CSU Channel Islands MATH 354 Midterm October 25, 2017

Duration: 1 hour and 10 minutes

No Aids Allowed.

There are 4 questions worth a total of 20 marks (5 marks each).

Answer all questions on the question paper.

Use backs of pages.

Please complete this secti	ion:		
Name (please print):			
For use in marking:			
	1	/5	
	2	/5	
	3	/5	
	4	/5	
	Total·	/20	

1. Recall the Gale-Shapley algorithm:

```
1: Stage 1: b_1 chooses his top g and M_1 \longleftarrow \{(b_1, g)\}
 2: for s = 1, ..., s = |B| - 1, Stage s + 1: do
       M \longleftarrow M_s
 3:
       b^* \longleftarrow b_{s+1}
 4:
       for b^* proposes to all g's in order of preference: do
 5:
          if g was not engaged: then
 6:
             M_{s+1} \longleftarrow M \cup \{(b^*,g)\}
 7:
             end current stage
 8:
          else if g was engaged to b but g prefers b^*: then
 9:
             M \longleftarrow (M - \{(b,g)\}) \cup \{(b^*,g)\}
10:
             b^* \longleftarrow b
11:
             repeat from line 5
12:
          end if
13:
       end for
14:
15: end for
```

Assuming that |B| = |G| = n, show that at the end of stage n, M_n will be a stable marrige. Recall that a marriage is stable if there is no blocking pair (a pair (b, g) from $B \times G$ such that b and g are not partners in M but b prefers g to $p_M(b)$ and g prefers g to $p_M(g)$.

2. Let MaxCST be a variation of the MCST (Minimum Cost Spanning Tree) where we are interested in a Maximum Cost Spanning Tree.

Does the following modification of Kruskal's algorithm (edge weights given in non-increaseing rather than non-decreasing order) always produce a MaxCST?

```
1: Sort the edges: c(e_1) \geq c(e_2) \geq \ldots \geq c(e_m)

2: T \leftarrow \emptyset

3: for i: 1..m do

4: if T \cup \{e_i\} has no cycle then

5: T \leftarrow T \cup \{e_i\}

6: end if

7: end for
```

Justify your answer.

3. Explain why classical bit multiplication of two *n*-bit integers takes $O(n^2)$, but the Divid and Conquer approach only $O(n^{1.59})$ operations.

Hint: use the fact that n bit integers can be broken up into two n/2-bit integers, so $z = z_1 \cdot 2^{n/2} + z_0$ where z has n-bits, while z_1, z_0 have n/2 bits. (Ignore issues of divisibility; n/2 is really $\lfloor n/2 \rfloor$ but overlook it for the sake of simplicity.)

4. Consider the following variant of the Longest Monotone Subsequence problem. The input is $d, a_1, a_2, \ldots, a_d \in \mathbb{N}$, but the output is the length of the longest subsequence of a_1, a_2, \ldots, a_d , where any two consecutive members of the subsequence differ by at most 1. For example, the longest such subsequence of $\{7, 6, 1, 4, 7, 8, 20\}$ is $\{7, 6, 7, 8\}$, so in this case the answer would be 4. Give a dynamic programming solution.