
iSprinkle: Design and implementation of an

internet-enabled sprinkler timer

Carlos Adrian Gomez, Adam Sedziwy, Michael Soltys

July 20, 2017

Abstract

This paper presents the details of the design and implementation of an
internet-enabled sprinkler scheduling system, undertaken as a senior level
capstone project at the California State University Channel Islands. The
end result is a functioning prototype, but, more importantly, the project
has tremendous pedagogical value as it combines advanced programming,
introduction to embedded systems, application, as well as aspects of sus-
tainability and California State law.

1 Introduction

The aim of this paper is to report on the design and implementation of a sprin-
kler timer for home usage, as well as expound on the pedagogical value of the
exercise. The aim is to provide enough details and references so that the reader
can replicate the final product, and thus obtain a working sprinkler timer, as
well as report on the insights for instructors who may wish to repeat this project
and draw learning value for the student.

iSprinkle is a Raspberry Pi-powered irrigation controller which will allow
a user to set an initial irrigation schedule for a sprinkler system using a web
interface, after which it will use the local weather forecast to adjust the base
watering schedule as-needed. By doing so, iSprinkle will be able to irrigate
more efficiently compared to a fixed schedule; by programmatically modifying
the user’s watering schedule, iSprinkle will increase/decrease the amount of
watering that the schedule dictates depending on data that it receives from
a weather API. iSprinkle hopes to make it easier for homeowners to conserve
water by automating adjustments to their irrigation schedule.

1

Figure 1: Diagram of the project.

2 Hardware components

The hardware is inexpensive, and all the components can be purchased for about
$150. This is the price of a standard “smart” WiFi sprinkler controller; however,
the standard products have a very limited set of capabilities compared to our
solution, and they are not open source.

Table 1 contains an itemized list of the hardware components, including the
URLs of venues that sell the items online, and Figure 2 contains pictures of
the items. We do not include the sprinkler system itself, that is the valves, the
pipes, the sprinklers, etc., as iSprinkle is only intended to be a replacement for
the sprinkler scheduling system.

Component URL Price
(a) Raspberry Pi 2 (RPi) amzn.to/1Yv2nrL $39.99
(b) OpenSprinkler Pi (OSPi) rayshobby.net/cart/ospi $77.99
(c) Samsung 16Gb MicroSD card (SD) amzn.to/20UnEw6 $7
(d) Edimax USB WiFi adapter (Edimax) amzn.to/1WDvo5d $8.50
(e) 24V Transformer (T) thd.co/1NzwXKf $12.97

Total: $146.45

Table 1: Itemized hardware components

For the module to be practical we may also need to add an Uniterrupted
Power Supply (UPS)1 to deal with power outages.

3 Software components

3.1 Operating System

Once all the hardware components are out of the box, we must start by down-
loading and installing an Operating System (OS) for for the RPi. The OS resides

1https://www.pi-supply.com/product/pi-ups-uninterrupted-power-supply-raspberry-pi

2

(a) Raspberry Pi 2 (b) Open Sprinkler Pi

(c) MicroSD card (d) Edimax WiFi (e) 24V Transformer

Figure 2: Pictures of hardware components

on the SD card, and so the SD card must be formatted and the image of the
OS copied to it. On a Mac this can be done as follows2:

1. Download the SD card formatting tool, “SDFormatter,” from:

https://www.sdcard.org/downloads/formatter_4/eula_mac/

and once it is installed, insert the SD card3, and run the formatting tool
by selecting the “Overwrite Format.” (Here it is important to make sure
that the right card is selected.)

2. Download the New Out Of Box Software (NOOBS) from:

downloads.raspberrypi.org/noobs

3. Unzip the files, and copy them to the SD card that was just formatted.
Eject the SD card from your computer, and insert it into the RPi.

4. Connect the RPi to a monitor (with an HDMI cable), a keyboard, and a
mouse. Insert the WiFi adapter (Edimax) into one of the USB slots.

5. Connect to RPi to the power supply (T), which will boot it, and select
the OS from the given list. We recommend installing Raspbian, a free OS
optimized for the Raspberry Pi hardware and based on Debian Linux, and
will describe the setup required for it in the proceeding sections.

6. Once the system boots in the appropriate OS, connect your RPi to the
local WiFi, and now you will be able to disconnect all the peripherals and
control your RPi by ssh’ing into it.

2https://www.raspberrypi.org/files/legacy/qsg.pdf
3Note that the SD card comes with an extension that makes it the appropriate size for a

Mac card slot.

3

3.2 Environment

3.2.1 System Packages

In order to keep Raspbian updated with the latest software patches, we first up-
date the system’s package list by entering the following command in LXTerminal
or from the command line:

sudo apt-get update

and next, upgrade the installed packages, firmware, and kernel to their latest
versions with the command:

sudo apt-get dist-upgrade

3.2.2 Raspbian Configuration

Before setting up iSprinkle, one of the most critical parts of configuration is
the RPi’s timezone settings; they must be configured to local time so that the
watering schedule start times are accurate. As of this writing, timezone settings
are located under Internalization Options.

The Raspberry Pi configuration tool can be accessed with the command:

sudo raspi-config

Other configuration options include the ability to remotely access the Rasp-
bian’s desktop environment via Virtual Network Computing (VNC), disabling
the desktop environment altogether, and modifying the amount of memory al-
lotted to the Graphical Processing Unit (GPU)4.

3.3 Installing iSprinkle

1. Before installing iSprinkle, it is good practice to setup a virtual Python
environment so that Python modules required for iSprinkle are isolated
to the project itself and not available globally throughout the system 5.
First, install the virtualenv module via pip, Python’s package manager.

sudo pip3 install virtualenv

2. In the pi user’s home directory ~, create a new virtual environment in a
directory called venv with the command:

virtualenv venv

3. The venv directory contains a copy of the Python interpreter, pip package
manager, as well as other tools, which can be used as iSprinkle’s isolated
environment. Continue by activating the environment with the command:

source venv/bin/activate

4raspberrypi.org/documentation/configuration/raspi-config.md
5packaging.python.org/installing/#creating-and-using-virtual-environments

4

After activation, the command prompt should show the following:

(venv) pi@raspberrypi:~ $

4. Clone the iSprinkle repository with the command:

git clone https://github.com/cagmz/iSprinkle.git

5. Change directory into the newly downloaded repository:

cd iSprinkle/

6. Install iSprinkle’s Python dependencies using pip using the command:

pip install -r requirements.txt

7. Run iSprinkle using the command:

nohup python3 iSprinkle.py &

The command nohup and BASH’s control operator & make sure that the
program continues running even after we log out from the RPi (recall that
we assume that we control the RPi by ssh’ing into it).

8. Access iSprinkle via any web browser on the local network via:

<Raspberry Pi IP>:8080

where <Raspberry Pi IP> is the IP address of the RPi on the network.

4 Running iSprinkle

Here are the functional requirements for running iSprinkle.

1. Manual run

2. Set irrigation schedule

3. Retrieve weather data

4. Optimize schedule

5. View historical irrigation logs

4.1 Manual run

Allow the user to manually selected water zones for a specified amount of time.
This can be done on any device (on the same WiFi as the RPi), by accessing
the following address on any web browser:

http://sprinklerrp.local:8081

where “sprinklerrp.local” is the name of the RPi on the local network (this
can be also replace with its IP, or any other name that was given to the RPi).

5

4.2 Set irrigation schedule

Allow the user to set a watering schedule for up to 8 stations. In a typical home
sprinkler system, each station pertains to one sprinkler valve. This watering
schedule, as well as future adjustments, will be stored in the database.

4.3 Retrieve weather data

Poll the weather API in order to gather the latest weather forecast and adjust
the watering schedule as needed.

4.4 Optimize schedule

Optimize the user’s watering times based on a sliding scale according to the
forecasted temperature from the weather forecast.

4.5 View historical irrigation logs

Display historical data from the database to the user, allowing them to display
watering duration totals.

5 Water usage

In California, the current drought has become so severe that the state and
local governments have begun regulating water consumption, imposing sanctions
and even passing legislation in order to curb water usage. On average, the
statewide ratio for water usage is about 50% environmental, 10% urban, and
40% agricultural [MFL14].

Irrigation is one of the widest uses of water nationwide, accounting for more
than 60% of water withdrawals in our state [MKH+10]. Fortunately, the amount
of water used in both urban and agricultural irrigation has been reduced through
a variety of measures, including a strong trend in the use of precision irrigation
techniques (e.g., drip irrigation) [Han07].

However, research suggests our current unprecedented drought is only ex-
pected to get worse; for this reason, it is imperative to be proactive and reduce
our water consumption further [CAS15]

5.1 Residential over irrigation

In a random survey of single-family water customers sponsored by the California
Department of Water Resources, results showed that 87% of homes appeared to
be irrigating with only 54% doing so in excess [DMM+]. However, the surveyors
also mentioned that most water customers were irrigating at or below average
levels.

The survey found that 62% of excess usage occurred on 18% of all irrigat-
ing lots, leading the surveyors to conclude that “the majority of savings from

6

outdoor use will be found from around 15% of the customers.” For this reason,
they suggested that a solution to reduce outdoor water usage should be focused
on those households which over irrigate, so that households who are irrigating
at appropriate levels are not affected.

Of the survey respondents, only 4% were said to be using weather-based
irrigation controllers (or WBIC), despite some municipalities offering rebates
towards commercially available products. The low levels of adoption surround-
ing WBIC’s is especially concerning given the potential savings; it is estimated
that a WaterSense-labeled irrigation controller, or one that meets the EPA’s re-
quirements for watering without doing so in excess, can save the average home
almost 9,000 gallons of water per year [Age]. The EPA estimates that if every
US home replaced their sprinkler timer with a WaterSense labeled controller,
the potential savings “could save $435 million in water costs and 120 billion
gallons of water across the country” [Age].

Over the past 15 years, there have been numerous studies intended to eval-
uate the reduction of water usage of WBIC’s, compared to traditional timers,
when retrofitted at an over irrigating household. Most studies suggest that
“savings of 40-50 gallons per household per day, or roughly 10% of total use can
be expected from a residential WBIC retrofit program assuming such programs
target high water users”[Res].

The aforementioned studies differed in the criterion for targeting over irri-
gators, citing difficulty in devising a methodology that was effective. However,
as WBIC’s become more commonplace and more households in general begin
to adopt the technology, we can be sure that at least a percentage of these will
be over irrigating households and will reap the benefits of “smart” irrigation.

6 Pedagogical value

Although this project involves both hardware and software, the learning poten-
tial leans greatly on the latter. We will expand on the learning value of the
project from the initial setup to the functioning prototype.

6.1 Hardware

Assuming the user has an existing sprinkler system complete with sprinkler
valves, iSprinkle is intended as a drop-in replacement for a home irrigation
timer. The OSPi expansion board has female GPIO pins; all that is needed is
to plug in the RPi and securely close the OSPi enclosure so that both boards
are protected. After this, the sprinkler valve solenoid leads must be connected
to the OSPi, and the 24 volt power supply connected, providing power to both
the OSPi and RPi.

7

6.2 Operating System

The Linux environment offered by Raspbian offers a wealth of learning opportu-
nities. While Raspbian is easy to use due to the graphical user interface (GUI),
users are free to explore the underlying system using the Bash shell.

As mentioned previously, assuming the user interacts with the RPi via a
remote shell using the SSH, they will become intimately familiar with Linux
commands, if they are not already. New users are encouraged to review the
Console Basics section in the Debian Reference [Aok16]. In addition, Linux
provides convenient documentation for Unix utilities via the man.

6.3 Python

The server-side software of iSprinkle is written solely in Python, a versatile
scripting language which has been adopted by many learning institutions for
teaching programming to beginners. Python is an excellent choice for new and
experienced programmers due to its ecosystem. Because Python is open-source,
there is a wide variety of freely-available learning materials as well as online
communities providing support.

Although Python’s standard library is already quite extensive, offering fea-
tures such as built-in support for networking and interfacing with the underlying
OS [Fou16b], there are also thousands of third-party libraries available via PyPI,
the Python Package Index [Fou16a]. Due to Python’s open nature, users will
find it easy to modify and extend iSprinkle’s existing codebase.

6.4 Web Development

The user-interface for iSprinkle combines HTML, CSS, as well as JavaScript.
Bootstrap, a popular framework for developing web sites, is used to easily create
stylish pages, many of which can contain components such as buttons, forms,
and icons, and are responsive (i.e. adaptable to the viewer’s screen size and
platform) [OT]. Bootstrap provides a gentle introduction to web development
in that it makes it easy to create pages which follow a convention rather than
spending time on configuration; however, because the documentation is so exten-
sive, users will easily be able to learn about HTML and CSS for both structuring
and styling websites, as well as JavaScript, for adding interactivity. However,
because Bootstrap only provides structure, style, and a limited set of dynamic
features for the user interface, another component is required.

Angular, a client-side JavaScript framework maintained by Google, is used
to ”extend the vocabulary” of HTML by adding templating, bi-directional data
binding, and scope to the traditional static HTML page [Goo]. Users will learn
to use ”scopes”, in the traditional computer science sense, as they declare vari-
ables and use logic to add even more dynamic features to web pages. In addition,
Angular makes it easy to start learning about asynchronous programming, such
as when making requests to a server, be it local (such as iSprinkle’s backend)
or remote (such as an external API), without affecting the user’s experience by

8

waiting for the reply. Finally, JavaScript itself has seen enormous changes within
the last decade; countless web frameworks have been built upon it, making it
an enormously versatile language to learn.

6.5 Software Engineering

The design of a system such as iSprinkle requires a holistic approach that is
very different from most class assignments. The former usually span a few files
that are to be turned in within a week or two, making it difficult to implement a
system with many ’moving parts.’ However, iSprinkle’s functionality is divided
between the front-end and backend, both of which need to communicate so that
the user’s requests are fulfilled. Designing such a system requires taking into
consideration many aspects; from major decisions such as deciding on a backend
language to use, to minutiae such as the date and time formats to use across
the backend and front end to maintain consistency.

7 Implementation

Throughout the design and implementation of iSprinkle, a major consideration
was to emphasize modularity, allowing for separation of concerns between com-
ponents while maintaining a standard way to communicate between them. For
this reason, iSprinkle’s functionality is split between the front end, allowing the
user to interact with the software in a user-friendly way, and the back end,
which does most of the work.

In this section, we will go through the typical work flow for a user, start-
ing from the front end, and trace the request to the back end, while detailing
implementation details and design decisions.

7.1 Home

The dashboard is where users are able to view historical watering usage. Users
select a date range, click on a button, and graph displaying past watering usage
is shown. As of this writing, iSprinkle displays the cumulative watering times
for all stations given a date range.

9

Figure 3: Both original and optimized durations are plotted for comparison.

Starting from the user input, the bootstrap-datepicker library is used to
provide a user-friendly way to input dates [dW]. After clicking the button,
Angular begins validating the user input by preparing attempting to craft proper
request before sending it to the backend. For instance, the start and end dates
are converted to an ISO 8601 date time string in UTC time, a format which is
used consistently throughout the front and back end.

After a proper request containing start and end dates, as well as the stations
to request usage from is crafted, the request is sent to the back end using
Angular’s $http service. The $http returns a promise, which allows the back
end to reply at a later time.

Once the back end receives the request, it queries the database for entries
in the historical usage table that are between the start and end dates and that
pertain to the selected stations. Once the rows are found, they are sent back to
the front end in JSON format.

When the reply from the back end is received, a success callback function in
Angular passes the payload to another function for parsing before displaying in
a graph.

Parsing the payload is done by creating two cumulative watering arrays;
one for the fixed schedule and another for the optimized watering times. The
data returned by the back end is iterated through and the arrays are populated
by inserting tuples containing the date as well as the running total of their
respective watering times. These tuples represent (X, Y) coordinates, and both
of these arrays are then used by d3.js for plotting [Bos].

10

7.2 Schedule

Users are able to create, read, update, and delete watering times for stations on
the schedule page. The entire weekly schedule can be seen at a glance, with one
station per row and every weekday as a column. Each station can have multiple
start times in a day.

When iSprinkle executes, a job scheduler provided by the Advanced Python
Scheduler module is instantiated [Gr]. As the watering schedule is loaded into
memory from disk, new jobs are added to the job scheduler for each station.
Each job can be thought of as a tuple which contains the watering function,
start time, and watering function arguments, where the latter consists of the
station number and watering duration. The job scheduler runs in a separate
thread from the main application and executes the watering function when a
start time for a job is reached.

When the start time for a job is reached (i.e. a station is due to start
watering), iSprinkle retrieves weather data from the past month. The average
temperature, along with the current temperature and desired watering duration,
are used to produce an optimized watering duration which is then used in place
of the user’s original value.

When serving the schedule page, Angular makes a request to the backend
for the current schedule using the aforementioned $http service. Once the back
end returns the schedule as a JSON object, Angular saves it in the schedule
controller’s scope. HTML is dynamically generated by Angular, containing
textfields for start times and durations present in the schedule. These textfields
have bidirectional data binding; once the schedule has been displayed, the user
is able to modify start times and durations in the schedule table, and the JSON
object in the scope is modified at the same time. Angular then displays the
schedule in a table.

When the user saves an updated schedule, the existing schedule object in
the scope already contains the modified values due to the two-way data binding.
Angular removes start times with durations equal to 0 are removed from the
schedule, and Angular’s $http service makes a POST request with the updated
schedule to the back end after which it is saved to disk.

11

Figure 4: Text fields are bound to a JSON object in Angular.

Users are able to add watering times for multiple stations and days at the
same time by using dropdown menus for stations and days, making it easy to
quickly set up an initial schedule. Once the user has filled the form, Angular
creates start time entries and inserts them into the schedule JSON object that
is already present in the schedule controller’s scope. This updated schedule is
then sent to the back end in a similar fashion as an updated schedule would be.

Figure 5: A flexible way to add watering times.

7.3 Manual

Many times, it is necessary to manually activate sprinkler valves. iSprinkle
provides on-demand station activation on via the Manual page. The user is
presented with a form showing their stations along with a textfield input to
specify the manual watering duration in minutes for each.

12

Figure 6: Users are able to manually irrigate on demand.

When the user accesses the Manual page, Angular requests a list of active
stations from the backend and then dynamically generates a list of stations
along with a textfield belonging to each. Users are then able to input the
number of minutes that they would like to activate a station for. After pressing
the Start button, Angular validates the user’s input making sure that they are
valid watering duration (i.e. a positive value), crafts a JavaScript object which
contains the request, and then uses the $http service to POST a request with
that object to to the backend.

Once the backend receives the watering request object, the user’s normal
operating schedule is paused. New jobs are created for each of the stations
that the user wants to water and are added to the schedule, and a final job
responsible for resuming the previously paused jobs in the user’s schedule is
also added. After the stations have finished watering in a serial fashion, the
jobs associated with the original schedule are resumed.

7.4 Administration

Users are able to view system information and update settings on the Admin-
istration page. Currently, users are able to view the the local IP address and
uptime, as well as update their “active stations”. Active stations allow users to
enable/disable stations system wide, displaying only these selected stations in
the user interface and scheduling their watering jobs. One use case is for active
stations is if a user has, for example, 3 sprinkler valves installed and thus only
needs 3 stations; by setting those 3 stations as “active”, they can remove clutter
in the user interface, especially in the Schedule page.

13

Figure 7: System wide status and configuration.

For system information, the front end simply queries the iSprinkle backend
with a GET request for the requested information using the appropriate API
endpoint. For example, the uptime field is populated by Angular by using the
$http service to perform a GET request to the /api/rpi/ip.

However, updating settings is performed by crafting a JavaScript object
when the user presses the Save button. The JavaScript object contains key,
value pairs whose keys map directly to the user’s existing settings file. Angular’s
$http service uses a POST request to deliver this object to the backend, after
which the backend overwrites previous values associated with the keys.

8 Conclusion

This article presented a senior capstone project aimed at preparing a low cost,
open source-based sprinkler timer capable of performance adjustment on the
basis of weather forecast data being gathered in the background. The project
covered assembling both hardware and software components. The latter ones
were based on open source solutions and technologies: the Raspbian operating
system, Python-based components, Angular, Bootstrap and others. The project
required the student to develop skills in several areas: assembling together all
hardware items; installing and setting up the OS and the software environment;
programming using advanced web technologies. As mentioned in Section III, the
basic assumption was reducing the cost of the solution. Meeting this requirement
and relying on the open software, make iSprinkle to be easily replicable. This
fact together with the environmental context, i.e. the common water shortages
in California, open good prospects for commercial application of iSprinkle.

References

[Age] United States Environmental Protection Agency. Watersense la-
beled irrigation controllers — watersense — us epa. https://www3.

14

epa.gov/watersense/products/controltech.html. (Accessed on
12/17/2016).

[Aok16] Osamu Aoki. Debian reference. https://www.debian.org/doc/

manuals/debian-reference/, September 2016. (Accessed on
10/15/2016).

[Bos] Mike Bostock. D3.js - data-driven documents. https://d3js.org/.
(Accessed on 12/16/2016).

[CAS15] Benjamin I. Cook, Toby R. Ault, and Jason E. Smerdon. Unprece-
dented 21st century drought risk in the american southwest and
central plains. Climatology, February 2015.

[DMM+] William B. DeOreo, Peter W. Mayer, Leslie Martien, Matthew
Hayden, Andrew Funk, Michael KramerDuffield, and Renee
Davis. California single family water use efficiency study
— aquacraft. http://www.aquacraft.com/2015/07/28/

california-single-family-water-use-efficiency-study/.
(Accessed on 12/17/2016).

[dW] Joris de Wit. Timepicker for twitter bootstrap. https://jdewit.

github.io/bootstrap-timepicker/. (Accessed on 12/16/2016).

[Fou16a] Python Software Foundation. Pypi - the python package index
: Python package index. https://pypi.python.org/pypi, 2016.
(Accessed on 10/15/2016).

[Fou16b] Python Software Foundation. The python standard library ? python
3.5.2 documentation. https://docs.python.org/3/library/,
September 2016. (Accessed on 10/15/2016).

[Goo] Google. Angularjs a superheroic javascript mvw framework. https:
//angularjs.org/. (Accessed on 11/09/2016).

[Gr] Alex Grnholm. Advanced python scheduler ? apscheduler
3.3.0.post4 documentation. https://apscheduler.readthedocs.

io/en/latest/. (Accessed on 12/16/2016).

[Han07] Blaine Hanson. Irrigation of agricultural crops in california. Tech-
nical report, University of California Davis, 2007.

[MFL14] Jeffrey Mount, Emma Freeman, and Jay Lund. Water use in Cali-
fornia. Technical report, Public Policy Institute of California, July
2014.

[MKH+10] Molly A. Maupin, Joan F. Kenny, Susan S. Hutson, John K.
Lovelace, Nancy L. Barber, and Kristin S. Linsey. Estimated use
of water in the united states in 2010. Circular 1405, United States
Geological Survey, 2010.

15

[OT] Mark Otto and Jacob Thornton. Bootstrap the world’s most
popular mobile-first and responsive front-end framework. http:

//getbootstrap.com/. (Accessed on 11/09/2016).

[Res] Western Policy Research. Weather based irrigation
controllers. http://www.cuwcc.org/Research-Portal/

Weather-Based-Irrigation-Controllers. (Accessed on
01/09/2017).

16

