A permutation-based algorithm for computing covers from matchings

Ariel Fernandez ${ }^{1}$, Ryszard Janicki ${ }^{1}$, and Michael Soltys ${ }^{2}$
${ }^{1}$ McMaster University
1280 Main Street West
Hamilton, ON L8S 4L8, Canada
agfern@gmail.com,janicki@mcmaster.ca
${ }^{2}$ California State University at Channel Islands Department of Computer Science One University Drive Camarillo, CA 93012, U.S.A.
michael.soltys@csuci.edu

Abstract

We present a matrix permutation algorithm for computing a minimal vertex cover from a maximal matching in a bipartite graph. Our algorithm is linear time and linear space, and provides an interesting perspective on a well known problem. Unlike most algorithms, it does not use the concept of alternating paths, and it is formulated entirely in terms of combinatorial operations on a binary matrix.

Keywords: minimal vertex cover, bipartite graph, maximal matching, König's Mini-Max theorem

1 Introduction

In this paper we provide a new better solution to an old problem.
Suppose that we are given a bipartite graph $G=\left(V=V_{1} \cup V_{2}, E\right)$, i.e., a graph where $V_{1} \cap V_{2}=\emptyset$ and $E \subseteq V_{1} \times V_{2}$. Let A_{G} be the adjacency matrix of G, of size $\left|V_{1}\right| \times\left|V_{2}\right|$, and with $0-1$ entries: $(i, j) \in E$ iff $\left(A_{G}\right)_{i j}=1$. A matching M is a subset of E consisting of a "pairing" of the vertices of G in such a way that no two edges of M meet at the same vertex. Again, we can represent a matching as a set of pairs of nodes of V, i.e., $M \subseteq E$, or as an adjacency matrix. A matching M is maximal if $|M|$ is as large as possible, i.e., when $|M|$ is maximum. We talk of bipartite graphs and their adjacency matrix representations interchangeably.

A vertex cover of a graph $G=(V, E)$ is a set of vertices $C \subseteq V$ such that each edge of the graph is incident to at least one vertex of the set C, i.e. for each $e=\left(v_{1}, v_{2}\right) \in E,\left\{v_{1}, v_{2}\right\} \cap C \neq \emptyset$. A vertex cover C is minimal if $|C|$ is minimum.

It is well known that given a general graph, a maximal matching can be computed with the classical Edmond's blossom algorithm ([Edm65]) in $O\left(|V|^{4}\right)$ time, or the more complex $O\left(|V|^{\frac{1}{2}}|E|\right)$ algorithm by Micali and Vazirani [MV80].

For bipartite graphs, the easiest solution is to use the Ford-Fulkerson algorithm for flows [FF62] (c.f. [CLRS09]), either directly, or its modified version based on the concept of alternating paths, i.e., paths that alternate between edges that are in the matching and edges that are not in the matching (c.f. [AHU83]), both run in $O(|V||E|)$ time; or we can use the more efficient (especially for sparse graphs) Hopcroft-Karp algorithm [HK73] which again runs in $O\left(|V|^{\frac{1}{2}}|E|\right)$, or, for dense graphs, the algorithm of [ABMP91] which runs in $O\left(|V|^{1.5} \sqrt{\frac{|E|}{\log |V|}}\right)$.

On the other hand, for general graphs, the problem of computing minimal vertex covers is NP-hard [Kar72]. For bipartite graphs, due to König's Mini-Max Theorem [Kön16a,Kön16b], minimal vertex covers can be derived from maximal matchings in $O(|V|+|E|)$ time (c.f. [MRS ${ }^{+} 11$, Lemma 3]). This means that for all algorithms known so far, the time complexity of computing a minimal vertex cover for bipartite graphs is the same as time complexity of computing an appropriate maximal matching. All widely known derivation methods use the idea of alternating paths (or equivalent concepts) (c.f. [Gav77,Sto01]).

In this paper we use a different approach. We start with a matrix version of König's Mini-Max Theorem, instead of its more popular graph theory version. In fact we use graph theory terminology for readability only, as they are not really needed to present and implement our solution. All operations are simple matrix operations which can be implemented very efficiently.

Our algorithm is linear in both time and space with respect to the size of a binary matrix that represents a given bipartite graph. No assumptions are made about the method for computing maximal matchings.

2 Problem Formulation and König's Mini-Max Theorems

Let $M_{G}=\mathrm{MA}(G)$ be the output of running an algorithm MA that computes a maximal matching for a given bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$, i.e., M_{G} is the adjacency matrix of a maximal matching produced by the algorithm MA. Let A_{G} be an adjacency matrix that defines the graph G, and let M_{G} denote the adjacency matrix for a maximal matching of G. Note that both A_{G} and M_{G} are of size $\left|V_{1}\right| \times\left|V_{2}\right|$, and thus four times smaller than a standard $|V| \times|V|$ representation. In what follows we will assume bipartite graphs to be represented by $\left|V_{1}\right| \times\left|V_{2}\right|$ adjacency matrices.

We find it useful to give two equivalent formulations of König's theorem. The first one is the standard formulation that uses the language of graphs.

Theorem 1 (König's Mini-Max version I) Given a bipartite graph G, if ρ_{G} is the size of the maximal matching of G and ρ_{G}^{\prime} is the size of the minimal vertex cover of G, then $\rho_{G}=\rho_{G}^{\prime}$.

The proof of Theorem 1 (c.f. [BR91]) furnishes the basic ideas that will be used later in Section 3 to transform maximal matchings into minimal covers.

Given an $m \times n 0-1$ matrix A, let S_{A} be a set of pairs of indices, i.e.,

$$
S_{A}=\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{k}, j_{k}\right)\right\} \subseteq \mathbb{N} \times \mathbb{N}
$$

where $A_{i_{p} j_{p}}=1$ for every $p \in[k]$, and all the i_{p} 's, as well as all the j_{p} 's, are distinct. In other words, S_{A} is a set of positions in the matrix A containing 1 s , and no two of those 1 s are on the same row or the same column, i.e., no two of them are on the same line. Given A, the maximum possible size of such a set S_{A} is called the term rank of $A([\mathrm{BR} 91])$. Notice that if A_{G} is the adjacency matrix of a bipartite graph G, then the term rank equals the size of a maximal matching in G.

On the other hand, given a $0-1$ matrix A of size $m \times n$, a set C of lines, i.e., a collection of rows and columns of A, is called a cover if every 1 in A is in at least one row or column of C. Then, given a bipartite graph G, the size of the minimal vertex cover corresponds to the minimal cover of A_{G}.

We now restate König's theorem but using the language of matrices.
Theorem 2 (König's Mini-Max version II) Let A be a 0-1 matrix of size $m \times n$. The minimum number of lines in A that cover all of the $1 s$ in A is equal to the maximum number of 1 s in A, no two of the $1 s$ on the same line.

Since a bipartite graph G can be identified with its 0-1 matrix representation A_{G} of size $\left|V_{1}\right| \times\left|V_{2}\right|$, we may write $M_{A_{G}}=\mathrm{MA}\left(A_{G}\right)$ instead of $M_{G}=\mathrm{MA}(G)$.

Our goal is to design an algorithm, which we call PerAlg, that takes an input $\left\langle A_{G}, M_{A_{G}}\right\rangle$ and produces a set of lines $C_{A_{G}}$ that form a minimal cover of A_{G}. We want PerAlg to compute $C_{A_{G}}$ in $O\left(\left|A_{G}\right|\right)$, where $\left|A_{G}\right|$ is the size of the matrix A_{G}.

3 Preliminaries to our algorithm

Our permutation-based algorithm, PerAlg, runs in time $O\left(\left|V_{1} \| V_{2}\right|\right)$. Since $\left|V_{1}\right|\left|V_{2}\right|=\left|A_{G}\right|$, the size of the matrix representing G, PerAlg runs in linear time in the size of $\left|A_{G}\right|$, assuming a model of computation (such as RAM) where the matrix entries can be accessed at cost $O(1)$.

The main idea behind PerAlg is that, given a maximal matching M of a bipartite G, the minimal vertex cover C can be constructed by taking, for each $e \in M$, one of e 's end point nodes. Of course, not all $2^{|M|}$ selections of endpoints work, but at least one selection of end-points works. We show the details in Lemma 1.

We start with some terminology for denoting lines: given an $m \times n$ matrix A, we can denote the lines as $r_{1}, r_{2}, \ldots, r_{m}$ and $c_{1}, c_{2}, \ldots, c_{n}$, and the r 's denote the rows and the c 's denote the columns. It will also be advantageous to denote by $l_{(i, j)}^{o}$ a line going through entry i, j, where $o \in\{0,1\}$, where $i \in[m]$ and $j \in[n]$, and

$$
o=\left\{\begin{array}{ll}
0 & l_{(i, j)}^{o} \text { is vertical, i.e., } l_{(i, j)}^{0}=c_{j} \\
1 & l_{(i, j)}^{o} \text { is horizontal, i.e., } l_{(i, j)}^{1}=r_{i}
\end{array} .\right.
$$

A cover is a set of lines $C_{A}^{\boldsymbol{o}, \boldsymbol{i}, \boldsymbol{j}}=\left\{l_{\left(i_{1}, j_{1}\right)}^{o_{1}}, l_{\left(i_{2}, j_{2}\right)}^{o_{2}}, \ldots, l_{\left(i_{k}, j_{k}\right)}^{o_{k}}\right\}$, with orientation $\boldsymbol{o}=o_{1} o_{2} \ldots o_{k}$, and $\boldsymbol{i}=i_{1}, i_{2}, \ldots, i_{k}, \boldsymbol{j}=j_{1}, j_{2}, \ldots, j_{k}$, and it is such that any 1
in A is covered by (at least) one of these lines; i.e., if there is a 1 in position (i, j) of the matrix A, then there exists a $p \in[k]$ such that $l_{\left(i_{p}, j_{p}\right)}^{o_{p}} \in C_{A}^{\boldsymbol{o}, \boldsymbol{i}, \boldsymbol{j}}$ and

$$
\left[i=i_{p} \wedge o_{p}=0\right] \vee\left[j=j_{p} \wedge o_{p}=1\right]
$$

If M_{A} is a maximal matching, the Mini-Max theorem says that there exist $\boldsymbol{o}, \boldsymbol{i}, \boldsymbol{j}$ of length $k=\left|M_{A}\right|$ such that $C_{A}^{\boldsymbol{o}, \boldsymbol{i}, \boldsymbol{j}}$ is a cover. Recall that M_{A} represents a maximal matching as a $0-1$ matrix, and that a 1 in position (i, j) means that (i, j) is an edge in the matching (i.e., $i \in V_{1}$ and $j \in V_{2}$ are "paired"). But in terms of "matrix combinatorics" this means that the 1 s in M_{A} are positioned in such a way that no two 1 s are on the same line (vertical or horizontal). Thus, we know that $C_{A}^{o, i, j}$ must have lines through all the 1s of M_{A}; further, any such line cannot cover more than a single 1 . Since we know that the size of $C_{A}^{\boldsymbol{o}, \boldsymbol{i}, \boldsymbol{j}}$ is the size of M_{A}, each 1 of M_{A} claims exactly one line. Hence $\boldsymbol{i}, \boldsymbol{j}$ are directly determined by M_{A}, but \boldsymbol{o} needs to be computed.

Lemma 1 Suppose that $G=\left(V=V_{1} \cup V_{2}, E\right)$ is a bipartite graph, A its adjacency matrix, and M_{A} a maximal matching. Suppose

$$
M_{A}=\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{k}, j_{k}\right)\right\}
$$

i.e., M_{A} is a list of all the positions of M_{A} with a 1 in them $\left(k=\left|M_{A}\right|\right)$. Then, it must be the case that

$$
C_{A}^{\boldsymbol{o}, \boldsymbol{i}, \boldsymbol{j}}=\left\{l_{\left(i_{1}, j_{1}\right)}^{o_{1}}, l_{\left(i_{2}, j_{2}\right)}^{o_{2}}, \ldots, l_{\left(i_{k}, j_{k}\right)}^{o_{k}}\right\}
$$

is a minimal cover for some $\boldsymbol{o} \in\{0,1\}^{k}$.
Proof. We know that for all $p \in[k], A_{\left(i_{p} j_{p}\right)}=1$, and so our cover must contain, for every $p \in[k]$, either $r_{i_{p}}$ or $c_{j_{p}}$. By the Mini-Max theorem, there is a cover of size k, and so, by the pigeonhole principle, we can say something stronger: our cover must consist, for every $p \in[k]$, of either $r_{i_{p}}$ or $c_{j_{p}}$. But that is the same as saying that our cover must consist, for every $p \in[k]$, of $l_{\left(i_{p}, j_{p}\right)}^{o_{p}}$, for $o_{p}=0$ or $o_{p}=1$. The lemma follows from that.

Given permutations $\pi:[m] \longrightarrow[m]$ and $\tau:[n] \longrightarrow[n]$, let P_{π} and Q_{τ} be the corresponding permutation matrices. The matrices P_{π} and Q_{τ} are obtained from the identity matrix by exchanging the rows according to π and τ, respectively. Then: $\left(P_{\pi} M_{A} Q_{\tau}\right)_{i j}=\left(M_{A}\right)_{\pi^{-1}(i) \tau^{-1}(j)}$.

Given an $m \times n$ matrix A, and given a maximal matching M_{A}, which we represent as $M_{A}=\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{k}, j_{k}\right)\right\}$, where $i_{1}<i_{2}<\cdots<i_{k}$, then the pair of permutations:

π	τ
$i_{1} \mapsto 1$	$j_{1} \mapsto 1$
$i_{2} \mapsto 2$	$j_{2} \mapsto 2$
\vdots	\vdots
$i_{k} \mapsto k$	$j_{k} \mapsto k$

are order preserving permutations according to rows (for M_{A}). Note that the indices that are not specified are left fixed by π, τ.

That is, $P_{\pi} M_{A} Q_{\tau}$ place the 1 s on the main diagonal, in the original order of the rows of M_{A}. Notice also that:

$$
P_{\pi} A Q_{\tau}=\left[\begin{array}{c|c}
T & A_{1} \tag{1}\\
\hline A_{2} & 0_{(m-k) \times(n-k)}
\end{array}\right]=\left[\begin{array}{ccc|c}
1 & & & \\
& 1 & * & \\
& * & \ddots & A_{1} \\
& & 1 & \\
\hline & & & \\
& A_{2} & 0 \\
& & &
\end{array}\right]
$$

That is, the 1 s in M_{A} are permuted to be on the diagonal of the upper-left $k \times k$ quadrant; call this quadrant T. The first thing to observe is that the lowerright $(m-k) \times(n-k)$ quadrant consists entirely of zeros. This assertion is a consequence of the Min-Max theorem: all the lines in $C_{A}^{\boldsymbol{o}, \boldsymbol{i}, \boldsymbol{j}}$ pass through a 1 in T; none of these lines can possibly touch this lower-right quadrant, so it must be full of zeros.

For example, suppose that we have a graph G as in Figure 1; examine the values of M_{A} and $P_{\pi} A Q_{\tau}$.

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$\left[\begin{array}{lllllll}1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]$
(a) Graph G
(b) $A=A_{G}$
(c) $M_{A}=M_{A_{G}}$
(d) $P_{\pi} A_{G} Q_{\tau}$

Fig. 1: Then, π is the identity permutation, and τ fixes 1 , moves 2 to 4,3 to 2,4 to 3 , and fixes 5 and 6 . The lines in red in (a) indicate a maximal matching; the red ones in (d) indicate the corresponding lines, now placed on diagonal. Note that the 2×2 lower-right submatrix is zero as it should.

The next Lemma relates the covering of the original A to the covering of permuted A, i.e., $P_{\pi} A Q_{\tau}$.

Lemma 2 Suppose that π, τ are order preserving permutations according to rows. Then, if

$$
C_{A}^{\boldsymbol{o}, i, \boldsymbol{j}}=\left\{l_{\left(i_{1}, j_{1}\right)}^{o_{1}}, l_{\left(i_{2}, j_{2}\right)}^{o_{2}}, \ldots, l_{\left(i_{k}, j_{k}\right)}^{o_{k}}\right\}
$$

is a covering of A, then

$$
C_{P_{\pi} A Q_{\tau}}^{\boldsymbol{o}, \pi(\boldsymbol{i}), \tau(\boldsymbol{j})}=\left\{l_{\left(\pi\left(i_{1}\right), \tau\left(j_{1}\right)\right)}^{o_{1}}, l_{\left(\pi\left(i_{2}\right), \tau\left(j_{2}\right)\right)}^{o_{2}}, \ldots, l_{\left(\pi\left(i_{k}\right), \tau\left(j_{k}\right)\right)}^{o_{k}}\right\}
$$

is a covering of $P_{\pi} A Q_{\tau}$.
Proof. Suppose that $C_{A}^{\boldsymbol{o}, \boldsymbol{i}, \boldsymbol{j}}=\left\{l_{\left(i_{1}, j_{1}\right)}^{o_{1}}, l_{\left(i_{2}, j_{2}\right)}^{o_{2}}, \ldots, l_{\left(i_{k}, j_{k}\right)}^{o_{k}}\right\}$ is indeed a covering of A. Consider any entry (p, q) of $P_{\pi} A Q_{\tau}$, i.e., $\left(P_{\pi} A Q_{\tau}\right)_{p q}=A_{\pi^{-1}(p) \tau^{-1}(q)}$. If $A_{\pi^{-1}(p) \tau^{-1}(q)}=1$, then either $r_{\pi^{-1}(p)} \in C_{A}^{\boldsymbol{o}, \boldsymbol{i}, \boldsymbol{j}}$ or $c_{\tau^{-1}(q)} \in C_{A}^{\boldsymbol{o}, \boldsymbol{i}, \boldsymbol{j}}$. This last statement means that there exists an $a \in[k]$ such that at least one of the following two statements is true:

$$
\begin{aligned}
& -l_{\left(i_{a}, j_{a}\right)}^{o_{a}} \in C_{A}^{o, i, j} \text { where } i_{a}=\pi^{-1}(p) \wedge o_{a}=1, \text { or } \\
& -l_{\left(i_{a}, j_{a}\right)}^{o_{a}} \in C_{A}^{o, i, j} \text { where } j_{a}=\tau^{-1}(q) \wedge o_{a}=0
\end{aligned}
$$

which in turn means that at least one of the following is true

$$
\begin{aligned}
& -l_{\left(\pi\left(i_{a}\right), \tau\left(j_{a}\right)\right)}^{o_{a}} \in C_{P_{\pi} A Q_{\tau}}^{\boldsymbol{o}, \pi(\boldsymbol{i}), \tau(\boldsymbol{j})} \text { where } \pi\left(i_{a}\right)=\pi\left(\pi^{-1}(p)\right) \wedge o_{a}=1, \text { or } \\
& -l_{\left(\pi\left(i_{a}\right), \tau\left(j_{a}\right)\right)}^{o_{a}} \in C_{P_{\pi} A Q_{\tau}}^{o,, \pi(\boldsymbol{i}, \tau(\boldsymbol{j})} \text { where } \tau\left(j_{a}\right)=\tau\left(\tau^{-1}(q)\right) \wedge o_{a}=0,
\end{aligned}
$$

and as π, τ are permutations, they are bijections, and so $\pi\left(\pi^{-1}(p)\right)=p$ and $\tau\left(\tau^{-1}(q)\right)=q$, and so restating once again we obtain:

$$
\begin{aligned}
& -l_{\left(p, \tau\left(j_{a}\right)\right)}^{1} \in C_{P_{\pi} A Q_{\tau}}^{\boldsymbol{o}, \pi(\boldsymbol{i}), \tau(\boldsymbol{j})}, \text { or } \\
& -l_{\left(\pi\left(i_{a}\right), q\right)}^{0} \in C_{P_{\pi} A Q_{\tau}}^{\boldsymbol{o}, \pi(\boldsymbol{i}), \tau(\boldsymbol{j})} .
\end{aligned}
$$

In either case, this means that there is a line covering entry (p, q) of $P_{\pi} A Q_{\tau}$ if that entry is a 1 . Hence, $C_{P_{\pi} A Q_{\tau}}^{\boldsymbol{o , \pi (i) , \tau (\boldsymbol { j })}}$ is indeed a covering for $P_{\pi} A Q_{\tau}$.

The purpose of Lemma 2 is to show that given A_{G}, we can reorder its rows and columns at will - which corresponds to a relabelling of V_{1} and V_{2} - and the resulting matrix has a maximal matching and minimal vertex cover of the same size. Furthermore, we can easily compute the maximal matching and vertex cover for the resulting matrix from the original one. Note that we assumed in Lemma 2 that the permutations are order preserving permutations (according to rows), and hence the orientation vector \boldsymbol{o} is not affected. If the permutations are not order preserving, then we can still recompute the maximal matching and minimal vertex cover, but we must apply the corresponding permutation to the orientations. This is summarized in Corollary 1 below.

Corollary 1 Suppose that π, τ are order preserving permutations according to rows, and that the diagonal $1 s$ have been reordered by μ. Then, if $C_{A}^{\boldsymbol{o}, \boldsymbol{i}, \boldsymbol{j}}$ is a covering of A, then

$$
C_{R_{\mu} P_{\pi} A Q_{\tau} R_{\mu}}^{\mu(\boldsymbol{o}), \pi(\boldsymbol{i}), \tau(\boldsymbol{j})}=\left\{l_{\left(\mu\left(\pi\left(i_{1}\right)\right), \mu\left(\tau\left(j_{1}\right)\right)\right)}^{o_{\mu(1)}^{\mu_{\mu}}}, l_{\left(\mu\left(\pi\left(i_{2}\right)\right), \mu\left(\tau\left(j_{2}\right)\right)\right)}^{o_{\mu(2)}}, \ldots, l_{\left(\mu\left(\pi\left(i_{k}\right)\right), \mu\left(\tau\left(j_{k}\right)\right)\right)}^{o_{\mu(k)}^{\mu_{\mu}}}\right\}
$$

is a covering of $R_{\mu} P_{\pi} A Q_{\tau} R_{\mu}$.

4 Our algorithm

On input $\left\langle A, M_{A}\right\rangle$, where M_{A} is a maximal matching for A, PerAlg computes a minimal cover $C_{A}^{o \boldsymbol{i}, \boldsymbol{j}}$. More precisely, as was shown in Lemma 1, given M_{A} we know a priori that:

$$
C_{A}^{o, i, j}=\left\{l_{\left(i_{1}, j_{1}\right)}^{o_{1}}, l_{\left(i_{2}, j_{2}\right)}^{o_{2}}, \ldots, l_{\left(i_{k}, j_{k}\right)}^{o_{k}}\right\},
$$

is a minimal covering for some \boldsymbol{o}, where the $\left(i_{p}, j_{p}\right)$ are the non-zero entries of M_{A}. Hence, all that we need to compute in our algorithm is the orientation vector $\boldsymbol{o}=o_{1} o_{2} \ldots o_{k}$.

The analogy in the graph theoretic setting is the following: given a bipartite graph G and a maximal matching M the minimal vertex cover can be selected from M. This selection takes place by choosing for each edge $e \in M$, one of its end-points; a particular choice of end-points corresponds to a particular orientation. We now present PerAlg for computing the orientations.

PerAlg:

Input: $A, M_{A}, m \times n 0-1$ matrices, where M_{A} is a maximal matching for A :
Step 1 If $k=\left|M_{A}\right|=\min \{m, n\}$, then

- $\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$ is a cover if $m \leq n$; i.e., return $\boldsymbol{o}=1^{m}$ and exit
- $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ is a cover if $m>n$; i.e., return $\boldsymbol{o}=0^{n}$ and exit

Step 2 Else, $k=\left|M_{A}\right|<\min \{m, n\}$, compute order preserving permutations π, τ that diagonalize M_{A}, so $P_{\pi} A Q_{\tau}=\left[\begin{array}{c|c}T & A_{1} \\ \hline A_{2} & 0_{(m-k) \times(n-k)}\end{array}\right]$ (Recall (1).)
Step 2a If $A_{1}=0 \vee A_{2}=0$:

- If $A_{1}=0$ then return $\boldsymbol{o}=0^{k}$ and exit
- If $A_{2}=0$ then return $\boldsymbol{o}=1^{k}$ and exit

Step 2b Else, $A_{1} \neq 0 \wedge A_{2} \neq 0$. Group the 1 s on the diagonal of T into two sets, the black and the green, of sizes k_{1} and k_{2}, respectively, with $k=k_{1}+k_{2}$. A black 1 in position (i, i) has the property that both row i of A_{1} and column i of A_{2} consist of zeros. The green 1s do not have this property. For each green 1 in position (j, j) :

- If there is a 1 in row j of A_{1}, then we let $o_{j}=1$.
- Else, we let $o_{j}=0$.

Let T^{\prime} be T where the 1 s under the lines covering the green 1 s have been zeroed out (see Figure 2b). In order to compute the orientations of the black 1 s , repeat recursively Step 2a on T^{\prime}.
Output orientations o
Note that the situation, as represented in Figure 2a, is simplified for the sake of clarity: the black 1 s and the green 1 s are depicted as two separate groups, but in general they are interspersed. We could block them together to be as in Figure 2a, but that would require in general a permutation that is not order preserving; this could still be done by Corollary 1, but it introduces a technical

Fig. 2: In (b), T^{\prime} is the upper-left quadrant, emphasized with a thicker border, with the "green square" zeroed out, as well as the entries under the red lines, arising from the cover of the "green square," zeroed out.
overhead, as the orientations would no longer match (but we can always recover the original orientations by inverting the permutation).

Also note that in Step 2b, under the assumption $A_{1} \neq 0 \wedge A_{2} \neq 0$, we know that $k_{2}>0$, so we know that not all 1 s in the upper-left quadrant are black; but it may well be the case that none are black, i.e., all the 1 s are green, which would correspond to $k=k_{2}$.

Lemma 3 Algorithm PerAlg is correct. That is, given A and M_{A} as input, it computes \boldsymbol{o} so that $C_{A}^{\boldsymbol{o}, i, \boldsymbol{j}}$ is a vertex cover (of size $\left|M_{A}\right|$).

Proof. By placing 1s on the diagonal of T, we ensure that each such 1 requires at least one line to be covered. By Lemma 1 we can conclude that exactly one line per 1 on the diagonal of T is sufficient to ensure a cover.

In Step 2 b , if there is a 1 in row j of A_{1}, then we let $o_{j}=1$, and otherwise we let $o_{j}=0$. We know that this works because each 1 in T claims exactly one line in the cover. So it follows that it is not possible for both row j of A_{1} to have a 1 , and column j of the A_{2} to have a 1 , since that would require two lines through (j, j).

Further, the square that encloses the green 1 s must be successfully covered by the above scheme: we have no choice as to the orientation of the lines covering the green 1s, and by the Min-Max theorem a successful covering exists, and thus the covering imposed by the green portions of A_{1} and A_{2} must necessarily work for the square enclosing the green 1s.

In the following lemma, we show how to compute order preserving π, τ in Step 2. It is clear that it can be done in linear space, that is, in space $O(|A|)$. Except for the computation of order preserving π, τ once in Step 2, the recursive computation of the orientations is done inside A, with constantly many registers indexing A (space $O(\log (|A|)))$ and hence also in space $O(|A|)$. Thus, PerAlg requires linear space.

Lemma 4 Algorithm PerAlg runs in time $|A|=m \times n$.
Proof. We show first the details of computing order preserving π, τ in Step 2. We initialize $r=1$ and $q=1$, and we also initialize two integer arrays i, j of size n. For every $p \in[n]$, if row p of M_{A} is not zero, we let $i[q]=p$, and let $q=q+1$. On the other hand, if row p of M_{A} is zero, we let $j[r]=p$, and let $r=r+1$.

We construct π from the two arrays i and j which encode the following mapping:

$$
i[1] \mapsto 1 ; i[2] \mapsto 2 ; \ldots ; i[k] \mapsto k ; j[1] \mapsto k+1 ; j[2] \mapsto k+2 ; \ldots ; j[n-k] \mapsto n,
$$

From π we construct P, where P has 1 s in positions:

$$
(1, i[1]),(2, i[2]), \ldots,(k, i[k]),(k+1, j[1]),(k+2, j[2]), \ldots,(n, j[n-k]),
$$

and zeros everywhere else. The permutation matrix Q is constructed in a similar manner from τ. This can be clearly done in time and space proportional to $\left|M_{A}\right|$, i.e., in linear time and space.

Once we obtain $P_{\pi} A Q_{\tau}$, we work, recursively, with this matrix, starting at each level of the recursion in Step 2a, in order to compute the orientations of the black 1s. As was mentioned above, if there are no green 1s, then the procedure terminates (outputting all horizontal or or vertical orientations, according to which one of A_{1} or A_{2} is all zero). Thus, if $k_{2}=0$, we are done.

Otherwise, $k_{2}>0$, and the number of black 1 s decreases by at least 1 . Thus this loop, in the worst case, can repeat at most $k=\left|M_{A}\right| \leq \min \{m, n\}$ many times. Note therefore that if there are many green 1s, the procedure has fewer recursive calls; if there are few green 1s, the procedure has more recursive calls.

We make this argument a little bit more precise; let $R(n)$ be the maximum number of steps, in the worst-case, that our procedure takes on a matrix of size n (let n denote here $\max \{m, n\}$). Let a "step" be a single "atomic operation" which for us is one of the following two: check what is the value in position (i, j) of some matrix, and change the value in position (i, j) of some matrix to 0 or 1 .

Suppose that k is the number of black 1 's, and $n-k$ is the number of green 1's. Then, we can see that the worst-case analysis yields the following bound on the number of atomic steps:

$$
\begin{equation*}
R(n+1)=\max _{1<k<n}\{k(n+1-k)+R(k)\} \tag{2}
\end{equation*}
$$

First note that there must be at least one black 1, for otherwise, there are no more steps. There must also be at least two green 1's; if there were only one green 1 , then either A_{1} or A_{2} would be all zero, which would also terminate the algorithm. Finally, no green 1's would imply termination as well. Hence the maximum is computed over $1<k<n$ for size $n+1$.

Note that in the recursive equation (2), k represents the number of black 1's, and so the corresponding sizes of A_{1} and A_{2} are given by $k \times(n+1-k)$ and $(n+1-k) \times k$, and hence the term $k(n+1-k)$ - we are ignoring constants in (2); it should really be $2 k(n+1-k)$, but this does not change the order of
$R(n)$. The recursive step is repeated on the black 1's, and hence we add $R(k)$ in (2).

We now show by induction that $R(n) \leq n^{2}$, where R is initialized with $R(0)=R(1)=1$. For $k<n+1$, by inductive assumption $R(k)<k^{2}$, and so by (2):

$$
\begin{aligned}
R(n+1) & \leq \max _{1<k<n}\left\{k(n+1-k)+k^{2}\right\}=\max _{1<k<n}\{k n+k\} \\
& \leq n^{2}+n \leq n^{2}+2 n+1=(n+1)^{2} .
\end{aligned}
$$

Finally, we show how PerAlg keeps track of the orientations \boldsymbol{o} in each step of the recursive procedure. As was pointed out in the note following the presentation of PerAlg, the situation, as represented in Figure 2, is simplified for the sake of clarity: the black 1 s and the green 1 s are depicted as two separate groups, but in general they are interspersed. This means that some orientations are computed in a given step, and some are not: $\boldsymbol{o}=o_{1} o_{2} \ldots o_{k}$, where $o_{i_{1}} o_{i_{2}} \ldots o_{i_{k_{1}}}$ correspond to the black 1 s and are not yet computed, and $o_{j_{1}} o_{j_{2}} \ldots o_{j_{k_{2}}}$ correspond to the green 1 s , and have just been computed. Note that the $o_{i_{p}}$'s and $o_{j_{q}}$'s are interspersed in \boldsymbol{o}, and $k=k_{1}+k_{2}$. But it is easy to keep track of this, because the order is preserved throughout: let \boldsymbol{o} be a string of $0 \mathrm{~s}, 1 \mathrm{~s}$, and unset values. The unset values always appear in the same order as the black 1 s on the diagonal to be dealt with in the next step.

From Lemma 3 and Lemma 4 we get the main result of the paper.
Theorem 3 Given a bipartite graph $G=\left(V=V_{1} \cup V_{2}, E\right)$, and a maximal matching M_{G}, PerAlg runs in time and space $O\left(\left|A_{G}\right|\right)$ to compute a minimal cover C_{G}. That is, PerAlg runs in linear time and space to compute a minimal cover from a maximal matching.

5 Conclusion

PerAlg is a matrix permutation based algorithm that runs in time $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ to transform a maximal matching of a bipartite graph into a minimal vertex cover. In particular, PerAlg runs in linear time and space (as its input is a binary matrix of size $\left|V_{1}\right| \times\left|V_{2}\right|$), and using the properties in the famous König's Mini-Max theorem, it performs basic counting of zeros and ones to compute a minimal cover. Our algorithm is very simple, and does not employ the usual graph theoretic properties that are the foundation of classical algorithms in this area.

Our algorithm is one of many applications of König's Mini-Max theorem, which has also several equivalent formulations: as Menger's Theorem, counting disjoint paths; as Hall's Theorem, giving necessary and sufficient conditions for the existence of a "system of distinct representatives" of a collection of sets; as Dilworth's Theorem, counting the number of disjoint chains in a poset. It has been shown in [FS13] that these different formulations are equivalent, and the equivalence can be proven in weak fragments of arithmetic.

A surveys of classical Mini-Max results can be found in [LP86].

References

[ABMP91] H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum cardinality matching in a bipartite graph in time $O\left(n^{1.5} \sqrt{\frac{m}{\log n}}\right)$. Information Processing Letters, 37:92-99, 1991.
[AHU83] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms. Addison-Wesley, 1983.
[BR91] R. A. Brualdi and H. J. Ryser. Combinatorial Matrix Theory. Cambridge University Press, 1991.
[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. McGraw-Hill Book Company, 2009. Third Edition.
[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449-467, 1965.
[FF62] L. R. Ford and D. R. Fulkerson. Flows in Networks. Prinston Univ. Press, 1962.
[FS13] A. G. Fernández and M. Soltys. Feasible combinatorial matrix theory. In Krishnendu Chatterjee and Jirí Sgall, editors, Mathematical Foundations of Computer Science 2013, volume 8087 of Lecture Notes in Computer Science, pages 777-788. Springer Berlin Heidelberg, 2013.
[Gav77] F. Gavril. Testing for equality between maximum matching and minimum node covering. Information Processing Letters, 6(6):199-202, 1977.
[HK73] John E. Hopcroft and Richard M. Karp. An $n^{5 / 2}$ algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2(4), December 1973.
[Kar72] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85-103. Plenum Press, 1972.
[Kön16a] Dénes König. Gráfok és alkalmazásuk a determinánsok és a halmazok elméletére. Matematikai és Természettudományi Értesítö, 34:104-119, 1916.
[Kön16b] Dénes König. Über graphen und ihre anwendung auf determinantentheorie und mengenlehre. Mathematische Annalen, 77(4), 1916.
[LP86] L. Lovász and M. D. Plummer. Matching theory. In Annals of Discrete Mathematics. North-Holland, 1986.
[MRS ${ }^{+}$11] Sounaka Mishra, Venkatesh Raman, Saket Saurabh, Somnath Sikdar, and C. R. Subramnian. The Complexity of König Subgraph Problems and Above-Guarantee Vertex Cover. Algorithmica, 61(4):857-881, 2011.
[MV80] Silvio Micali and Vijay V. Vazirani. An $O(\sqrt{|V|} \cdot|E|)$ algorithm for finding maximum matching in general graphs. In 21st IEEE Symp. Foundations of Computer Science, pages 17-27. IEEE, October 1980.
[Sto01] J. A. Storer. An Introduction to Data Structures and Algorithms. Progress in Computer Science and Applied Logic Series. Springer, 2001.

