have refined the algorithm
to run in such a way that it traces the cliques in B and returns an optimal
labeling.
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Lemma 7 The upper bound on the size of the alphabet produced by Algo-
rithm 1 is n(n — 1)/2, where n is the number of vertices in G.

Proof.  Consider a naive algorithm that works as follows. First it assigns
a new symbol A, to each isolated vertex v. The remaining vertices are all
adjacent on some edge; so it considers all the edges e = (u,v) in G, and
assigns a new symbol A\, to u and to v. This creates an correct labeling,
though one that is not optimal in general. Still this procedure shows us
that the optimal labeling, whatever it is, is always bounded above by the
maximum possible number of edges in an undirected graph, which is (;L) =
n(n — 1)/2. Further, it can be easily seen that the naive algorithm is not
optimal. Consider a triangle, i.e., a clique on three edges. The optimal
solution employs one symbol; the naive algorithm described above uses three.
Incidentally, Algorithm 1 also produces an optimal solution in this case.
Now Algorithm 1 does no worse than this naive procedure. It assigns
labels to all the isolated vertices in lines 4-6 in a way that is optimal. Then
the two loops (starting at line 3 and starting at line 8) consider all the edges,
and they assign at most one new label per edge, as can be seen from line 9.
Algorithm 1 may in fact perform better than the naive procedure as all the
vertices in a given clique may be dispatched with the same label. See Fig-
ure 2. 0

Lemma 8 Given a graph G that does not contain any 3-cliques, Algorithm 1
will produce a labeling with alphabet size at most |n?/4].

Proof. Ignore singletons which contribute one symbol each. Otherwise, we
will always skip lines 15 and 16 in Algorithm 1 because there are no 3-cliques,
and the condition in line 14 is never satisfied. Thus we effectively add one
symbol per edge on line 10. By Mantel’s Theorem [20], a graph without
3-cliques can have at most [n?/4] edges, and so at most as many labels. 0O

Lemma 9 Given a graph G on |n?/4] edges that does not contain any 3-
cliques, a correct labeling requires an alphabet size of at least |n*/4]. Thus
Algorithm 1 is optimal on such graphs.

Proof. By way of contradiction, suppose that fewer than |n?/4| symbols are
required for a correct labeling. From Lemma 4 we know that if B is a basis,

14



P& &l

) Vertex 1 is selected as
the first v.

(d) Since vertices 1,2, and 3
all have the same label (A =
1), the check on line 9 fails
w = 3 and all of the vertices
adjacent to v = 2.

) Vertex 2 is then selected
The test on line 9
passes, and A = 1 is added
to both 1 and 2.

) Vertex 3 is selected as g.
Slnce 3 is adjacent to both
1 and 2, the test on line 13
passes and A = 1 is added
to 3.

(e) Vertex 3 is now v, and
the checks on line 9 fail for
w = 1,2. The test passes on
w = 4, so A = 2 is added
to 3 and 4. Vertex 4 as v
fails all checks on line 9, and
Algorithm 1 ends.

Figure 2: Example of Algorithm 1 where green is v, blue is w, and red is q.

The resulting indeterminate string @ = 11{1, 2}2.
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then |B| < |n?/4]. By the Pigeonhole Principle, this means that there must
exist some (maximal) clique C' in B that covers at least two edges. But in
turn, this means that C' contains at least three vertices, and hence a 3-clique,
giving us a contradiction. Therefore, G requires at least |n?/4] symbols. 0

Lemma 10 Given a graph G, the maximum number of labels needed for a
correct labeling is at most [n*/4].

Proof.  As shown in [8] and restated in [24], let 0.(G) be the size of the
smallest set of cliques that covers all of the edges of G. Then, 6.(G) of any
G without isolated vertices is at most [n?/4]. Since 6.(G) is the size of the
smallest such covering, 0.(G) = |B|. Therefore, |B] < |n?/4]. Thus, the
number of labels required for a correct labeling < |n?/4|. To account for the
isolated vertices ¢, we can remove them from the graph to get G’ which has
n — c vertices. This gives a |B/| < [(n — ¢)?/4], and |B| = |B'| + ¢ < |n?/4]
for ¢ > 1. 0

From Lemma 10, we have an upper bound on the number of labels for
any graph. However, as shown in [19], this bound can be reduced with the
number of edges in the graph. Futher, the case where |E| > |[n?/4] is of
interest, because a graph with fewer edges can be covered by a B such that
|B] < |E|. From the result of [19], let k = (}) — |E|, and ¢ be the greatest
natural number such that t* —¢ < k. Then G can be covered by |B| < k +1.

The problem COVERING BY CLIQUES discussed in Section 5 was
shown in [14, p. 193] to be NPC by a reduction from PARTITION INTO
CLIQUES [GT15], defined as follows:

INSTANCE: Graph G = (V, E), positive integer K < |E]|.

QUESTION: Can the vertices of GG be partitioned into k£ < K disjoint sets
Vi, Vo, ..., Vi such that, for 1 <14 <k, the subgraph induced by V; is a
clique?

Note that a partition into cliques is not necessarily a covering by cliques,
because a partition does not require that for every edge (u,v) there be a
clique containing both v and v. In light of this, recall from Section 1 that
x[i] matches x[j] if and only if they share a common symbol. It is easy to

16



see that ~ is, as a relation, both reflexive and symmetric, but not necessarily
transitive. However, it is clear that given a graph G, we can find indetermi-
nate x such that G = G, where x is on an alphabet of size K, and ~ on x is
transitive (hence an equivalence relation) provided (G, K) is a “yes” instance
of PARTITION INTO CLIQUES, where the partition is also a covering. But
in that case, x is simply a regular string, and so = is trivially transitive. Thus
we have the following interesting consequence of Algorithm 1:

Lemma 11 Given a graph G, whether there exists regular @ such that G =
G can be determined in polynomial time using Algorithm 1.

Proof. The algorithm examines all cliques one by one, tracing each out
until complete, and assigning a single symbol to it. This is repeated for each
clique, and yields a single label for each clique. O

Thus, if G can be represented with a regular @, Algorithm 1 will establish
that in polynomial time. But, if G cannot be represented with a regular
a, Algorithm 1 will find in polynomial time an indeterminate & such that
Gx = G, but the alphabet of this indeterminate & will not be necessarily
minimal.

7 Implemenation of Algorithm-1

Implentation of Algorithm-1 was done with the Python programming lan-
guage (Python Sofware Foundation, https://www.python.org/) version 3.4.4
with the matplotlib library[16] to graph results. The source code is available
at: https://github.com/joelhelling/GraphIndeterminates/tree/master/Python.
Initially the implementation of Algorithm-1 was a nearly a direct trans-
lation from the previous psuedocode with the use of Python’s standard Set
data structure. This implementation performed correctly but was unable to
deal with graphs that were larger than 100 vertices. The bulk of computation
time was spent performing generic Set operations which run in linear time.
The speed of the Set operations was improved by implementing the Set
operations as Bit manipulations, where each intersection and subset can be
checked with a logical And. The original Adjacency List and list of labels
was replaced with Python’s built in integer type used as a bit vector.This
change provided a major increase in the number of vertices that were able
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Average Time on Graphs with 5 to 200 Vertices
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Figure 3: This is a plot of the average time used to label a graph. The z-axis
is the number of vertices in the graph, and the y-axis is the average time
used to label 100 random graphs on n = 5,...,200 vertices.

to be in the graph and have processing complete. However, a limitation of
this method is an increase in the amount of memory used for the resulting
labels and adjacency list due to the use of expanding integers in the Python
runtime, which can cause out of memory errors for graphs that are too large
(i.e. more than 1000 vertices).

The average running time used to label graphs on n =5, ..., 200 vertices
is shown in Figure 3. The graph shows that the average time to label each
individual graph increases exponentially with the size of the graph.

8 Discussion of Results
Let G; and G, be two undirected simple graphs or order n whose vertices are

labeled 1,2,...,n. G; and G, are said to be distinct if and only if there
exists no permutation of the vertex labels of Gy such that the adjacency sets
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of G and G, are pairwise identical. Let G denote the set of all distinct
graphs of order n.

For any graph G € G let B denote a basis of the set of cliques (that is,
by Lemma 4, a minimum alphabet of the associated string), and let b = |B].
Denote by b™ the average value of b over all G € G,

Average Number of Labels on Graphs with 2 to 200 Vertices
3500

3000

N
[
o
=]

2000

1500

Average Number of Labels

=
[=]
=]
=]

500

0 20 a0 60 80 100 120 140 160 180 200
Number of Vertices

Figure 4: This is a plot of the average number of symbols that are used to
label a graph. The z-axis is the number of vertices in the graph, and the
y-axis is the average number of symbols used to label 100 random graphs on
n=2,...,200 vertices.

Now consider the process of computing a graph G’ in GV from a graph
G in G . All the graphs of G"*Y can be formed by adding a single vertex v
with label n+1, then adding ¢ = 0,1,...,n edges in all possible ways to the
vertices of each G € G, The graphs formed in this manner will however
not be distinct. For t = 0, a single new graph will be introduced, whose basis
bpi1 = b,+1, where b, is the basis of G. For t > 1, every collection of new
edges from v that include every vertex in a maximal clique of G™ will extend
the maximal clique by a single vertex, and may, but need not add a single
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element to the basis of G that has no equivalent in G™. Otherwise,
collections of new edges that access only some vertices in a maximal clique
of G will surely add at least one new element.

With this construction in mind, it appears plausible that, especially when
graphs are constrained to be distinct, 5+ will not be much larger than 5.
As an example, b = 1, 6@ = 1.5, b® = 2 and b = 29/11. This idea is
reinforced by Figure 4, which shows the growth of Algorithm 1’s output as
n ranges from 5 to 200, and leads to the following

Conjecture 12 b™ € O(nlogn).

9 Conclusion and future work

From the analysis of Algorithm 1, we see that the problem is easy when
there are very few edges (e.g., isolated vertices require only as many labels
as vertices), also when there are a lot of vertices (e.g., a clique requires just
one label). So the problem is difficult somewhere in between. As shown in
Figure 5, this intuition is borne out by experimental data.

We have found the z-axis point where graphs such as those of Figure 5
reach the maximum. We show in Lemma 10 that it is [n?/4]. We also think
that the graph might be a “saw-tooth” graph, because every graph on n
vertices is the subgraph of some graph on n + 1 vertices, so that maxima
from smaller graphs may be reflected as local maxima in the bigger graph.

We also conjecture that our algorithm is optimal up to a relabeling of the
vertices. That is, for every graph G, there exists a graph G’ isomorphic to G
such that the alphabet of the indeterminate string « produced by Algorithm 1
applied to G’ has size 0. We discussed this briefly following the proof of
Lemma 6, where we point out that Algorithm 1 will return a minimal labeling
as long as we can “rig” the order of the vertices in the outer loop, and the
ordering of each adjacency list to effectively trace out the cliques in a given
basis B (this of course requires knowing the basis B before hand). Here we
conjecture that there is one universal ordering of the vertices, so that the
vertices in each adjacency list are also listed in that order, so that given that
ordering of the graph, Algorithm 1 will return an optimal x. See Figure 6.

We can also look to fast heuristics that can improve upon the resulting
labeling without increasing the worst-case running time of Algorithm 1. An
example of such a heuristic would be sorting the vertices based on the degree
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Maximum Number of Symbols for Graphs on 7 Vertices
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Figure 5: This is a plot of all graphs on 7 vertices, where the x-axis is the
number of edges (from 0 to a max of 21), and the y-axis is the maximum
number of labels over all the graphs with a fixed number of edges. Note the
low number of labels at the extremes, and the spike in the middle.

of the vertex. Another more complex heuristic can be sorting the Adja-
cency List of v(v.adj) with respect to the number of labels that are currently
assigned to each vertex in the Adjacency List.

We finally present open questions related to graph labeling and the Al-
gorithm 1:

1. What are efficient heurstics that can be applied to Algorithm 1 to
produce labeling results that are closer to optimal?

2. What is the upper-bound on the number of labels that Algorithms 1
produces over the minimal result?

21



4 @ 6
(a) Non-optimal Ordering (b) Optimal Ordering

Figure 6: Algorithm 1 on (a) will produce x = 1{1,2,3}{1, 3,4}2{2,3,4}4,
while (b) will produce @ = 123{1,2}{1,3}{2,3}. This results in a smaller

alphabet for (b), which in this case is minimal.

3. In light of Lemma 11, is there a faster way (say, O(n?)) algorithms to

determine whether, given G, there exists a regular « such that G = G?

4. What stuctures of a graph can be inferred from its associated indeter-

minate string?
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