
Computing covers from matchings with permutations

Ariel Fernández*

Geographic Information Systems (GIS), Buenos Aires, Argentina

Ryszard Janicki†

McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada

Michael Soltys‡

California State University at Channel Islands, One University Drive, Camarillo, CA 93012, USA

Abstract

We present a matrix permutation algorithm for comput-
ing a minimal vertex cover from a maximal matching in
a bipartite graph. Our algorithm is linear time and lin-
ear space, and provides an interesting perspective on a
well known problem. Unlike most algorithms, it does not
use the concept of alternating paths, and it is formulated
entirely in terms of combinatorial operations on a binary
matrix. The algorithm relies on permutations of rows and
columns of a 0-1 matrix which encodes a bipartite graph
together with its maximal matching. This problem has
many important applications such as network switches
which essentially compute maximal matchings between
their incoming and outgoing ports.

Key Words: minimal vertex cover; bipartite graph;
maximal matching; König’s Mini-Max theorem

*Computing and Software. Email: agfern@gmail.com
†Computing and Software. Email: janicki@mcmaster.ca
‡Computer Science. Email: michael.soltys@csuci.edu

1 Introduction

In this paper we provide a new different solution to an
old problem. The basic novelty is using matrix permu-
tations (cf. [5]) instead of traditional graph-based tech-
niques.

Suppose that we are given a bipartite graph G = (V =
V1 ∪V2,E), i.e., a graph where V1 ∩V2 = /0 and E ⊆
V1 ×V2. Let AG be the adjacency matrix of G, of size
|V1|× |V2|, and with 0-1 entries: (i, j) ∈ E iff (AG)i j = 1.
A matching M is a subset of E consisting of a “pairing”
of the vertices of G in such a way that no two edges of M
meet at the same vertex. We can represent a matching as
a set of pairs of nodes of V , i.e., M ⊆ E, or as an adja-
cency matrix. A matching M is maximal if |M| is as large
as possible, i.e., when |M| is maximum. We talk of bi-
partite graphs and their adjacency matrix representations
interchangeably.

A vertex cover of a graph G = (V,E) is a set of vertices
C ⊆ V such that each edge of the graph is incident to at
least one vertex of the set C, i.e. for each e = (v1,v2) ∈ E,
{v1,v2} ∩C 6= /0. A vertex cover C is minimal if |C| is
minimum.

It is well known that given a general graph, a max-

1

imal matching can be computed with the classical Ed-
mond’s blossom algorithm ([10]) in O(|V |4) time, or the
more complex O(|V | 12 |E|) algorithm by Micali and Vazi-
rani [25]. For bipartite graphs, the easiest solution is
to use the Ford-Fulkerson algorithm for flows [11] (c.f.
[6]), either directly, or its modified version based on the
concept of alternating paths, i.e., paths that alternate be-
tween edges that are in the matching and edges that are
not in the matching (c.f. [1]), both run in O(|V ||E|) time;
or we can use the more efficient (especially for sparse
graphs) Hopcroft-Karp algorithm [16] which again runs
in O(|V | 12 |E|), or, for dense graphs, the algorithm of [2]

which runs in O
(
|V |1.5

√
|E|

log |V |

)
.

On the other hand, for general graphs, the problem
of computing minimal vertex covers is NP-hard; in fact,
it was one of Karp’s 21 original NP-complete prob-
lems [17].

In 1916, in two nearly identical papers — one in Ger-
man [20], the other in Hungarian [19] — König proved
that every doubly stochastic matrix with non-negative en-
tries must have a non-zero term in its determinant. In
the same papers König also proved that every regular bi-
partite graph has a perfect matching. In the late 1950’s
Dulmagead and Mendelsohn published papers ([8, 9]) in
which they worked out a canonical decomposition theory
for bipartite graphs in terms of maximal matchings and
minimal vertex covers.

For bipartite graphs, due to König’s Mini-Max The-
orem [19, 20], minimal vertex covers can be derived
from maximal matchings in O(|V |+ |E|) time (c.f. [24,
Lemma 3]). This means that for all algorithms known so
far, the time complexity of computing a minimal vertex
cover for bipartite graphs is the same as time complex-
ity of computing an appropriate maximal matching. All
widely known derivation methods use the idea of alter-
nating paths (or equivalent concepts) (c.f. [14, 28]).

In this paper we use a different approach. Instead of
traditional graph theory methods, we will use matrix per-
mutation based techniques. The matrix permutation based
techniques have recently become increasingly popular.
They have been used for variety of graph related prob-
lems including biology [3], trains scheduling in a railway
traffic network [29] and clustering [21]. The basic ad-
vantage of permutation based methods is that, while ‘big-
Oh’ complexity might be the same or slightly bigger than

when graph based methods are used, the computational
overhead is usually much lower, and the implementation
simpler.

We start with a matrix version of König’s Mini-Max
Theorem, instead of its more popular graph theory ver-
sion. In fact we use graph theory terminology for read-
ability only, as they are not really needed to present and
implement our solution. All operations are simple matrix
operations which can be implemented very efficiently.

Our algorithm is linear in both time and space with
respect to the size of a binary matrix that represents a
given bipartite graph. No assumptions are made about
the method for computing maximal matchings.

We will also show a simple and very intuitive algorithm
for a minimal vertex cover that runs in time O(|V | 32 |E|),
and also illustrates well a fundamental difference between
bipartite graphs and general graphs.

The paper is organized as follows. In Section 2 we
present a problem formulation and König’s Mini-Max
Theorems. The basic concepts of our model are discussed
in Section 3, while our main algorithm is presented and
analyzed in Section 4. Another, more intuitive and natu-
ral, but slower, algorithm is discussed in Section 5. The
last section, Section 6 contains conclusions.

This paper is a revised and extended version of the con-
ference paper [12].

2 Problem Formulation and König’s Mini-Max
Theorems

Let MG = MA(G) be the output of running an algo-
rithm MA that computes a maximal matching for a given
bipartite graph G = (V1∪V2,E), i.e., MG is the adjacency
matrix of a maximal matching produced by the algorithm
MA. MA could be Hopcroft-Karp algorithm [16], or any
other algorithm of this type.

Let AG be an adjacency matrix that defines the graph
G, and let MG denote the adjacency matrix for a maxi-
mal matching of G. Note that both AG and MG are of
size |V1|× |V2|, and thus at least four times smaller than a
standard |V |×|V | representation. In what follows we will
assume bipartite graphs to be represented by |V1| × |V2|
adjacency matrices.

We find it useful to give two equivalent formulations of
König’s theorem. The first one is the standard formulation

2

that uses the language of graphs.

Theorem 1 (König’s Mini-Max version I). Given a bi-
partite graph G, if ρG is the size of the maximal matching
of G and ρ ′G is the size of the minimal vertex cover of G,
then ρG = ρ ′G.

The proof of Theorem 1 (c.f. [5]) furnishes the basic
ideas that will be used later in Section 3 to transform max-
imal matchings into minimal covers.

Given an m×n 0-1 matrix A, let SA be a set of pairs of
indices, i.e.,

SA = {(i1, j1),(i2, j2), . . . ,(ik, jk)} ⊆ N×N,

where N denote natural numbers and Aip jp = 1 for every
p ∈ [k], and all the ip’s, as well as all the jp’s, are distinct.
In other words, SA is a set of positions in the matrix A
containing 1s, and no two of those 1s are on the same row
or the same column, i.e., no two of them are on the same
line. Given A, the maximum possible size of such a set
SA is called the term rank of A ([5]). Notice that if AG is
the adjacency matrix of a bipartite graph G, then the term
rank equals the size of a maximal matching in G.

On the other hand, given a 0-1 matrix A of size m× n,
a set C of lines, i.e., a collection of rows and columns of
A, is called a cover if every 1 in A is in at least one row
or column of C. Then, given a bipartite graph G, the size
of the minimal vertex cover corresponds to the minimal
cover of AG.

We now restate König’s theorem but using the language
of matrices.

Theorem 2 (König’s Mini-Max version II). Let A be a
0-1 matrix of size m× n. The minimum number of lines
in A that cover all of the 1s in A is equal to the maximum
number of 1s in A, no two of the 1s on the same line.

Since a bipartite graph G can be identified with its 0-1
matrix representation AG of size |V1|× |V2|, we may write
MAG =MA(AG) instead of MG =MA(G).

Our goal is to design an algorithm, which we call
PERALG, that takes an input 〈AG,MAG〉 and produces a
set of lines CAG that form a minimal cover of AG. We
want PERALG to compute CAG in O(|AG|), where |AG| is
the size of the matrix AG. We assume that the algorithm
MA is given.

3 Preliminaries to our algorithm

Our permutation-based algorithm, PERALG, runs in
time O(|V1||V2|). Since |V1||V2| = |AG|, the size of the
matrix representing G, PERALG runs in linear time in the
size of |AG|, assuming a model of computation (such as
RAM) where the matrix entries can be accessed at cost
O(1).

The main idea behind PERALG is that, given a maximal
matching M of a bipartite G, the minimal vertex cover
C can be constructed by taking, for each e ∈ M, one of
e’s end point nodes. Of course, not all 2|M| selections of
end-points work, but at least one selection of end-points
works. We show the details in Lemma 1.

We start with some terminology for denoting lines:
given an m× n matrix A, we can denote the lines as
r1,r2, . . . ,rm and c1,c2, . . . ,cn, and the r’s denote the rows
and the c’s denote the columns. It will also be advanta-
geous to denote by lo

(i, j) a line going through entry i, j,
where o ∈ {0,1}, where i ∈ [m] and j ∈ [n], and

o =

{
0 lo

(i, j) is vertical, i.e., l0
(i, j) = c j

1 lo
(i, j) is horizontal, i.e., l1

(i, j) = ri
.

A cover is a set of lines Co,i,j
A =

{lo1
(i1, j1)

, lo2
(i2, j2)

, . . . , lok
(ik, jk)

}, with orientation
o = o1o2 . . .ok, and i = i1, i2, . . . , ik, j = j1, j2, . . . , jk,
and it is such that any 1 in A is covered by (at least)
one of these lines; i.e., if there is a 1 in position (i, j)
of the matrix A, then there exists a p ∈ [k] such that
lop
(ip, jp)

∈Co,i,j
A and

[i = ip∧op = 0]∨ [j = jp∧op = 1].

If MA is a maximal matching, the Mini-Max theorem
says that there exist o,i,j of length k = |MA| such that
Co,i,j

A is a cover. Recall that MA represents a maximal
matching as a 0-1 matrix, and that a 1 in position (i, j)
means that (i, j) is an edge in the matching (i.e., i ∈ V1
and j ∈ V2 are “paired”). But in terms of “matrix com-
binatorics” this means that the 1s in MA are positioned in
such a way that no two 1s are on the same line (vertical
or horizontal). Thus, we know that Co,i,j

A must have lines
through all the 1s of MA; further, any such line cannot
cover more than a single 1. Since we know that the size

3

of Co,i,j
A is the size of MA, each 1 of MA claims exactly

one line. Hence i,j are directly determined by MA, but o
needs to be computed.

The result below shows the relationship between max-
imal matchings and minimal covers expressed using the
notation described above.

Lemma 1. Suppose that G = (V = V1 ∪V2,E) is a bi-
partite graph, A its adjacency matrix, and MA a maximal
matching. Suppose

MA = {(i1, j1),(i2, j2), . . . ,(ik, jk)},

i.e., MA is a list of all the positions of MA with a 1 in them
(k = |MA|). Then, it must be the case that

Co,i,j
A = {lo1

(i1, j1)
, lo2
(i2, j2)

, . . . , lok
(ik, jk)

}

is a minimal cover for some o ∈ {0,1}k.

Proof. We know that for all p ∈ [k], A(ip jp) = 1, and so
our cover must contain, for every p ∈ [k], either rip or
c jp . By the Mini-Max theorem, there is a cover of size
k, and so, by the pigeonhole principle, we can say some-
thing stronger: our cover must consist, for every p ∈ [k],
of either rip or c jp . But that is the same as saying that our
cover must consist, for every p ∈ [k], of lop

(ip, jp)
, for op = 0

or op = 1. The lemma follows from that.

Given permutations π : [m] −→ [m] and τ : [n] −→ [n],
let Pπ and Qτ be the corresponding permutation matrices.
The matrices Pπ and Qτ are obtained from the identity
matrix by exchanging the rows according to π and τ , re-
spectively. Then: (Pπ MAQτ)i j = (MA)π−1(i)τ−1(j).

Given an m × n matrix A, and given a maxi-
mal matching MA, which we represent as MA =
{(i1, j1),(i2, j2), . . . ,(ik, jk)}, where i1 < i2 < · · · < ik,
then the pair of permutations:

π

i1 7→ 1
i2 7→ 2

...
ik 7→ k

τ

j1 7→ 1
j2 7→ 2

...
jk 7→ k

are order preserving permutations according to rows (for
MA). Note that the indices that are not specified are left
fixed by π,τ .

That is, Pπ MAQτ place the 1s on the main diagonal, in
the original order of the rows of MA. Notice also that:

Pπ AQτ =

[
T A1
A2 0(m−k)×(n−k)

]

=



1
1 ∗

∗
. . . A1

1

A2 0



(1)

That is, the 1s in MA are permuted to be on the di-
agonal of the upper-left k× k quadrant; call this quad-
rant T . The first thing to observe is that the lower-right
(m−k)× (n−k) quadrant consists entirely of zeros. This
assertion is a consequence of the Min-Max theorem: all
the lines in Co,i,j

A pass through a 1 in T ; none of these
lines can possibly touch this lower-right quadrant, so it
must be full of zeros.

For example, suppose that we have a graph G as in Fig-
ure 1; let us examine the values of MA and Pπ AQτ .

In this case, π is the identity permutation, and τ fixes
1, moves 2 to 4, 3 to 2, 4 to 3, and fixes 5 and 6. The lines
in red in Figure 1(a) indicate a maximal matching; the
red ones in Figure 1(d) indicate the corresponding lines,
now placed on diagonal. Note that the 2× 2 lower-right
submatrix is zero as it should.

The next Lemma relates the covering of the original A
to the covering of permuted A, i.e., Pπ AQτ .

Lemma 2. Suppose that π,τ are order preserving permu-
tations according to rows. Then, if

Co,i,j
A = {lo1

(i1, j1)
, lo2
(i2, j2)

, . . . , lok
(ik, jk)

}

is a covering of A, then

Co,π(i),τ(j)
Pπ AQτ

= {lo1
(π(i1),τ(j1))

, lo2
(π(i2),τ(j2))

, . . . , lok
(π(ik),τ(jk))

}

is a covering of Pπ AQτ .

Proof. Suppose that Co,i,j
A = {lo1

(i1, j1)
, lo2
(i2, j2)

, . . . , lok
(ik, jk)

} is
indeed a covering of A. Consider any entry (p,q) of

4

(a) Graph G


1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
1 1 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0


(b) A = AG

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(c) MA = MAG


1 0 0 1 0 0
0 1 0 0 0 0
0 1 1 0 0 0
1 0 1 1 0 0
0 0 1 0 0 0
0 0 1 0 0 0


(d) Pπ AGQτ

Figure 1: An example of calculating Pπ AQτ .

Pπ AQτ , i.e., (Pπ AQτ)pq = Aπ−1(p)τ−1(q). If Aπ−1(p)τ−1(q) =

1, then either rπ−1(p) ∈Co,i,j
A or cτ−1(q) ∈Co,i,j

A . This last
statement means that there exists an a ∈ [k] such that at
least one of the following two statements is true:

• loa
(ia, ja)

∈Co,i,j
A where ia = π−1(p)∧oa = 1, or

• loa
(ia, ja)

∈Co,i,j
A where ja = τ−1(q)∧oa = 0,

which in turn means that at least one of the following is
true

• loa
(π(ia),τ(ja))

∈Co,π(i),τ(j)
Pπ AQτ

where π(ia) = π(π−1(p))∧oa = 1, or

• loa
(π(ia),τ(ja))

∈Co,π(i),τ(j)
Pπ AQτ

where τ(ja) = τ(τ−1(q))∧oa = 0,

and as π,τ are permutations, they are bijections, and so
π(π−1(p)) = p and τ(τ−1(q)) = q, and so restating once
again we obtain:

• l1
(p,τ(ja))

∈Co,π(i),τ(j)
Pπ AQτ

, or

• l0
(π(ia),q)

∈Co,π(i),τ(j)
Pπ AQτ

.

In either case, this means that there is a line covering entry
(p,q) of Pπ AQτ if that entry is a 1. Hence, Co,π(i),τ(j)

Pπ AQτ
is

indeed a covering for Pπ AQτ .

The purpose of Lemma 2 is to show that given AG, we
can reorder its rows and columns at will — which corre-
sponds to a relabelling of V1 and V2 — and the resulting
matrix has a maximal matching and minimal vertex cover
of the same size. Furthermore, we can easily compute
the maximal matching and vertex cover for the resulting
matrix from the original one. Note that we assumed in
Lemma 2 that the permutations are order preserving per-
mutations (according to rows), and hence the orientation
vector o is not affected. If the permutations are not or-
der preserving, then we can still recompute the maximal
matching and minimal vertex cover, but we must apply
the corresponding permutation to the orientations. This is
summarized in Corollary 1 below.

Corollary 1. Suppose that π,τ are order preserving per-
mutations according to rows, and that the diagonal 1s
have been reordered by µ . Then, if Co,i,j

A is a covering
of A, then

Cµ(o),π(i),τ(j)
Rµ Pπ AQτ Rµ

=

{l
oµ(1)
(µ(π(i1)),µ(τ(j1)))

, l
oµ(2)
(µ(π(i2)),µ(τ(j2)))

, . . . , l
oµ(k)
(µ(π(ik)),µ(τ(jk)))

},
(2)

is a covering of Rµ Pπ AQτ Rµ .

4 Our algorithm

On input 〈A,MA〉, where MA is a maximal matching for
A, PERALG computes a minimal cover Co,i,j

A . More pre-
cisely, as was shown in Lemma 1, given MA we know a
priori that:

Co,i,j
A = {lo1

(i1, j1)
, lo2
(i2, j2)

, . . . , lok
(ik, jk)

},

is a minimal covering for some o, where the (ip, jp) are
the non-zero entries of MA. Hence, all that we need to
compute in our algorithm is the orientation vector o =
o1o2 . . .ok.

The analogy in the graph theoretic setting is the follow-
ing: given a bipartite graph G and a maximal matching M
the minimal vertex cover can be selected from M. This
selection takes place by choosing for each edge e ∈ M,

5

one of its end-points; a particular choice of end-points
corresponds to a particular orientation. We now present
PERALG for computing the orientations.

PERALG:
Input: A,MA, m×n 0-1 matrices, where MA is a maximal
matching for A:

Step 1 If k = |MA|= min{m,n}, then

• {r1,r2, . . . ,rm} is a cover if m ≤ n; i.e., return
o= 1m and exit

• {c1,c2, . . . ,cn} is a cover if m > n; i.e., return
o= 0n and exit

Step 2 Else, k = |MA| < min{m,n}, compute order pre-
serving permutations π,τ that diagonalize MA, so
(recall the equation (1))

Pπ AQτ =

[
T A1
A2 0(m−k)×(n−k)

]

Step 2a If A1 = 0∨A2 = 0:

• If A1 = 0 then return o= 0k and exit

• If A2 = 0 then return o= 1k and exit

Step 2b Else, A1 6= 0∧A2 6= 0. Group the 1s on the di-
agonal of T into two sets, the black and the green,
of sizes k1 and k2, respectively, with k = k1 + k2. A
black 1 in position (i, i) has the property that both
row i of A1 and column i of A2 consist of zeros. The
green 1s do not have this property. For each green 1
in position (j, j):

• If there is a 1 in row j of A1, then we let o j = 1.

• Else, we let o j = 0.

This part is illustrated in Figure 2.

Let T ′ be T where the 1s under the lines covering
the green 1s have been zeroed out (see Figure 3). In
order to compute the orientations of the black 1s, re-
peat recursively Step 2a on T ′.

Output orientations o

0

1

1

1

1

1

1

1

1

1

0

0

0

0

00

0

0

Figure 2: Step 2b

Note that the situation, as represented in Figure 2, is
simplified for the sake of clarity: the black 1s and the
green 1s are depicted as two separate groups, but in gen-
eral they are interspersed. We could block them together
to be as in Figure 2, but that would require in general a
permutation that is not order preserving; this could still
be done by Corollary 1, but it introduces a technical over-
head, as the orientations would no longer match (but we
can always recover the original orientations by inverting
the permutation).

Also note that in Step 2b, under the assumption A1 6=
0∧A2 6= 0, we know that k2 > 0, so we know that not all
1s in the upper-left quadrant are black; but it may well
be the case that none are black, i.e., all the 1s are green,
which would correspond to k = k2.

Conceptually, the algorithm is rather simple. The tech-
nical complication is the permutations. We are comput-
ing the orientation of a covering for a permuted version
of A; then, we must “extract” the correct orientation for
the original version of A. This is what introduces a certain
technical overhead. On the other hand, these permutations
help to maintain a simple data structure (reconfigurations
of the |V1|× |V2| matrix) that is essential for the computa-
tion.

We will now show that the algorithm PERALG really
computes an appropriate vertex cover.

Lemma 3. Algorithm PERALG is correct. That is, given
A and MA as input, it computes o so that Co,i,j

A is a vertex
cover (of size |MA|).

6

1

1

1

1

Figure 3: Repeat Step 2 with T ′, which is the upper-
left quadrant, emphasized with a thicker border,
with the “green square” zeroed out, as well as
the entries under the red lines, arising from the
cover of the “green square,” zeroed out.

Proof. By placing 1s on the diagonal of T , we ensure that
each such 1 requires at least one line to be covered. By
Lemma 1 we can conclude that exactly one line per 1 on
the diagonal of T is sufficient to ensure a cover.

In Step 2b, if there is a 1 in row j of A1, then we let
o j = 1, and otherwise we let o j = 0. We know that this
works because each 1 in T claims exactly one line in the
cover. So it follows that it is not possible for both row j of
A1 to have a 1, and column j of the A2 to have a 1, since
that would require two lines through (j, j).

Further, the square that encloses the green 1s must be
successfully covered by the above scheme: we have no
choice as to the orientation of the lines covering the green
1s, and by the Min-Max theorem a successful covering
exists, and thus the covering imposed by the green por-
tions of A1 and A2 must necessarily work for the square
enclosing the green 1s.

In the following lemma, we show how to compute order
preserving π,τ in Step 2. It is clear that it can be done in
linear space, that is, in space O(|A|). Except for the com-
putation of order preserving π,τ once in Step 2, the recur-
sive computation of the orientations is done inside A, with
constantly many registers indexing A (space O(log(|A|)))
and hence also in space O(|A|). Thus, PERALG requires
linear space.

Lemma 4. Algorithm PERALG runs in time |A|= m×n.

Proof. We show first the details of computing order pre-
serving π,τ in Step 2. We initialize r = 1 and q = 1, and
we also initialize two integer arrays i, j of size n. For ev-
ery p ∈ [n], if row p of MA is not zero, we let i[q] = p, and
let q = q+ 1. On the other hand, if row p of MA is zero,
we let j[r] = p, and let r = r+1.

We construct π from the two arrays i and j which en-
code the following mapping:

i[1] 7→ 1;
i[2] 7→ 2;
...
i[k] 7→ k;
j[1] 7→ k+1;
j[2] 7→ k+2;
...
j[n− k] 7→ n

(3)

From π we construct P, where P has 1s in positions:

(1, i[1]),(2, i[2]), . . . ,(k, i[k]),
(k+1, j[1]),(k+2, j[2]), . . . ,(n, j[n− k]),

(4)

and zeros everywhere else. The permutation matrix Q
is constructed in a similar manner from τ . This can be
clearly done in time and space proportional to |MA|, i.e.,
in linear time and space.

Once we obtain Pπ AQτ , we work, recursively, with this
matrix, starting at each level of the recursion in Step 2a,
in order to compute the orientations of the black 1s. As
was mentioned above, if there are no green 1s, then the
procedure terminates (outputting all horizontal or or ver-
tical orientations, according to which one of A1 or A2 is
all zero). Thus, if k2 = 0, we are done.

Otherwise, k2 > 0, and the number of black 1s de-
creases by at least 1. Thus this loop, in the worst case, can
repeat at most k = |MA| ≤ min{m,n} many times. Note
therefore that if there are many green 1s, the procedure
has fewer recursive calls; if there are few green 1s, the
procedure has more recursive calls.

We make this argument a little bit more precise; let
R(n) be the maximum number of steps, in the worst-case,

7

that our procedure takes on a matrix of size n (let n denote
here max{m,n}). Let a “step” be a single “atomic opera-
tion” which for us is one of the following two: check what
is the value in position (i, j) of some matrix, and change
the value in position (i, j) of some matrix to 0 or 1.

Suppose that k is the number of black 1’s, and n− k is
the number of green 1’s. Then, we can see that the worst-
case analysis yields the following bound on the number of
atomic steps:

R(n+1) = max
1<k<n

{k(n+1− k)+R(k)}. (5)

First note that there must be at least one black 1, for
otherwise, there are no more steps. There must also be at
least two green 1’s; if there were only one green 1, then
either A1 or A2 would be all zero, which would also ter-
minate the algorithm. Finally, no green 1’s would imply
termination as well. Hence the maximum is computed
over 1 < k < n for size n+1.

Note that in the recursive equation (5), k represents the
number of black 1’s, and so the corresponding sizes of A1
and A2 are given by k×(n+1−k) and (n+1−k)×k, and
hence the term k(n+1− k) — we are ignoring constants
in (5); it should really be 2k(n+ 1− k), but this does not
change the order of R(n). The recursive step is repeated
on the black 1’s, and hence we add R(k) in (5).

We now show by induction that R(n) ≤ n2, where R
is initialized with R(0) = R(1) = 1. For k < n+ 1, by
inductive assumption R(k)< k2, and so by (5):

R(n+1)≤ max
1<k<n

{k(n+1− k)+ k2}= max
1<k<n

{kn+ k}

≤ n2 +n≤ n2 +2n+1 = (n+1)2.

Finally, we show how PERALG keeps track of the ori-
entations o in each step of the recursive procedure. As
was pointed out in the note following the presentation
of PERALG, the situation, as represented in Figure 2, is
simplified for the sake of clarity: the black 1s and the
green 1s are depicted as two separate groups, but in gen-
eral they are interspersed. This means that some ori-
entations are computed in a given step, and some are
not: o= o1o2 . . .ok, where oi1oi2 . . .oik1

correspond to the
black 1s and are not yet computed, and o j1o j2 . . .o jk2

cor-
respond to the green 1s, and have just been computed.
Note that the oip ’s and o jq ’s are interspersed in o, and
k = k1 + k2. But it is easy to keep track of this, because

the order is preserved throughout: let o be a string of 0s,
1s, and unset values. The unset values always appear in
the same order as the black 1s on the diagonal to be dealt
with in the next step.

From Lemma 3 and Lemma 4 we get the main result of
the paper.

Theorem 3. Given a bipartite graph G = (V = V1 ∪
V2,E), and a maximal matching MG, PERALG runs in
time and space O(|AG|) to compute a minimal cover CG.
That is, PERALG runs in linear time and space to com-
pute a minimal cover from a maximal matching.

The time complexity of graph based algorithm for com-
puting a minimal cover from a maximal matching for a
bipartite graph G = (V,E) is O(|V |+ |E|) (c.f. [24]) and
clearly O(|V |+ |E|) = O(|AG|), however, when it comes
to real time complexity, |AG| ≤ 4(|V |+ |E|), and the over-
head of our algorithm is minimal.

If the time complexity of MA(G) is O(fMA(G)) and
|E|2 ≤ O(fMA(G)) (all known algorithms satisfy this and
most likely always will), then the overall time complex-
ity of finding a minimal vertex cover in a given bipartite
graph G using our method is O(fMA(G)).

As was mentioned in the introduction, it is well known
that given a general graph, a maximal matching can be
computed with the classical Edmond’s blossom algorithm
([10]) in O(|V |4) time, or the more complex O(|V | 12 |E|)
algorithm by Micali and Vazirani [25]. As our transfor-
mation is linear, O(|V |2), it can be performed at a lesser
cost than any algorithm currently on the market.

5 Another Simple Algorithm for Minimal Vertex
Cover for Bipartite Graphs

As we have indicated in Introduction, there are many
polynomial time algorithm for finding maximal match-
ing for both general and bipartite graphs. For example,
a popular Hopcroft-Karp algorithm computes a maximal
matching for a given bipartite graph in time O(|V | 12 |E|),
where G = (V,E) and V =V1∪V2. By König’s Mini-Max
theorem, we know that a bipartite graph G has a maximal
matching of size k if and only if it has a minimal vertex
cover of size k. Putting these elements together, we ob-
tain a simple and natural algorithm NATALG, presented

8

in Figure 4 for computing minimal vertex covers in a bi-
partite graph.

NATALG:
Input G = (V =V1∪V2,E)
C← /0
k← |MA(G)| (= size of minimal vertex cover of G)
For every node u ∈V =V1∪V2 do:

If u ∈Vi, then
Let G′ = (V ′,E ′) be derived from G by:

adding two new nodes u′1,u
′
2 to V3−i to obtain V ′

adding two new edges (u,u′1),(u,u
′
2) to obtain E ′

k′← |MA(G′ = (V ′,E ′))|
If k = k′, then

add u to C
delete from G all edges incident to u
delete all singleton nodes
k← k−1

Output C

’

V V1 2

u

u

u

1

2

’

Figure 4: On input G=(V =V1∪V2,E), NATALG repeat-
edly invokes an algorithm computing |MA(G)|
for a bipartite graph G, (for example the
Hopcroft-Karp algorithm.

Lemma 5. The algorithm NATALG, presented in Fig-
ure 4, computes a minimal vertex cover in time
O(fMA(G)|V |), where the time complexity of |MA(G)| is
O(fMA(G)).

Proof. If we add two new edges (u,u′1) and (u,u′2) to G
— and obtain G′ — the “cheapest” way to cover those
two new edges is with their common vertex u. That is, by
adding the edges (u,u′1),(u,u

′
2), we force u to be part of a

minimal cover of the resulting graph. If there was a cover

of G that included u, then the same cover works for G′;
essentially, we cover the two new edges “for free.” This
corresponds to the case k = k′, where we know that u was
part of a cover, and so we add it to C, and we delete from G
the edges incident to u. If, on the other hand, k < k′, then
no minimal cover of G contained u, and thus we needed
to add u to the cover of G′ in order to take care of the two
new edges; in this case we do not put u in C.

In either case, we delete the gadget, and repeat the pro-
cedure on the next unexamined node in V = V1 ∪V2. For
added efficiency, if k = k′ then we delete all singleton
nodes. We run the MA algorithm in each round, giving the
stated running time bound of O(|V | 12 |E||V |). Note that it
is immaterial in which order we examine the nodes of G;
any ordering works.

If Hoproft-Karp algorithm is used to compute |MA(G)|
in NATALG, the time complexity is O(|V | 32 |E|).

Note that the reduction described in Lemma 5 would
not work over general graphs (i.e., not necessarily bipar-
tite). First, for the obvious technical reason that requires
u′1,u

′
2 to be added to “the other vertex set,” i.e., to V3−i if

u ∈ Vi, where i = 1,2. But, more importantly, say that
instead of the Hopcroft-Karp algorithm we invoke Ed-
mond’s algorithm that works over general graphs. Could
we then modify somehow the algorithm in Figure 4 to
make it work over general graphs? The answer is: “not
in polytime, unless P = NP”. The reduction given by the
algorithm in Figure 4 relies deeply on the graph being bi-
partite.

6 Conclusion

PERALG is a matrix permutation based algorithm that
runs in time O(|V1||V2|) to transform a maximal match-
ing of a bipartite graph into a minimal vertex cover. In
particular, PERALG runs in linear time and space (as its
input is a binary matrix of size |V1|× |V2|), and using the
properties in the famous König’s Mini-Max theorem, it
performs basic counting of zeros and ones to compute a
minimal cover. Our algorithm is very simple, and does
not employ the usual graph theoretic properties that are
the foundation of classical algorithms in this area.

Our algorithm is one of many applications of König’s
Mini-Max theorem, which has also several equivalent for-
mulations (cf. [18]): as Menger’s Theorem [23], count-

9

ing disjoint paths; as Hall’s Theorem [15], giving neces-
sary and sufficient conditions for the existence of a “sys-
tem of distinct representatives” of a collection of sets; as
Dilworth’s Theorem [7], counting the number of disjoint
chains in a poset. It has recently been shown in [13] that
these different formulations are not only equivalent, but
additionally this equivalence can be proven in weak frag-
ments of arithmetic [27].

A surveys of classical Mini-Max results can be found
in [22].

There are many applications of the type of algorithms
discussed in this paper. For example, [4] is a paper in a
long tradition of studying switching routers, which effec-
tively compute solutions (or approximate solutions) to the
problem of matching incoming ports to outgoing ports.

Acknowledgment

This research was partially supported by NSERC Dis-
covery Grant of Canada. Main parts of this work were
done during the time that the first author was a Ph.D. stu-
dent in the Department of Computing and Software, Mc-
Master University, and the third author held a position in
the same. We are grateful to the referees for a careful
reading of this paper, and for suggesting thoughtful im-
provements.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data
Structures and Algorithms. Addison-Wesley, 1983.

[2] H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Com-
puting a maximum cardinality matching in a bipar-

tite graph in time O
(

n1.5
√

m
logn

)
. Information Pro-

cessing Letters, 37:92–99, 1991.
[3] A. T. Alexiou, M. M. Psiha, and P. M. Vlamos.

Combinatorial permutation based algorithm for rep-
resentation of closed RNA secondary structures.
Bioinformation, 7(2):91–95, 2011.

[4] Banerjee, Satyajit and Datta Chowdhury, Atish
and Sinha, Koushik and Ghosh, Subhas Ku-
mar. Contention-Free Many-to-Many Communica-
tion Scheduling for High Performance Clusters. In
Natarajan, Raja and Ojo, Adegboyega, Distributed

Computing and Internet Technology: 7th Interna-
tional Conference, ICDCIT 2011, volume 6536 of
Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2011.

[5] R. A. Brualdi and H. J. Ryser. Combinatorial Matrix
Theory. Cambridge University Press, 1991.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. McGraw-Hill
Book Company, 2009. Third Edition.

[7] R. P. Dilworth. A decomposition theorem for par-
tially ordered sets. Annals of Mathematics 51,
1:161–166, 1950.

[8] A. L. Dulmage and N. S. Mendelsohn. Coverings of
Bipartite Graphs. Canadian Journal of Mathemat-
ics, 10:517–534, 1958.

[9] A. L. Dulmage and N. S. Mendelsohn. Some gen-
eralizations of the problem of distinct representa-
tives. Canadian Journal of Mathematics, 10:230–
241, 1958.

[10] J. Edmonds. Paths, trees, and flowers. Canadian
Journal of Mathematics, 17:449–467, 1965.

[11] L. R. Ford and D. R. Fulkerson. Flows in Networks.
Princeton Univ. Press, 1962.

[12] A. G. Fernández, R. Janicki and M. Soltys, A
Permutation-Based Algorithm for Computing Cov-
ers from Matchings. Proc. of CATA17 (32nd Inter-
national Conference on Computers and Their Ap-
plications), Honolulu, Hawaii, USA, March 20–22,
2017

[13] A. G. Fernández and M. Soltys. Feasible combi-
natorial matrix theory. In Krishnendu Chatterjee
and Jirı́ Sgall, editors, Mathematical Foundations
of Computer Science 2013, volume 8087 of Lec-
ture Notes in Computer Science, pages 777–788.
Springer Berlin Heidelberg, 2013.

[14] F. Gavril. Testing for equality between maximum
matching and minimum node covering. Information
Processing Letters, 6(6):199–202, 1977.

[15] P. Hall. On representation of subsets. Journal of
London Mathematical Society, 10:26–30, 1935.

[16] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM
Journal on Computing, 2(4), December 1973.

[17] R. M. Karp. Reducibility Among Combinatorial

10

Problems. In R. E. Miller and J. W. Thatcher, ed-
itors, Complexity of Computer Computations, pages
85–103. Plenum Press, 1972.

[18] J. Kleinberg, É. Tardos. Algorithm Design. Pearson,
2006.

[19] D. König. Gráfok és alkalmazásuk a deter-
minánsok és a halmazok elméletére. Matematikai
és Természettudományi Értesı́tö, 34:104–119, 1916.

[20] D. König. Über graphen und ihre anwendung auf
determinantentheorie und mengenlehre. Mathema-
tische Annalen, 77(4), 1916.

[21] I. Llatas, A. J. Quiroz, and J. M. Renóm, A fast
permutation-based algorithm for block clustering.
Test, 9(2): 397–418, 1997.

[22] L. Lovász and M. D. Plummer. Matching theory.
In Annals of Discrete Mathematics. North-Holland,
1986.

[23] K. Menger. Zur allgemeinen Kurventheorie. Funda-
menta Mathematica, 19: 96–115, 1927.

[24] S. Mishra, V. Raman, S. Saurabh, S. Sikdar, and
C. R. Subramnian. The Complexity of König Sub-
graph Problems and Above-Guarantee Vertex Cover.
Algorithmica, 61(4):857–881, 2008.

[25] S. Micali and V. V. Vazirani. An O(
√
|V | · |E|) al-

gorithm for finding maximum matching in general
graphs. In 21st IEEE Symp. Foundations of Com-
puter Science, pages 17–27. IEEE, October 1980.

[26] A. Schrijver. Min-max relations for directed graphs.
In Bonn Workshop on Combinatorial Optimization,
volume 16 of Ann. Discrete Math., pages 261–280.
North-Holland, 1982.

[27] M. Soltys, S. Cook. The proof complexity of linear
algebra. Annals of Pure and Applied Logic 130(1-3),
207–275, 2004.

[28] J. A. Storer. An Introduction to Data Structures and
Algorithms. Progress in Computer Science and Ap-
plied Logic Series. Springer, 2001.

[29] T. J. J. Van den Boom, N. Weiss, W. Leune, R. M. P.
Goverde, and B. De Schutter, A permutation-based
algorithm to optimally reschedule trains in a railway
traffic network. In Proc. of the 18th World Congress
The International Federation of Automatic Control,
pages 9537–9542, Milano, Italy, 2011.

Ariel Fernández holds a Ph.D.
(2013) from McMaster University.
His primary area of research is Proof
Complexity and Algorithms, espe-
cially inspired by the subject of Com-
binatorial Matrix Theory, which com-
bines Linear Algebra, Graph Theory,
and Combinatorics, and has a rich al-

gorithmic content. Recently he has become interested in
Quantum Computing, and especially in the study of quan-
tum concepts in Proof Complexity. Starting in 2013 he
is working on Geographic Information Systems (GIS sys-
tems), and is currently the director of a maps making com-
pany called “Filcar SRL” located in Buenos Aires, Ar-
gentina.

Ryszard Janicki is a profes-
sor at McMaster University in
the department of Computing
and Software. He received the
M.Sc. degree in Applied Math-
ematics from the Warsaw Uni-
versity of Technology, Poland
in 1975, and the Ph.D. and Ha-

bilitation in Computer Science from the Polish Academy
of Sciences, Warsaw, Poland in 1977 and 1981 respec-
tively. He taught computer science and mathematics at the
Warsaw University of Technology, Poland in 1975-1984,
Aalborg University, Denmark in 1984-86, before joining
McMaster in 1986. He was a Visiting Scholar at Univer-
sity of Newcastle upon Tyne, U.K., in 1982 and a Visiting
Professor at Bordeaux University, France, in 1994-95.

He published more than 200 papers and co-authored a
monograph. His research interests include concurrency
theory, fundamentals of software engineering, ranking
theory, abstract approximation, mereology and relational
methods in computer science.

11

Michael Soltys is a faculty
at California State University
Channel Islands in the de-
partment of Computer Science,
where he is a full professor and
chair of the department. He
is also the director of IT Cy-
bersecurity at Executek Interna-
tional. His research is in logic
and algorithms, and he is es-
pecially interested in proofs of

correctness. He is also working in the area of String Al-
gorithms which involves combinatorial methods on finite
words, and in Combinatorial Matrix Theory, which com-
bines linear algebra, graph theory, and combinatorics, and
has a rich algorithmic content. Recently he has become
interested in Ranking Algorithms, and especially in the
elegant Pairwise Comparisons Method. He is a member
of the Centre for Combinatorics on Words and Applica-
tions (CCWA). For more information visit soltys.cs.
csuci.edu.

12

