
A permutation-based algorithm for computing
covers from matchings

Ariel Fernandez1, Ryszard Janicki1, and Michael Soltys2

1 McMaster University
1280 Main Street West

Hamilton, ON L8S 4L8, Canada
agfern@gmail.com,janicki@mcmaster.ca

2 California State University at Channel Islands
Department of Computer Science

One University Drive
Camarillo, CA 93012, U.S.A.
michael.soltys@csuci.edu

Abstract. We present a matrix permutation algorithm for computing
a minimal vertex cover from a maximal matching in a bipartite graph.
Our algorithm is linear time and linear space, and provides an interesting
perspective on a well known problem. Unlike most algorithms, it does
not use the concept of alternating paths, and it is formulated entirely in
terms of combinatorial operations on a binary matrix.

Keywords: minimal vertex cover, bipartite graph, maximal matching, König’s
Mini-Max theorem

1 Introduction

In this paper we provide a new better solution to an old problem.
Suppose that we are given a bipartite graph G = (V = V

1

[V
2

, E), i.e., a
graph where V

1

\V
2

= ; and E ✓ V
1

⇥V
2

. Let A
G

be the adjacency matrix of G,
of size |V

1

|⇥ |V
2

|, and with 0-1 entries: (i, j) 2 E i↵ (A
G

)
ij

= 1. A matching M is
a subset of E consisting of a “pairing” of the vertices of G in such a way that no
two edges of M meet at the same vertex. Again, we can represent a matching as
a set of pairs of nodes of V , i.e., M ✓ E, or as an adjacency matrix. A matching
M is maximal if |M | is as large as possible, i.e., when |M | is maximum. We talk
of bipartite graphs and their adjacency matrix representations interchangeably.

A vertex cover of a graph G = (V,E) is a set of vertices C ✓ V such that
each edge of the graph is incident to at least one vertex of the set C, i.e. for
each e = (v

1

, v
2

) 2 E, {v
1

, v
2

} \ C 6= ;. A vertex cover C is minimal if |C| is
minimum.

It is well known that given a general graph, a maximal matching can be
computed with the classical Edmond’s blossom algorithm ([Edm65]) in O(|V |4)
time, or the more complex O(|V | 12 |E|) algorithm by Micali and Vazirani [MV80].

For bipartite graphs, the easiest solution is to use the Ford-Fulkerson algorithm
for flows [FF62] (c.f. [CLRS09]), either directly, or its modified version based on
the concept of alternating paths, i.e., paths that alternate between edges that
are in the matching and edges that are not in the matching (c.f. [AHU83]), both
run in O(|V ||E|) time; or we can use the more e�cient (especially for sparse
graphs) Hopcroft-Karp algorithm [HK73] which again runs in O(|V | 12 |E|), or,
for dense graphs, the algorithm of [ABMP91] which runs in O

⇣
|V |1.5

q
|E|

log |V |

⌘
.

On the other hand, for general graphs, the problem of computing minimal
vertex covers isNP-hard [Kar72]. For bipartite graphs, due to König’s Mini-Max
Theorem [Kön16a,Kön16b], minimal vertex covers can be derived from maximal
matchings in O(|V | + |E|) time (c.f. [MRS+11, Lemma 3]). This means that
for all algorithms known so far, the time complexity of computing a minimal
vertex cover for bipartite graphs is the same as time complexity of computing
an appropriate maximal matching. All widely known derivation methods use the
idea of alternating paths (or equivalent concepts) (c.f. [Gav77,Sto01]).

In this paper we use a di↵erent approach. We start with a matrix version of
König’s Mini-Max Theorem, instead of its more popular graph theory version.
In fact we use graph theory terminology for readability only, as they are not
really needed to present and implement our solution. All operations are simple
matrix operations which can be implemented very e�ciently.

Our algorithm is linear in both time and space with respect to the size of a
binary matrix that represents a given bipartite graph. No assumptions are made
about the method for computing maximal matchings.

2 Problem Formulation and König’s Mini-Max Theorems

Let M
G

= MA(G) be the output of running an algorithm MA that computes
a maximal matching for a given bipartite graph G = (V

1

[V
2

, E), i.e., M
G

is
the adjacency matrix of a maximal matching produced by the algorithm MA.
Let A

G

be an adjacency matrix that defines the graph G, and let M
G

denote
the adjacency matrix for a maximal matching of G. Note that both A

G

and
M

G

are of size |V
1

|⇥ |V
2

|, and thus four times smaller than a standard |V |⇥ |V |
representation. In what follows we will assume bipartite graphs to be represented
by |V

1

|⇥ |V
2

| adjacency matrices.
We find it useful to give two equivalent formulations of König’s theorem. The

first one is the standard formulation that uses the language of graphs.

Theorem 1 (König’s Mini-Max version I) Given a bipartite graph G, if ⇢
G

is the size of the maximal matching of G and ⇢0
G

is the size of the minimal vertex
cover of G, then ⇢

G

= ⇢0
G

.

The proof of Theorem 1 (c.f. [BR91]) furnishes the basic ideas that will be
used later in Section 3 to transform maximal matchings into minimal covers.

Given an m⇥ n 0-1 matrix A, let S
A

be a set of pairs of indices, i.e.,

S
A

= {(i
1

, j
1

), (i
2

, j
2

), . . . , (i
k

, j
k

)} ✓ N⇥ N,

2

where A
ipjp = 1 for every p 2 [k], and all the i

p

’s, as well as all the j
p

’s, are
distinct. In other words, S

A

is a set of positions in the matrix A containing 1s,
and no two of those 1s are on the same row or the same column, i.e., no two of
them are on the same line. Given A, the maximum possible size of such a set
S
A

is called the term rank of A ([BR91]). Notice that if A
G

is the adjacency
matrix of a bipartite graph G, then the term rank equals the size of a maximal
matching in G.

On the other hand, given a 0-1 matrix A of size m⇥ n, a set C of lines, i.e.,
a collection of rows and columns of A, is called a cover if every 1 in A is in at
least one row or column of C. Then, given a bipartite graph G, the size of the
minimal vertex cover corresponds to the minimal cover of A

G

.
We now restate König’s theorem but using the language of matrices.

Theorem 2 (König’s Mini-Max version II) Let A be a 0-1 matrix of size
m⇥n. The minimum number of lines in A that cover all of the 1s in A is equal
to the maximum number of 1s in A, no two of the 1s on the same line.

Since a bipartite graph G can be identified with its 0-1 matrix representation
A

G

of size |V
1

|⇥ |V
2

|, we may write M
AG = MA(A

G

) instead of M
G

= MA(G).
Our goal is to design an algorithm, which we call PerAlg, that takes an

input hA
G

,M
AGi and produces a set of lines C

AG that form a minimal cover of
A

G

. We want PerAlg to compute C
AG in O(|A

G

|), where |A
G

| is the size of
the matrix A

G

.

3 Preliminaries to our algorithm

Our permutation-based algorithm, PerAlg, runs in time O(|V
1

||V
2

|). Since
|V

1

||V
2

| = |A
G

|, the size of the matrix representing G, PerAlg runs in lin-
ear time in the size of |A

G

|, assuming a model of computation (such as RAM)
where the matrix entries can be accessed at cost O(1).

The main idea behind PerAlg is that, given a maximal matching M of a
bipartite G, the minimal vertex cover C can be constructed by taking, for each
e 2 M , one of e’s end point nodes. Of course, not all 2|M | selections of end-
points work, but at least one selection of end-points works. We show the details
in Lemma 1.

We start with some terminology for denoting lines: given an m⇥n matrix A,
we can denote the lines as r

1

, r
2

, . . . , r
m

and c
1

, c
2

, . . . , c
n

, and the r’s denote the
rows and the c’s denote the columns. It will also be advantageous to denote by
lo
(i,j)

a line going through entry i, j, where o 2 {0, 1}, where i 2 [m] and j 2 [n],
and

o =

(
0 lo

(i,j)

is vertical, i.e., l0
(i,j)

= c
j

1 lo
(i,j)

is horizontal, i.e., l1
(i,j)

= r
i

.

A cover is a set of lines Co,i,j

A

= {lo1
(i1,j1)

, lo2
(i2,j2)

, . . . , lok
(ik,jk)

}, with orientation

o = o
1

o
2

. . . o
k

, and i = i
1

, i
2

, . . . , i
k

, j = j
1

, j
2

, . . . , j
k

, and it is such that any 1

3

in A is covered by (at least) one of these lines; i.e., if there is a 1 in position
(i, j) of the matrix A, then there exists a p 2 [k] such that l

op

(ip,jp)
2 Co,i,j

A

and

[i = i
p

^ o
p

= 0] _ [j = j
p

^ o
p

= 1].

If M
A

is a maximal matching, the Mini-Max theorem says that there exist
o, i, j of length k = |M

A

| such that Co,i,j

A

is a cover. Recall that M
A

represents
a maximal matching as a 0-1 matrix, and that a 1 in position (i, j) means that
(i, j) is an edge in the matching (i.e., i 2 V

1

and j 2 V
2

are “paired”). But in
terms of “matrix combinatorics” this means that the 1s in M

A

are positioned in
such a way that no two 1s are on the same line (vertical or horizontal). Thus,
we know that Co,i,j

A

must have lines through all the 1s of M
A

; further, any such

line cannot cover more than a single 1. Since we know that the size of Co,i,j

A

is the size of M
A

, each 1 of M
A

claims exactly one line. Hence i, j are directly
determined by M

A

, but o needs to be computed.

Lemma 1 Suppose that G = (V = V
1

[V
2

, E) is a bipartite graph, A its adja-
cency matrix, and M

A

a maximal matching. Suppose

M
A

= {(i
1

, j
1

), (i
2

, j
2

), . . . , (i
k

, j
k

)},

i.e., M
A

is a list of all the positions of M
A

with a 1 in them (k = |M
A

|). Then,
it must be the case that

Co,i,j

A

= {lo1
(i1,j1)

, lo2
(i2,j2)

, . . . , lok
(ik,jk)

}

is a minimal cover for some o 2 {0, 1}k.

Proof. We know that for all p 2 [k], A
(ipjp)

= 1, and so our cover must contain,
for every p 2 [k], either r

ip or c
jp . By the Mini-Max theorem, there is a cover of

size k, and so, by the pigeonhole principle, we can say something stronger: our
cover must consist, for every p 2 [k], of either r

ip or c
jp . But that is the same

as saying that our cover must consist, for every p 2 [k], of l
op

(ip,jp)
, for o

p

= 0 or

o
p

= 1. The lemma follows from that. ut

Given permutations ⇡ : [m] �! [m] and ⌧ : [n] �! [n], let P
⇡

and Q
⌧

be the
corresponding permutation matrices. The matrices P

⇡

and Q
⌧

are obtained from
the identity matrix by exchanging the rows according to ⇡ and ⌧ , respectively.
Then: (P

⇡

M
A

Q
⌧

)
ij

= (M
A

)
⇡

�1
(i)⌧

�1
(j)

.
Given an m ⇥ n matrix A, and given a maximal matching M

A

, which we
represent as M

A

= {(i
1

, j
1

), (i
2

, j
2

), . . . , (i
k

, j
k

)}, where i
1

< i
2

< · · · < i
k

, then
the pair of permutations:

⇡
i
1

7! 1
i
2

7! 2
...

i
k

7! k

⌧
j
1

7! 1
j
2

7! 2
...

j
k

7! k

4

are order preserving permutations according to rows (for M
A

). Note that the
indices that are not specified are left fixed by ⇡, ⌧ .

That is, P
⇡

M
A

Q
⌧

place the 1s on the main diagonal, in the original order of
the rows of M

A

. Notice also that:

P
⇡

AQ
⌧

=


T A

1

A
2

0
(m�k)⇥(n�k)

�
=

2

66666666666664

1
1 ⇤

⇤
. . . A

1

1

A
2

0

3

77777777777775

(1)

That is, the 1s in M
A

are permuted to be on the diagonal of the upper-left
k⇥k quadrant; call this quadrant T . The first thing to observe is that the lower-
right (m � k) ⇥ (n � k) quadrant consists entirely of zeros. This assertion is a
consequence of the Min-Max theorem: all the lines in Co,i,j

A

pass through a 1 in
T ; none of these lines can possibly touch this lower-right quadrant, so it must
be full of zeros.

For example, suppose that we have a graph G as in Figure 1; examine the
values of M

A

and P
⇡

AQ
⌧

.

(a) Graph G

2

6666664

1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
1 1 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0

3

7777775

(b) A = AG

2

6666664

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

7777775

(c) MA = MAG

2

6666664

1 0 0 1 0 0
0 1 0 0 0 0
0 1 1 0 0 0
1 0 1 1 0 0
0 0 1 0 0 0
0 0 1 0 0 0

3

7777775

(d) P⇡AGQ⌧

Fig. 1: Then, ⇡ is the identity permutation, and ⌧ fixes 1, moves 2 to 4, 3 to 2, 4
to 3, and fixes 5 and 6. The lines in red in (a) indicate a maximal matching; the
red ones in (d) indicate the corresponding lines, now placed on diagonal. Note
that the 2⇥ 2 lower-right submatrix is zero as it should.

The next Lemma relates the covering of the original A to the covering of
permuted A, i.e., P

⇡

AQ
⌧

.

Lemma 2 Suppose that ⇡, ⌧ are order preserving permutations according to
rows. Then, if

Co,i,j

A

= {lo1
(i1,j1)

, lo2
(i2,j2)

, . . . , lok
(ik,jk)

}

5

is a covering of A, then

C
o,⇡(i),⌧(j)

P⇡AQ⌧
= {lo1

(⇡(i1),⌧(j1))
, lo2

(⇡(i2),⌧(j2))
, . . . , lok

(⇡(ik),⌧(jk))
}

is a covering of P
⇡

AQ
⌧

.

Proof. Suppose that Co,i,j

A

= {lo1
(i1,j1)

, lo2
(i2,j2)

, . . . , lok
(ik,jk)

} is indeed a covering

of A. Consider any entry (p, q) of P
⇡

AQ
⌧

, i.e., (P
⇡

AQ
⌧

)
pq

= A
⇡

�1
(p)⌧

�1
(q)

. If

A
⇡

�1
(p)⌧

�1
(q)

= 1, then either r
⇡

�1
(p)

2 Co,i,j

A

or c
⌧

�1
(q)

2 Co,i,j

A

. This last
statement means that there exists an a 2 [k] such that at least one of the
following two statements is true:

– loa
(ia,ja)

2 Co,i,j

A

where i
a

= ⇡�1(p) ^ o
a

= 1, or

– loa
(ia,ja)

2 Co,i,j

A

where j
a

= ⌧�1(q) ^ o
a

= 0,

which in turn means that at least one of the following is true

– loa
(⇡(ia),⌧(ja))

2 C
o,⇡(i),⌧(j)

P⇡AQ⌧
where ⇡(i

a

) = ⇡(⇡�1(p)) ^ o
a

= 1, or

– loa
(⇡(ia),⌧(ja))

2 C
o,⇡(i),⌧(j)

P⇡AQ⌧
where ⌧(j

a

) = ⌧(⌧�1(q)) ^ o
a

= 0,

and as ⇡, ⌧ are permutations, they are bijections, and so ⇡(⇡�1(p)) = p and
⌧(⌧�1(q)) = q, and so restating once again we obtain:

– l1
(p,⌧(ja))

2 C
o,⇡(i),⌧(j)

P⇡AQ⌧
, or

– l0
(⇡(ia),q)

2 C
o,⇡(i),⌧(j)

P⇡AQ⌧
.

In either case, this means that there is a line covering entry (p, q) of P
⇡

AQ
⌧

if

that entry is a 1. Hence, Co,⇡(i),⌧(j)

P⇡AQ⌧
is indeed a covering for P

⇡

AQ
⌧

. ut

The purpose of Lemma 2 is to show that given A
G

, we can reorder its rows
and columns at will — which corresponds to a relabelling of V

1

and V
2

— and
the resulting matrix has a maximal matching and minimal vertex cover of the
same size. Furthermore, we can easily compute the maximal matching and vertex
cover for the resulting matrix from the original one. Note that we assumed in
Lemma 2 that the permutations are order preserving permutations (according
to rows), and hence the orientation vector o is not a↵ected. If the permutations
are not order preserving, then we can still recompute the maximal matching and
minimal vertex cover, but we must apply the corresponding permutation to the
orientations. This is summarized in Corollary 1 below.

Corollary 1 Suppose that ⇡, ⌧ are order preserving permutations according to
rows, and that the diagonal 1s have been reordered by µ. Then, if Co,i,j

A

is a
covering of A, then

C
µ(o),⇡(i),⌧(j)

RµP⇡AQ⌧Rµ
= {loµ(1)

(µ(⇡(i1)),µ(⌧(j1)))
, l

oµ(2)

(µ(⇡(i2)),µ(⌧(j2)))
, . . . , l

oµ(k)

(µ(⇡(ik)),µ(⌧(jk)))
},

is a covering of R
µ

P
⇡

AQ
⌧

R
µ

.

6

4 Our algorithm

On input hA,M
A

i, where M
A

is a maximal matching for A, PerAlg computes
a minimal cover Co,i,j

A

. More precisely, as was shown in Lemma 1, given M
A

we
know a priori that:

Co,i,j

A

= {lo1
(i1,j1)

, lo2
(i2,j2)

, . . . , lok
(ik,jk)

},

is a minimal covering for some o, where the (i
p

, j
p

) are the non-zero entries of
M

A

. Hence, all that we need to compute in our algorithm is the orientation
vector o = o

1

o
2

. . . o
k

.
The analogy in the graph theoretic setting is the following: given a bipartite

graph G and a maximal matching M the minimal vertex cover can be selected
from M . This selection takes place by choosing for each edge e 2 M , one of its
end-points; a particular choice of end-points corresponds to a particular orien-
tation. We now present PerAlg for computing the orientations.

PerAlg:
Input: A,M

A

, m⇥ n 0-1 matrices, where M
A

is a maximal matching for A:

Step 1 If k = |M
A

| = min{m,n}, then
– {r

1

, r
2

, . . . , r
m

} is a cover if m  n; i.e., return o = 1m and exit
– {c

1

, c
2

, . . . , c
n

} is a cover if m > n; i.e., return o = 0n and exit
Step 2 Else, k = |M

A

| < min{m,n}, compute order preserving permutations

⇡, ⌧ that diagonalize M
A

, so P
⇡

AQ
⌧

=


T A

1

A
2

0
(m�k)⇥(n�k)

�
(Recall (1).)

Step 2a If A
1

= 0 _A
2

= 0:
– If A

1

= 0 then return o = 0k and exit
– If A

2

= 0 then return o = 1k and exit
Step 2b Else, A

1

6= 0^A
2

6= 0. Group the 1s on the diagonal of T into two sets,
the black and the green, of sizes k

1

and k
2

, respectively, with k = k
1

+ k
2

. A
black 1 in position (i, i) has the property that both row i of A

1

and column
i of A

2

consist of zeros. The green 1s do not have this property. For each
green 1 in position (j, j):
– If there is a 1 in row j of A

1

, then we let o
j

= 1.
– Else, we let o

j

= 0.
Let T 0 be T where the 1s under the lines covering the green 1s have been
zeroed out (see Figure 2b). In order to compute the orientations of the black
1s, repeat recursively Step 2a on T 0.

Output orientations o

Note that the situation, as represented in Figure 2a, is simplified for the sake
of clarity: the black 1s and the green 1s are depicted as two separate groups,
but in general they are interspersed. We could block them together to be as in
Figure 2a, but that would require in general a permutation that is not order
preserving; this could still be done by Corollary 1, but it introduces a technical

7

0

1

1

1

1

1

1

1

1

1

0

0

0

0

00

0

0

(a) Step 2b

1

1

1

1

(b) Repeat Step 2 with T 0

Fig. 2: In (b), T 0 is the upper-left quadrant, emphasized with a thicker border,
with the “green square” zeroed out, as well as the entries under the red lines,
arising from the cover of the “green square,” zeroed out.

overhead, as the orientations would no longer match (but we can always recover
the original orientations by inverting the permutation).

Also note that in Step 2b, under the assumption A
1

6= 0 ^ A
2

6= 0, we know
that k

2

> 0, so we know that not all 1s in the upper-left quadrant are black;
but it may well be the case that none are black, i.e., all the 1s are green, which
would correspond to k = k

2

.

Lemma 3 Algorithm PerAlg is correct. That is, given A and M
A

as input, it
computes o so that Co,i,j

A

is a vertex cover (of size |M
A

|).

Proof. By placing 1s on the diagonal of T , we ensure that each such 1 requires
at least one line to be covered. By Lemma 1 we can conclude that exactly one
line per 1 on the diagonal of T is su�cient to ensure a cover.

In Step 2b, if there is a 1 in row j of A
1

, then we let o
j

= 1, and otherwise
we let o

j

= 0. We know that this works because each 1 in T claims exactly one
line in the cover. So it follows that it is not possible for both row j of A

1

to
have a 1, and column j of the A

2

to have a 1, since that would require two lines
through (j, j).

Further, the square that encloses the green 1s must be successfully covered
by the above scheme: we have no choice as to the orientation of the lines covering
the green 1s, and by the Min-Max theorem a successful covering exists, and thus
the covering imposed by the green portions of A

1

and A
2

must necessarily work
for the square enclosing the green 1s. ut

In the following lemma, we show how to compute order preserving ⇡, ⌧ in
Step 2. It is clear that it can be done in linear space, that is, in space O(|A|).
Except for the computation of order preserving ⇡, ⌧ once in Step 2, the recursive
computation of the orientations is done inside A, with constantly many registers
indexing A (space O(log(|A|))) and hence also in space O(|A|). Thus, PerAlg
requires linear space.

8

Lemma 4 Algorithm PerAlg runs in time |A| = m⇥ n.

Proof. We show first the details of computing order preserving ⇡, ⌧ in Step 2.
We initialize r = 1 and q = 1, and we also initialize two integer arrays i, j of size
n. For every p 2 [n], if row p of M

A

is not zero, we let i[q] = p, and let q = q+1.
On the other hand, if row p of M

A

is zero, we let j[r] = p, and let r = r + 1.
We construct ⇡ from the two arrays i and j which encode the following

mapping:

i[1] 7! 1; i[2] 7! 2; . . . ; i[k] 7! k; j[1] 7! k + 1; j[2] 7! k + 2; . . . ; j[n� k] 7! n,

From ⇡ we construct P , where P has 1s in positions:

(1, i[1]), (2, i[2]), . . . , (k, i[k]), (k + 1, j[1]), (k + 2, j[2]), . . . , (n, j[n� k]),

and zeros everywhere else. The permutation matrix Q is constructed in a similar
manner from ⌧ . This can be clearly done in time and space proportional to |M

A

|,
i.e., in linear time and space.

Once we obtain P
⇡

AQ
⌧

, we work, recursively, with this matrix, starting at
each level of the recursion in Step 2a, in order to compute the orientations of the
black 1s. As was mentioned above, if there are no green 1s, then the procedure
terminates (outputting all horizontal or or vertical orientations, according to
which one of A

1

or A
2

is all zero). Thus, if k
2

= 0, we are done.
Otherwise, k

2

> 0, and the number of black 1s decreases by at least 1. Thus
this loop, in the worst case, can repeat at most k = |M

A

|  min{m,n} many
times. Note therefore that if there are many green 1s, the procedure has fewer
recursive calls; if there are few green 1s, the procedure has more recursive calls.

We make this argument a little bit more precise; let R(n) be the maximum
number of steps, in the worst-case, that our procedure takes on a matrix of size
n (let n denote here max{m,n}). Let a “step” be a single “atomic operation”
which for us is one of the following two: check what is the value in position (i, j)
of some matrix, and change the value in position (i, j) of some matrix to 0 or 1.

Suppose that k is the number of black 1’s, and n� k is the number of green
1’s. Then, we can see that the worst-case analysis yields the following bound on
the number of atomic steps:

R(n+ 1) = max
1<k<n

{k(n+ 1� k) +R(k)}. (2)

First note that there must be at least one black 1, for otherwise, there are
no more steps. There must also be at least two green 1’s; if there were only one
green 1, then either A

1

or A
2

would be all zero, which would also terminate
the algorithm. Finally, no green 1’s would imply termination as well. Hence the
maximum is computed over 1 < k < n for size n+ 1.

Note that in the recursive equation (2), k represents the number of black 1’s,
and so the corresponding sizes of A

1

and A
2

are given by k ⇥ (n + 1 � k) and
(n + 1 � k) ⇥ k, and hence the term k(n + 1 � k) — we are ignoring constants
in (2); it should really be 2k(n + 1 � k), but this does not change the order of

9

R(n). The recursive step is repeated on the black 1’s, and hence we add R(k)
in (2).

We now show by induction that R(n)  n2, where R is initialized with
R(0) = R(1) = 1. For k < n + 1, by inductive assumption R(k) < k2, and so
by (2):

R(n+ 1)  max
1<k<n

{k(n+ 1� k) + k2} = max
1<k<n

{kn+ k}

 n2 + n  n2 + 2n+ 1 = (n+ 1)2.

Finally, we show how PerAlg keeps track of the orientations o in each step of
the recursive procedure. As was pointed out in the note following the presentation
of PerAlg, the situation, as represented in Figure 2, is simplified for the sake of
clarity: the black 1s and the green 1s are depicted as two separate groups, but in
general they are interspersed. This means that some orientations are computed in
a given step, and some are not: o = o

1

o
2

. . . o
k

, where o
i1oi2 . . . oik1

correspond to
the black 1s and are not yet computed, and o

j1oj2 . . . ojk2
correspond to the green

1s, and have just been computed. Note that the o
ip ’s and o

jq ’s are interspersed
in o, and k = k

1

+ k
2

. But it is easy to keep track of this, because the order is
preserved throughout: let o be a string of 0s, 1s, and unset values. The unset
values always appear in the same order as the black 1s on the diagonal to be
dealt with in the next step. ut

From Lemma 3 and Lemma 4 we get the main result of the paper.

Theorem 3 Given a bipartite graph G = (V = V
1

[V
2

, E), and a maximal
matching M

G

, PerAlg runs in time and space O(|A
G

|) to compute a minimal
cover C

G

. That is, PerAlg runs in linear time and space to compute a minimal
cover from a maximal matching.

5 Conclusion

PerAlg is a matrix permutation based algorithm that runs in time O(|V
1

||V
2

|)
to transform a maximal matching of a bipartite graph into a minimal vertex
cover. In particular, PerAlg runs in linear time and space (as its input is a
binary matrix of size |V

1

|⇥ |V
2

|), and using the properties in the famous König’s
Mini-Max theorem, it performs basic counting of zeros and ones to compute a
minimal cover. Our algorithm is very simple, and does not employ the usual
graph theoretic properties that are the foundation of classical algorithms in this
area.

Our algorithm is one of many applications of König’s Mini-Max theorem,
which has also several equivalent formulations: as Menger’s Theorem, counting
disjoint paths; as Hall’s Theorem, giving necessary and su�cient conditions for
the existence of a “system of distinct representatives” of a collection of sets; as
Dilworth’s Theorem, counting the number of disjoint chains in a poset. It has
been shown in [FS13] that these di↵erent formulations are equivalent, and the
equivalence can be proven in weak fragments of arithmetic.

A surveys of classical Mini-Max results can be found in [LP86].

10

References

[ABMP91] H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum car-

dinality matching in a bipartite graph in time O
⇣
n1.5

q
m

logn

⌘
. Information

Processing Letters, 37:92–99, 1991.
[AHU83] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algo-

rithms. Addison-Wesley, 1983.
[BR91] R. A. Brualdi and H. J. Ryser. Combinatorial Matrix Theory. Cambridge

University Press, 1991.
[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. McGraw-Hill Book Company, 2009. Third Edition.
[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics,

17:449–467, 1965.
[FF62] L. R. Ford and D. R. Fulkerson. Flows in Networks. Prinston Univ. Press,

1962.
[FS13] A. G. Fernández and M. Soltys. Feasible combinatorial matrix theory. In

Krishnendu Chatterjee and Jiŕı Sgall, editors, Mathematical Foundations of

Computer Science 2013, volume 8087 of Lecture Notes in Computer Science,
pages 777–788. Springer Berlin Heidelberg, 2013.

[Gav77] F. Gavril. Testing for equality between maximum matching and minimum
node covering. Information Processing Letters, 6(6):199–202, 1977.

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal on Computing, 2(4), Decem-
ber 1973.

[Kar72] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages
85–103. Plenum Press, 1972.

[Kön16a] Dénes König. Gráfok és alkalmazásuk a determinánsok és a halmazok
elméletére. Matematikai és Természettudományi

´

Erteśıtö, 34:104–119, 1916.
[Kön16b] Dénes König. Über graphen und ihre anwendung auf determinantentheorie

und mengenlehre. Mathematische Annalen, 77(4), 1916.
[LP86] L. Lovász and M. D. Plummer. Matching theory. In Annals of Discrete

Mathematics. North-Holland, 1986.
[MRS+11] Sounaka Mishra, Venkatesh Raman, Saket Saurabh, Somnath Sikdar, and

C. R. Subramnian. The Complexity of König Subgraph Problems and
Above-Guarantee Vertex Cover. Algorithmica, 61(4):857–881, 2011.

[MV80] Silvio Micali and Vijay V. Vazirani. An O(
p

|V | · |E|) algorithm for finding
maximum matching in general graphs. In 21st IEEE Symp. Foundations of

Computer Science, pages 17–27. IEEE, October 1980.
[Sto01] J. A. Storer. An Introduction to Data Structures and Algorithms. Progress

in Computer Science and Applied Logic Series. Springer, 2001.

11

