
Design Safety Verification
of Medical Device Models
using Automata Theory

A Thesis Presented to
The Faculty of Computer Science Program
California State University Channel Islands

In (Partial) Fulfillment
of the Requirements for the Degree

Masters of Science in Computer Science

Hita Gambheer

Supervised by
Dr. Michael Soltys

08/01/2016

Copyright c�2016

Hita Gambheer

ALL RIGHTS RESERVED

1

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to
the following terms is necessary. The author(s) retain any copyright currently on the item as well as
the ability to submit the item to publishers or other repositories.

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission
(including the abstract) worldwide in print and electronic format and in any medium, including but not
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of
security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the
rights contained in this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
submission contains no libelous or other unlawful matter and makes no improper invasion of the
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain permission to use any
material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of
the submission, and will not make any alteration, other than as allowed by this license, to your
submission.

Title of Item

3 to 5 keywords or phrases to describe the item

Author(s) Name (Print)

Author(s) Signature Date

This is a permitted, modified version of the Non-exclusive Distribution
License from MIT Libraries and the University of Kansas.

Design Safety Verification of Medical Device Models using Automata Theory

Model Safety Verification using Timed Perti Nets and Automata Theory

Hita Gambheer

12-01-2016

Abstract

The medical device industry is solely dependent on technology to aid continuous
monitoring of the human body in di�cult medical conditions. These monitoring
and responsive devices are life savers of many patients and at the same time
cause severe bodily harm if they do not function as expected. Today, there are
several design techniques used to design safe devices with minimum risks but
there are not many techniques used to isolate edge case scenarios and disruptive
states within the model. The objective of this thesis is to model a device into a
state machine and a Petri-Net to observe all possible state flows of the device.
The flows depict logic of the device and reachability analysis on the logic helps
us identify the safety rules required to maintain the integrity of the system.

The methodology adopted to validate this theory starts by choosing a known
faulty design of an Artificial Pancreas and performing reachability analysis on
the design to isolate the state causing the failure. A simulation of the system
is performed on a diabetes data set from a known source to support the results
from the reachability analysis; the results show that the system fails. Therefore,
this thesis convincingly shows that an automata based approach to minimize
design risk’s can be adopted to validate the safety of a device and the conclusion
describes possible solutions with future work.

2

Acknowledgment

I would like to thank Dr.Michael Soltys for his guidance and support to finish
my thesis in time. I would also like to thank Dr. David Claveau and Dr.
Brian Thoms for evaluating my thesis. Finally, I would like to thank my family
supporting and encouraging me to do my best.

3

Contents

1 Introduction 6
1.1 Need for Safety Verification of Medical Device Designs 6
1.2 Related Work . 7
1.3 Motivation and Problem Approached 8
1.4 Contribution . 8
1.5 Summary . 9

2 Preliminaries 11
2.1 Use of Timed and Hybrid automata in Model Designs 11

2.1.1 Timed automata . 11
2.1.2 Hybrid automata . 12
2.1.3 Properties of Hybrid Systems 14

3 The Artificial Pancreas 15
3.1 Overview of the Device . 15
3.2 Control Flow of the Device . 16
3.3 System Architecture . 17

3.3.1 State Transitions . 17
3.3.2 Building the Hybrid Automata 18
3.3.3 Logic derived from the Automata 19

3.4 Software and Human Body . 20
3.5 Timed Petri-Nets . 20
3.6 Modeling Control System using Timed Petri-Nets 21

3.6.1 Model . 22
3.6.2 Place Invariants Method 23
3.6.3 Temporal Properties . 24

4 Model Checking through Reachability Analysis 25
4.1 Proof through predicate logic . 26
4.2 Reachability Algorithm . 27
4.3 Working Rules of the Device . 27
4.4 Safety Rules of the Device . 28
4.5 Analysis . 30

4

5 Performance Testing using Simulation 31
5.1 Software Testing . 31
5.2 System Simulation . 31
5.3 Running the system . 34
5.4 Analysis of Results . 34
5.5 System Under Test(SUT) . 37

5.5.1 Test Generation . 37

6 Future Work and Conclusion 42
6.1 Possible Solution to Failures . 42

6.1.1 Monitors . 42
6.2 Conclusion . 43

A Bibliography 45

5

48

List of Figures

1.1 Model Based Design ……………………………………………………………………… 9

2.1 Timed Automata …………………………………………………………………………. 14

2.2 Timed Automata Example …………………………………………………………… 15

2.3 Hybrid Automata Example ………………………………………………………….. 16

3.1 Artificial Pancreas ………………………………………………………………………. 17

3.2 Control Flow of Artificial Pancreas ………………………………………………. 18

3.3 System Architecture of Artificial Pancreas ……………………………………. 20

3.4 Finite State Machine of Artificial Pancreas …………………………………… 21

3.5 Petri Net Model of a single state of the Artificial Pancreas ……………… 22

3.6 Petri Net Model of the Artificial Pancreas …………………………………….. 25

4.1 Finite State Machine of the Artificial Pancreas ……………………………… 28

4.2 Computation Tree of the Artificial Pancreas …………………………………. 32

5.1 Blood Glucose level Analysis of the database …………………………………. 35

5.2 BG level final analysis diverging from normal levels ………………………. 39

5.3 Initial state of the tree …………………………………………………………………. 40

5.4 Graphical Demonstration of RRT …………………………………………………. 40

5.5 RRT of the Artificial Pancreas in a single iteration ………………………….. 41

5.6 Dense RRT after 1000 iterations …………………………………………………… 42

5.7 Graphical Pass/Fail test scenarios …………………………………………………. 43

6.1 Monitor Automaton …………………………………………………………………….. 44

6.2 FSM with Monitor Automaton ……………………………………………………… 45

Chapter 1

Introduction

1.1 Need for Safety Verification of Medical De-
vice Designs

The physiological interaction of a human being with an application is safety crit-
ical and therefore it is necessary for constant evolution of verification standards
within the medical device domain. The biggest challenge is to combine the com-
plexities of the physiological systems with the possible states of the application.
Through this thesis research, an approach to identify possible risks within an
unsecured medical application’s design using automata theory is described. The
theory is proven by choosing a faulty design and exploring methods to isolate
the unsafe states. The main objective is to make the application’s design as
secure as possible through exhaustive verification.

In recent times “Model- Based- Design”[1] is considered a core entity of the soft-
ware development process. Model’s reveal clarity in state transfer and possible
leaks in the application. This is a good technique to build bug free applications
from the beginning of the development, especially in the field of medical devices
where rigorous verification is needed because the cost of bugs are very high.

With safety as a high concern an exhaustive development process from ground
up is becoming widespread. The device used in this thesis research is the Ar-
tificial Pancreas which comes under the domain of “Embedded Software”. The
term “Embedded Software” means software that runs on a computer system
and strongly sometimes solely interacts with a specific environment.

The important factor in the device of our choice is that the timing and physical
characteristics of the environment are essential for the correctness of the system
as well as for performance. The control logic is dependent on various states that
are continuously activated and provide decision factors for other states to re-
spond. The models of timed and hybrid automata can capture all these factors

6

Master Thesis by Hita Gambheer

Figure 1.1: Model Based Design represents the core entity of software develop-
ment process

and analyze the potential bug causing states to prevent faulty designs.

The following tasks are considered to justify the verification capability of timed
and hybrid automata models:

• Translation: Translating the scope of the problem into variables.

• Modeling: Implementing the variables and their evolution into states

• Verification: Applying “model checking”, an exhaustive verification tech-
nique.

• Reachability Analysis: Finding possible “safe” and “unsafe” states.

• Testing : Applying general testing techniques for hybrid and timed au-
tomata.

The approach of this research deals with some of possible verification techniques
closely suited to small size medical devices that can be designed on timed and
hybrid automata; however, there are several more techniques and the field is
very wide. The main idea is to build on the problem posed in the paper “Using
formal Methods to Improve Safety of Home Use Medical Devices” where a fault
in a design is identified but there was no formal verification techniques used
to isolate the cause of the fault. We try to identify the faulty states by using
reachability analysis and confirm our findings with simulation.

1.2 Related Work

This research is conducted on the basis of a previous study that applied the Hy-
brid Automata (henceforth HA) technique to a simple Artificial Pancreas design.
A challenge limiting the applicability of Hybrid Automata in medical devices is

7

Master Thesis by Hita Gambheer

the state space explosion phenomenon. Predicting Blood Glucose (henceforth
BG) levels and analyzing previous BG values is computed as a linear function.
Modeling this predictor requires a large set of variables. Consequently the state
space of the model can be too large to handle since HA models are memory-less.
By memory less we mean, it depends only on the last node to move forward -
does not remember the past (history).

The author in the paper “Using Formal Methods to Improve Safety of Home
Use Medical Devices”[2] tries to overcome this problem by designing a closed
loop system logic with the variables being generated on necessity to solve a sit-
uation. The data manager, which in this case is the sensor is separated from
the controller logic.

1.3 Motivation and Problem Approached

The paper “Using Formal Methods to Improve Safety of Home Use Medical
Devices”[2] was chosen to understand how to design system models minimizing
the chances of faults. Localizing the faults in a system we already know that is
defective is easier to analyze; therefore, this thesis research studies the design
of the Artificial Pancreas device described by the author and tries to validate it
through Automata Theory.

Also the model checking of the design is performed by using additional verifica-
tion techniques and simulation that enable a more comprehensive assessment of
home use device safety. The author in the related work[2] states that this system
leads to Hypoglycemia or Hyperglycemia in patients. Hypoglycemia is low BG
level and Hyperglycemia is a high BG level. This defeats the main safety prop-
erty that the device must maintain the patient’s body in normal BG level range.

There are many devices in the market and also in research in this area. This
research thesis concentrates mainly on designing a small medical device using
Automata Theory with a strict check to evade faults. It also includes fining
areas the automata could have missed by using Timed Petri - Nets.

The approach to build a verification method in this research is by performing
reachability analysis and simulating the closed loop automata using a reliable
patient database from a known source(UC Irvine Machine Learning Repository,
Diabetes Data Set)[12]. The results of the data integrated analysis on the logic
is used to isolate the state(s) where the system fails.

1.4 Contribution

The research paper “Using Formal Methods to Improve Safety of Home Use
Medical Devices”[2] defines how a time based automated device can be modeled

8

Master Thesis by Hita Gambheer

into a state machine to improve and streamline its functionality. My contribu-
tion to this research is to validate the theory. I have used Timed Petri-Nets to
validate the logic derived from the automaton. This involves defining the device
in terms of a Timed Petri-Net and deducing properties using the Place Invariants
method. Some of the properties include time constraints and risk constraints of
the device like when a dose is injected and how much of the dosage is safe. The
properties define the control flows in all possible states. This helps identify all
the loose ends of the model which can lead to an unsafe state.

After removing the unsafe states I verify the final Temporal states for per-
formance and potential deadlocks. Reachability analysis using predicate logic
on the device properties defines the reachable states of the model. I validate
that these reachable states are on terms with the working rules of the device.
Once all the safe states are discovered I finally define the safety rules of the
device.

To prove that the model fails without the safety rules I simulated the model
to show the failures and analyze the results. As a conclusion I finally propose
Monitors to solidify the verification.

1.5 Summary

This research is to combine reachability analysis with safety properties that de-
fine the main purpose of the device. Safety properties validate the functioning
through all the states of the automata and reachability analysis deals with com-
puting all the possible states from the initial state. When there are safety guards
limiting the possibility of reaching the bad and/or dangerous states reachability
analysis can reveal all the safe states of the device.

We exploit a faulty design with known bad states to verify our method to iden-
tify if the list of good states is complete. The main questions aimed to answer
are as follows:

• How robust is the combination of safety properties with reachability anal-
ysis?

Safety properties are derived in Chapter 4 and when combined with reach-
ability analysis the potential “bad” states can be outlined. The verifica-
tion of this analysis is carried out in Chapter 5 and the ”bad” states which
were previously predicted are confirmed. Thus, this strategy is validated
to work well the chosen design.

• How well does this design verification strategy work with high risk models?

This strategy defines a methodology to identify potential design flaws
and/or bugs in the design stages of the device before it is implemented.

9

Master Thesis by Hita Gambheer

Isolating these flaws helps to build robust designs that do not need to be
implemented to be tested. In chapter 5 we look at how the design can be
simulated to check its performance.

• How can this strategy improve the test case coverage?

When we have all possible states of the device covered within the de-
sign, full coverage for test cases can be easily outlined. Algorithms like
Rapidly exploring Random trees can help generate test cases within the
states.

• How can this strategy reduce cost of the bugs with early identification?

With majority of the possible flaws identified in the design of the system,
this strategy reduces major costs that occur with bugs after implementa-
tion. Adding test cases to designs provides a strong foundation for high
risk devices that are mandated to be safe.
Also if identified early new solutions to designs can be explored. In our
case, we proposed to use ”monitors” to improve the system architecture
(of the chosen model) in Chapter 5.

Overall the main idea is to propose a technique for high risk device design
checking.

10

Chapter 2

Preliminaries

2.1 Use of Timed and Hybrid automata in Model
Designs

Automata are used to translate applications or devices as states that are based
on mathematical formalism. It is useful to make variations in the machine
without the need of building it. A finite automaton consists of:

• finite set S of N states

• special START state

• set of FINAL (or accepting) states

• set of transitions T from one state to another.

Timed automata is finite automata with time constraints and hybrid automata
is timed automata with complex mathematical calculations. The device Arti-
ficial Pancreas that has been explored has deterministic and finite states. The
following sections will briefly describe the structure of the automata.

2.1.1 Timed automata

When a finite automaton is extended with real time clocks it is called timed
automata. The clocks start with zero and progress at a predefined rate. The
clocks mimic variables and are initialized with zero when the system starts, and
increase synchronously with the same rate. Clock constraints called guards are
used to restrict the behavior of the automaton. A transition represented by an
edge can be taken when the clock values satisfy the guard labeled on the edge.
Clocks may be reset to zero when a transition is taken.[1]

The Clock constrains contain “location invariants” which define accepting con-
ditions in the automata. An automata may remain in a location as long as the

11

Master Thesis by Hita Gambheer

clock constraints satisfy the invariant condition of the location. For example ,
Consider the figure 2.2 in which the end is marked as an accepting node. The
timing behavior is controlled by two clocks x and y. The clock x is used to
control the self-loop in the location loop. The single transition of the loop may
occur when x = 1. The clock y controls the execution of the entire automaton.
The invariant specifies a local condition that start and end must be left when
y is at most 20 and loop must be left when y is at most 50. This gives a local
view of the timing behavior of the automaton in each location.

Figure 2.1: The above figure represents a Timed Automata[17] and a regular
finite state automata. The di↵erence between the two are the timed variables
represented by [x,y]

Definition 1 (Timed Automaton) Assume a finite set of real valued
variables C ranged over by x, y, etc standing for clocks and a finite alphabet ⌃
ranged over by a, b etc. standing for actions. We use B(C) to denote the set of
clock constraints.[1]
A timed automaton A is represented as a tuple {N, l

o

, E, I} where :
- N is a finite set of locations(or nodes),
- l

o

2 N is the initial location,
- E ✓ N is the set of edges
- I : N ! B(C) assigns invariants to locations.

Clock Constraints A clock constraint is a conjunctive formula of atomic con-
straints of the form x ⇠ n or x � y ⇠ n for x, y 2 C, ⇠2 (, <,=, >,�)and n
2 N

2.1.2 Hybrid automata

A hybrid automaton is a generalized finite-state automaton that is equipped
with continuous variables and discrete changes that work on the lines of the
timed automaton. The continuous variables are described by a set of ordinary
di↵erential equations and the discrete changes of the hybrid system are modeled

12

Master Thesis by Hita Gambheer

Figure 2.2: Timed Automata Example[6] with a start node, end node and a
loop governed by timed constraints.

by edges of the automaton[1]. For example, an automobile engine whose fuel
injection, which represents continuous variable is regulated by a microprocessor,
which represents discrete variable; by combining them together they represent
a hybrid system. Reliability becomes a primary concern as embedded com-
puting becomes ubiquitous and hybrid systems are increasingly employed in
safety critical applications. Reliability requires rigorous formal modeling which
is achievable through hybrid automata. Consider the example of figure 2.3
which models a thermostat. The variable x represents the temperature. In con-
trol mode o↵, the heater is o↵, and the temperature falls according to the flow
condition ẋ = �0.1x. In control mode On, the heater is on, and the temperature
rises according to the flow condition ẋ = 5 � 0.1x. Initially, the heater is o↵
and the temperature is set at 20 degrees Celsius. According to the condition
x < 19, the heater gets turned on as the temperature falls below 19 degrees
Celsius. According to the invariant condition x � 18, the lowest temperature
that the heater will get turned on is at 18 degrees Celsius. The syntax of hybrid
automata is defined as follows.

Definition 2 (Hybrid Automata) The timed transition system hS, S0,⌃,!i
of the hybrid automatonH is a tuple of a set of states (S) containing a start state
(S0), set of edges (⌃) and transitions (!) where {N, l

o

, E,X, Jump, Pre, I} is
defined as follows [1][6]:

- S is a set of pairs(l, v) where l is the location and v are the variables such that
v✏[lnv(l)], this set is called the state space of H.

13

Master Thesis by Hita Gambheer

Figure 2.3: Hybrid Automata Example[6] of a room heater system.

- S0 is the subset of pairs (l, v)✏S such that v✏[lnv(l)], this set is called the initial
state space of H.
- N is a finite set of locations(or nodes),
- l

o

2 N is the initial location,
- E ✓ N is the set of edges
- X is the finite set of real valued variables.
- pre is the function that assigns predicates to each location.
- Jump is the function that assigns each edge a predicate.
- I : N ! B(C) assigns invariants to locations.

In this transition system we abstract continuous flows by transitions retaining
only the information about the source, target and duration of each flow. The
paths contained in the timed transition system of a hybrid automaton H are
formal representations of the possible trajectories of the hybrid system modeled
by H, i.e., the evolution of the state of the hybrid system along time. Formally,
a finite path, noted �, in the timed transition system T = hS, S0,⌃,!i is a finite
sequence alternating between states and transition labels s0⌧0s1⌧1...⌧n�1sn such
that at any i, 0  i  n, s

i

✏S and for any i, 0  i  n, (s
i

⌧
i

s
i+1)✏ ! .We call

n+1 the length of the path and it is denoted by |�|.[1]

2.1.3 Properties of Hybrid Systems

Safety properties assign values to trajectories of hybrid systems and are the
most important class of properties when considering safety critical systems.
This thesis research defines properties in terms of the chosen model. In the case
of Artificial Pancreas the automata model must enforce the following properties
on the trajectory of the entire system.
- No two states must be activated at the same time.
- The states must be activated after a specific period of time has elapsed.
- Overall the system must try to maintain the body in normal Blood Glucose
levels.
Further chapters define safety properties in the device model.

14

Chapter 3

The Artificial Pancreas

3.1 Overview of the Device

The artificial pancreas (AP), known as closed-loop control of blood glucose in
diabetes, is a system combining a glucose sensor, a controller algorithm,
and an insulin infusion device. AP developments can be traced back 50 years
[3] to when the possibility for external blood glucose regulation was established
by studies in individuals with type 1 diabetes using intravenous glucose mea-
surement and infusion of insulin and glucose.

The illustration and explanation below describe the parts of an artificial pan-
creas device system and depicts how they work together.

Figure 3.1: Artificial Pancreas [19] device prototype

15

Master Thesis by Hita Gambheer

1. An insulin pump provides continuous delivery of insulin. The types of insulin
are :

• Basal Insulin : Insulin delivered throughout the day to meet metabolic
needs and also to balance low blood sugar levels.

• Bolus Insulin : Insulin delivered to address meals and also to balance high
blood sugar levels.

2. A sensor which continuously monitors patient’s blood glucose levels.

3. A remote controlled based controller that instructs the insulin pump to
adjust the insulin delivery rate accordingly.

3.2 Control Flow of the Device

The control flow of the device begins at the sensor. It periodically checks the
levels of blood glucose in the body of the patient. The controller uses the sensor
data to adjust the insulin administration and keep the patient’s blood glucose
level within prespecified safe range. The control of the algorithm divides the
operation of the controller into three discrete modes.

Figure 3.2: Control Flow of the Artificial Pancreas starting with the sensor data
to insulin administration into the body.

16

Master Thesis by Hita Gambheer

• Breaking (BR)

This mode continuously adjusts the basal rate (insulin delivered through-
out the day) based on the projected blood glucose level. It uses Risk
level R(t) to determine basal rate.[2] Let Time = t, The Risk level after
1 hour would be R(t+ 60). If R(t+ 60) >= 180mg/dl R(t) is set to 0. If
R(t+ 60) <= 20mg/dl R(t) is set to 100.

• Meal Supervision (MS)

This mode is activated when a patient is about to have a meal. With
given meal size(entered by patient), the system calculates the amount of
insulin to be administered.

• Correction Bolus (CB)

This mode is activated when all of the following conditions are true:[2]

1. It has been two hours since last meal bolus insulin.

2. System is not in breaking mode currently.

3. At least one hour has passed since last correction bolus.

4. Blood Glucose is greater than 180 mg/dl.

The operation always starts with the Basal Infusion State and transits
to other states based on corresponding 3 transition modes described above.

3.3 System Architecture

The simple finite controller of the Artificial pancreas has 3 possible states, “Ini-
tial State (or) Basal State”, “Glucose Level Correction State” and “Meal Super-
vision”[2]. So initially the system checks if the current glucose level is abnormal
or influenced by a meal. If abnormal it applies the Correction Bolus or the
Breaking state. If a meal has been noted it applies the Meal Supervision state.
The final state has to always be the Basal State.
To keep the idea closely related to the algorithm of the controller and avoid the
complication of biological definitions, the physiological computations of body in-
teraction with medicine’s chemical composition have been omitted within each
state of the automata.

3.3.1 State Transitions

A new state is reached by using a transition when a condition is true. Every
state is reached by satisfying the Time and Risk constraints attached to it. The
resultant transitions back to the crux of the loop i.e the Basal State. It is the
state the human body is expected to be in majority of the time. The following
diagram is the control logic with arcs which explain the conditions.

17

Master Thesis by Hita Gambheer

Figure 3.3: System Architecture of the Artificial Pancreas

From the above diagram, we can deduce the following information,

Guard State Next State
t�60mins MS/CB/BR BI
G(t+60mins)�180 BI CB
G(t+60mins)<20 BI BR
w(t) 0 BI MS

An important observation to make here is, every state has to transition back to
the BI state.

3.3.2 Building the Hybrid Automata

To design the automata [5] with clocks as guards , it has to be defined as a tuple
{⌃, Q, q

o

, F, �, I, pre} such that

L(M) = {x 2 {0, 1}⇤ and x ends in 0 }
⌃ = {0, 1}
Q = { BA,MS,CB/BR }
q
o

= {BA}
F = {BA}
� = {�(BA, 0,MS), �(BA, 1, CB/BR), �(CB/BR, 0, BA), �(CB/BR, 1, CB/BR),

�(MS, 0, BA), �(MS, 1, BA)}

I is the invariant that defines every time there is a transition [x
i

= 1

18

Master Thesis by Hita Gambheer

! S(M,CB/BR, 1)^(x
i

= 0! S(M,BA, 0)_(x
i

=0! S(M,MS, 0))]

The I/O behavior is specified in a Boolean format and the following is gen-
erated. It is optimized to avoid multiple unnecessary states.

Figure 3.4: Finite State Machine of the Artificial Pancreas

3.3.3 Logic derived from the Automata

Based on the invariant and knowledge available the following conditions are
derived,

1. BA is active only when CB/BR and MS are inactive.(⇠ CB/BR ^ ⇠
MS ! BA)

2. MS is active when CB/BR and BA are inactive.(⇠ CB/BR ^ ⇠ BA !
MS)

3. CB/BR is active when BA and MS are inactive. (⇠ BA ^ ⇠ MS !
CB/BR)

19

Master Thesis by Hita Gambheer

3.4 Software and Human Body

Software behavior has always been a matter of concern in the medical field.
The modern computer is dependent on Boolean logic; however, the working of
the human body is not. This unpredictable and erratic behavior must be also
covered by the medical device model and the device must respond correctly to
these situations. Model’s encompassing such unpredictable behaviors have been
addressed less.

This part of the research aims at covering areas that have not been addressed by
automata. Automata are excellent at modeling synchronous state flows; how-
ever, for instances where there are concurrent scenarios automata will not be
able to produce correct results. To cover these missing spots Timed Petri-Nets
are very helpful.

3.5 Timed Petri-Nets

A Timed Petri-Net provides a visual formal modeling method to study the dy-
namic behavior of systems in terms of the system states and where the states
change. They are used to model systems with concurrent activities. Each ac-
tivity can be represented by a “token” which move within a static graph-like
structure of the net. More formally, a marked place/transition Petri net M
is defined as M = (N,m

o

) where the structure N is a bipartite graph and
N = (P, T,A) with a set of places P , set of transitions T and a set of directed
arcs A. Places can be connected with transitions and transitions with places,
A ✓ TXP [PXT . The initial marking function m

o

assigns non negative num-
bers of tokens to places of the net, m

o

: P ! {0, 1,}. Marked nets can be
equivalently defined as M = (P, T,A,m

o

)

A place is shared if it is connected to more than one transition. A shared
place p is free-choice if the sets of places connected by directed arcs to all tran-
sitions sharing p are identical. A net is structurally conflict free if it does not
contain shared places. The model of the artificial pancreas discussed in this
research are conflict-free nets.

More formally, a conflict free timed petri net is a pair T = (M, f) where M
is a marked net and F is a timing function which assigns an average occurrence
time to each transition of the net, f : T ! R, where R is a set of non negative
real numbers.

20

Master Thesis by Hita Gambheer

3.6 Modeling Control System using Timed Petri-
Nets

As formal models, a Petri net[25] is a directed bipartite graph in which the
nodes represent transitions (i.e. events that may occur, represented by bars)
and places (i.e. conditions, represented by circles). The directed arcs describe
which places are pre- and/or postconditions for which transitions (signified by
arrows). Timed petri-nets(TPN) are an extension of petri-nets with additional
model of timing. The TPN allows the setup of temporally coherent actions
where transition firing dynamics can be specified intuitively in terms of the rel-
evant space (time) when they are derived statistically from data.Also deadlock
detection and deadlock prevention seem to be the dominant aspects of applica-
tion of TPN to embedded software.

The most important part to model in the device is its temporal behavior that
relates to its state change. The Timed Petri-nets makes it convenient to inter-
pret properties of the artificial pancreas in the time space. The main idea is to
assign each edge with a time stamp. This time stamp makes the decision on
which the state can be changed by a binding element[23]. The binding element
in this case is the blood glucose value obtained from the sensor. The present
state will change when the binding element triggers. And the next trigger of
the binding element will occur when the clock is greater than or equal to the
timestamps of the edge. After the new binding element trigger occurs the new
timestamp of the edge is obtained, which is the time of the current clock added
to a time delay. The time delay, defines that the machine should remain in the
current state and move only when the delay is completed. The timestamp in
this case is considered in minutes.

In the proposed TPN model the following fundamental components are con-
sidered: blood glucose values, meal times and trigger clocks. More precisely,
each insulin administration represents the blood glucose value and the appro-
priate time that triggered the sensor to check the state of the blood glucose.
Hence a generic set of blood glucose values(L) pertaining to specific triggers
can be represented as a set L = {L

i

|i = 1,I} of I insulin administrations
where L are a set of places and insulin administration the transition. In ad-
dition, insulin administrations can be classified as : 1) input insulin L

i

2 L
in

,
that are controlled by a sensor, 2)intermediate insulin L

i

2 L
int

associated to a
meal consumption, and 3) output insulin L

i

2 L
out

, associated to an elapse of
a recorded amount of time.

A generic insulin administration L
i

has a finite capacity T
i

> 0 denoting the
amount of time T

i

the insulin can control the blood glucose level in the body.
Hence each L

i

is divided into T
i

units of capacity. It must also be taken into
consideration that the blood glucose levels may change due to multiple unre-
lated reasons (not mentioned here) and the machine should accommodate such

21

Master Thesis by Hita Gambheer

unexpected events also. Following section is the derived model as a TPN.

3.6.1 Model

The logic from section 3.3.3 defines each state within the system and the factors
for them to be activated. At any given time the following condition should hold
good. With reference to section 3.3.3 and ease of notation, let the states be
represented with BA as B, MS as M and CB/BR as C respectively.

(⇠ B^ ⇠M ^ C) _ (⇠M ^B^ ⇠ C) _ (M^ ⇠ B^ ⇠ C)

Essentially since this model has only 3 states each state can be broken down
into a model of its own. A very simple model of each state can be represented
with two places, p1 for place 1 that is the abnormal state and p2 for place 2 that
represents a normal state. The transition between p1 and p2 is denoted as t1
and its average time stamp is f(t1). Place p2 indicated (by a single token) that
the state is in the normal state(waiting) but ready to move to another state in
case there is an abnormal BG level. Whenever there is a request in p1 and p2 is
idle, t1 is activated and starts its firing by removing single tokens from p1 and
p2.

Figure 3.5: Petri net model of a single state with the AP

For a system of this type having distributed request arrivals and erratic service
times, a state can be modeled as a single input single output transition with
average firing time equal to response time of the system.

With the consolidation of all the three conditions from 3.3.3 an interactive
dynamical system is designed. p2 and t1 model the system “returning” to the
idle (normal) state. They represent the average time the body was normal. The
initial marking of p1 represents the “meal session”. p6 and t2 represent the “low
BG level” state of the body with a queue from p2, while p5 and t5 model a “high
BG level” with a queue(waiting time for next BG level test)on p4. p3 combines
p5 and p6 to make the system closed loop.

22

Master Thesis by Hita Gambheer

Figure 3.6: Petri net model of the Artificial Pancreas

3.6.2 Place Invariants Method

We can deduce a few properties from the model designed above. The basic idea
behind these properties is to create equations that are satisfied in all reachable
states. Based on the rules of Timed P-nets[28], a transition can be fired if the
global time is great than or equal to the timestamp. It hints that the system’s
actions are in sync according to the timestamps of the binding elements. In
fact the system models require only the timestamps to be small enough instead
of requiring them to have some exact time values. This means that linearity
of weight functions is insu�cient to guarantee that each flow determines an in-
variant. However, the artificial pancreas system model is predetermining time.
Therefore, it is certainly to use invariants in analysis of Timed P-nets models.

There are four equations obtained from Fig.3.6., and the performance of the
system is verified them. All the equations are supposed to end on p2 since it is
the normal (idle) state.

1. p1 + p2 = 1 i.e a meal state should eventually return to idle state.

2. p6 + p3 + p4 + p2 = 1 i.e a low BG level should be addressed and
eventually lead to the idle state.

3. p3 + p1 + p2 = 1 i.e a sudden meal state activation should be addressed.

4. p3 + p4 + p5 + p2 = 1 i.e a high BG level should be addressed and
eventually lead to the idle state.

The above equations show the key invariants in the model. It proves that the
control logic modeled by Timed P-nets model is accurate and it does not allow
any accident to happen.

23

Master Thesis by Hita Gambheer

3.6.3 Temporal Properties

For the need of making sure the invariants deduced hold good or not in a system
specification, we have to be able to express the properties on a formal logic. The
logic prove how the property holds good in every reachable state.

Given a system specification T if a state S of this system satisfies a state for-
mula � , then we denote T , S = � . If a computation path ⇡ satisfies a path
formula, then we write T , ⇡ = � .Some of the main temporal operators used in
temporal logic’s are X, G, F and E. These operators describe properties which
may hold or not in a path of states as follows:

• T, ⇡ |= X � (next)

• T, ⇡ |= G � (globally)

• T, ⇡ |= F � (eventually)

• T, ⇡ |= E � (path starting at S)

We can define the most important features of the system as temporal properties
below by using various combinations from the above :

• ”When the body is in an abnormal state of blood glucose, and the pa-
tient consumes a meal, the meal state should be able to be activated”:
CB/BR^ ⇠ BA) EFMS

• ”When the body is in idle state for long repeated periods of time with no
meals taken, the connecting state should be able to reach the correction
state for future incidents”: BA^ ⇠MS) FCB/BR

• ”Every state must end with the state Basal State”: CB/BR^MS) XBA

24

Chapter 4

Model Checking through
Reachability Analysis

Model Checking is a formal verification technique, which is based on the ex-
haustive exploration of a given state space trying to determine weather a given
property is satisfied by the system[4]. The verification can be accomplished by
several techniques. Reachability analysis is chosen to determine the set of states
that a system can reach, starting from a set of initial states under the influence
of a set of input trajectories and parameter values. Reachability analysis is a
beautiful method of not only verifying the structure of the model but also vali-
dating it against the user requirements.

As already mentioned in Chapter 2, one of the main ideas of this research
is to find possible faults in the system and reachability analysis is used to check
whether a system can reach a set of unsafe states. A set of unsafe states might
be a set of state transitions that lead to the patients BG levels to remain High
or Low defeating the purpose of the device.

Besides safety verification there are other possible applications for reachability
analysis[7]:

1. Performance assessment of control strategies: It can be checked if the system
trajectories stay in a region around a reference trajectory, or reach a goal region
around a set point.

2. Scheduling: Reachability analysis can verify if the optimal schedule of a
system (typically a production system) is ensured under all conditions.

3. Controller synthesis: The safety verification capabilities of reachability anal-
ysis can be used to find parameter sets of controllers that satisfy safety con-

25

Master Thesis by Hita Gambheer

Figure 4.1: Finite State Machine of the Artificial Pancreas[7]

straints.

4. Deadlocks: Reachability analysis can determine whether a system might
get stuck in a certain region of the continuous state space or an operation mode
of a hybrid system.

4.1 Proof through predicate logic

A predicate[9] is a verb phrase template that describes a property of objects
or a relationship among objects represented by the variables. Predicates are
functions of zero or more variables that return Boolean values. Thus predicates
can be true or false depending on the values of their arguments.

Proof through predicate logic[9] can be used to reason systems or “expert”
systems such as automatic medical diagnosis programs and theorem-proving
programs. In this scope predicate logic can be used to prove the properties of
the Artificial Pancreas system.

Since safety verification can be reduced to reachability we can represent the
working and safety properties of the Artificial Pancreas device in terms of reach-
ability using predicate logic.

To formalize properties [1][8], following is the notation. Let T = hS, S0,⌃,!i
be a Timed Transition System(TTS). Let � = s0⌧0s1⌧1....sn be a finite path in
T. We denote State(�) for the set of states that appear along the path �. We
say that a path � reaches a state s if s 2 State(�). We say that a state s is
reachable in T if s 2 [

�2PathF (T) State (�). The set of states that are reachable
in T is noted Reach(T). The set of states R ✓ S is called a region. We note
R̄ for the complement of R in the state space of T , that is, R̄ = S/R. We
say that T is safe for R i↵ Reach(T) ✓ R. A region is reachable in T i↵ R\
Reach(T) 6= ø

26

Master Thesis by Hita Gambheer

4.2 Reachability Algorithm

The reachability algorithm[11] is as follows. It can be used to find how many
steps are needed to reach the final state in a state machine[8].
Input : Initial state s

o

and transition relation � for closed finite state system
M , represented symbolically.
Output : Set R of reachable states of M , represented symbolically.

1. Initialize: Current set of reached states R = {s0}

2. SymbolicSearch() {

3. R
new

= R

4. while R
new

6= � do

5. R
new

:= { s0|9s 2 R s.t s0 2 �(s) }/R

6. R [R
new

end

7. }

4.3 Working Rules of the Device

The following section elaborates on finding the reachable states and possible un-
safe states in the Automata based on reachability analysis. We use Explicit State
Model Checking by manually finding possible states using predicate logic. There
are several transitions within this model and we explore just a few important
ones to identify the unsafe state.

1. Within any trajectory, in any state, the system must return back
to the Basal State.

To prove: BA is active when CB/BR and MS are not active.

This is important because we do not want the system to inform the patient
that he is normal when his blood glucose is low or high.

False Positive Encountered: We shall begin with ⇠ CB. Since the system
can be in only state at a time it implies that either BA or MS are active. The
statement (3) from the logic when negated proves the above derivation. From
statement (1) we see that CB/BR has be be inactive for the BA state to be
active under all circumstances. But from statement (5) we see that if BA is
inactive and if CB/BR is in any state (active or inactive) the MS state is acti-
vated. Therefore the system activates MS when CB/BR is not active and also

27

Master Thesis by Hita Gambheer

BA is not active leading to false information that the body is in meal supervi-
sion though it is not leading to high blood sugar in the patient.

Reachable state’s : Reach(T) = { (⇠ CB/BR ^ MS),((⇠ BA _ BA)^ ⇠
CB/BR) }

2. Within any trajectory and any state, the increase of Risk should
increase the chances of injecting a correction insulin dose to the pa-
tient.

To prove: CB/BR is active when BA and MS are not active.

In the context of the device, Time is associated to Risk. When there is in-
crease in elapse of time the Risk also increases as it is directly proportional.

False Positive Encountered: When we begin with statement (3), we understand
that the system can only be in the correction state when both the other states
are inactive. But when the system moves to meal supervision, and if in an edge
case scenario the blood glucose is normal, the system might still transition to
CB/BR based on statement (5).

Reachable state’s : Reach(T) = { (⇠ BA^ ⇠ MS), (CB/BR^ (⇠ CB/BR ^
MS)), ((⇠ BA _BA)^ ⇠ CB/BR) }

3. Within any trajectory and any state, after an increase in Wait
time the system will automatically move to Correction Bolus.

To Prove: In the context of the system, the ”wait” time is a periodical manda-
tory check to manage high BG levels incurred due to forgotten meal consumption
input by the patient.

False Positive Encountered: If in an edge case scenario the patient’s body main-
tains normal blood glucose levels the system will still transition to the Correction
Bolus/ Breaking Mode by which the patient may have dangerous levels of Hy-
poglycemia .

Reachable state’s : Reach(T) = { (⇠ CB/BR^ ⇠ BA), ((⇠ BA _ BA)^ ⇠
CB/BR) }

4.4 Safety Rules of the Device

A safety property (informally) states that ”nothing bad will ever happen with
the system”[1]. These properties search the state space defined by the equiv-
alent FSM and identify the unsafe states. This helps build a robust and safe
environment with minimum faults. Temporal logic can be used to express such
queries:

28

Master Thesis by Hita Gambheer

• necessarily (⌦)

• possibly (�)

• next (⇥)

It is possible to express if a desired property is valid for a whole model or
in a part of it. In the example mentioned in the working logic’s #3 rule, we
see that the system reaches a false positive after an edge case which is a kind
of deadlock and performs an activity which could lead to dangerous levels of
Hypoglycemia within the patient. Similarly in the #2 we see that Risk can
indicate the forthcoming of a BG level spike /dip in the patients body which
needs to be taken care of immediately. However, there is no guarantee that that
state will occur after the increase of Risk. Finally in #1 we see that the next
state should always be the Basal State. We can represent these properties as
follows in terms of safety rules:

1.⌦(BG.level < 180&&BG.level > 20), expresses that ”the patient has nor-
mal blood glucose levels and no insulin in needed” which means that the device
will never inject insulin into the body of the patient if there are normal blood
glucose levels avoiding the chance to harm the patient.

The translation of the temporal formula is that the requirement expressed with
that formula holds in the model if in every state of the state space the following
is true; the Blood Glucose remains in (BG.level < 180&&BG.level > 20) until
the sensor indicates a spike or dip in the latest value.
The property p , (BG.level < 180&&BG.level > 20), is true unless sensor
indicates otherwise.

2.�((G + 60) > 180||(G + 60) < 20), expresses that ”the patient may have
glucose levels that spike or dip occasionally in between regular dosages”, which
means the patient may suddenly have an abnormality in blood glucose levels
in the body between regular dosages and these unexpected events have to be
addressed.

The translation of the temporal formula is that the requirement expresses with
that formula holds in the model if in every state of the state space the following
is true; the states must be ready to transition to CB/BR state in the possibility
of an unexpected abnormality.
The property p , �((G + 60) > 180||(G + 60) < 20), is true unless sensor
indicates otherwise.

3.⇥(⇠ CB/BR&& ⇠MS), expresses that ”after any transition within all states
the final state has to be the Basal State”, which means the patients body’s goal
state is to be in Basal State for majority of the time.

The translation of the temporal formula is that the requirement expresses with

29

Master Thesis by Hita Gambheer

that formula holds in the model if in every state of the state space the following
is true; every transition must end with the Basal State as the final state.
The property p , ⇥(⇠ CB/BR&& ⇠ MS), is true at the end of every transi-
tion.

4.5 Analysis

After taking into account the reachable states and the unsafe states within the
system we can derive the following Computational Tree, which depicts the flow
of the system. The tree is infinite since the system is closed loop.

Figure 4.2: Computational Tree of the Artificial Pancreas that depicts the flow
of states in an infinite loop.

30

Chapter 5

Performance Testing using
Simulation

5.1 Software Testing

Software Testing [10] can be used if the system satisfies the requirements and per-
forms functions for which it is intended and meets user needs. A good software
development methodology will have testing incorporated from the beginning of
the software development life cycle.

Software testing is a high level activity and ensures product integrates cor-
rectly into the environment. A product may pass with false positives in the
environment through verification but it will fail when validated on the paper
against Proof of Logic. This section deals with the conversion of the Predicate
Logic and Safety rules into a simulated application for the performance testing
of the system. This will confirm the loose ends identified in the reachability
analysis that lead to incorrect behavior of the system.

5.2 System Simulation

The following section describes how the system was simulated in a step by step
procedure.

Software Requirements:

Java, Eclipse-neon and Oracle MySQL-Workbench.

Architecture:

The overall structure of the system is designed as “Model Based Design”(from
chapter.1). It simulates the hybrid automata as described by the author of the

31

Master Thesis by Hita Gambheer

previous paper. All the components are loosely coupled, which means they are
independent entities by themselves. This structure helps in clearly understand-
ing the role of each entity. The “controller” that has a “helper” package which
is the crux of the system containing the logic. The “sensor” is connected to a
database that simulates a human data input into the system’s controller which
helps to make decisions based on the data. The “pump” injects the insulin
dosage based on the decision made by the controller.

Database:

The database used to input the system with values of patient BG levels is from
the University of California, Irvine “Diabetes Data Set”[12].
Diabetes patient records were obtained from two sources: an automatic elec-
tronic recording device and paper records. The automatic device had an inter-
nal clock to timestamp events, whereas the paper records only provided “logical
time” slots (breakfast, lunch, dinner, bedtime). For paper records, fixed times
were assigned to breakfast (08:00), lunch (12:00), dinner (18:00), and bedtime
(22:00). Thus paper records have fictitious uniform recording times whereas
electronic records have more realistic time stamps.

Diabetes files consist of four fields per record. Each field is separated by a
tab and each record is separated by a newline.

File Names and format:

1. Date in MM-DD-YYYY format

2. Time in XX:YY format

3. Code

4. Value

Code field is deciphered as follows:

• 33 = Regular insulin dose

• 48 = Unspecified blood glucose measurement

• 57 = Unspecified blood glucose measurement

• 58 = Pre-breakfast blood glucose measurement

• 59 = Post-breakfast blood glucose measurement

• 60 = Pre-lunch blood glucose measurement

• 61 = Post-lunch blood glucose measurement

• 62 = Pre-supper blood glucose measurement

32

Master Thesis by Hita Gambheer

• 63 = Post-supper blood glucose measurement

• 64 = Pre-snack blood glucose measurement

• 65 = Hypoglycemic symptoms

• 66 = Typical meal ingestion

• 67 = More-than-usual meal ingestion

• 68 = Less-than-usual meal ingestion

• 69 = Typical exercise activity

• 70 = More-than-usual exercise activity

• 71 = Less-than-usual exercise activity

• 72 = Unspecified special event

Analysis on the Database:

The database reflects the typical type 1 diabetes sugar level fluctuation in the
patients. This data set fits perfectly with the system structure to produce de-
sired results. The following diagram represents the data-sets random BG levels
at di↵erent times, which makes it di�cult to predict the patients BG levels be-
havior. Our Artificial Pancreas system goal is to overcome prediction di�culties
and handle unexpected events in a robust way. The x-axis is the code field and
the y-axis the insulin level at the code field.

Figure 5.1: BG levels analysis of the database

From the graph we can see that the common discrepancy in BG levels is un-
specified/sudden around meal times and very rarely during exercise activity.

33

Master Thesis by Hita Gambheer

Figure 5.2: The logic of the system reads each data set along side with parallel
checks which decide which state the body is in based on the data set entry.

Expected Results:

Since the system has a couple of unsafe states that lead to Hypo/Hyperglycemia
in patients (stated by the previous paper) the data should result in BG levels
never reaching normal values.

5.3 Running the system

The control logic uses threads to simulate time guards on the system and to
simulate parallel processing of the controller with the sensor and pump. The
database is connected to the controller through the sensor to generate results
that simulate the patients body response to the insulin dosage to the body. The
results try to mimic the real device by generating reports of controller decisions.

5.4 Analysis of Results

The states in the hybrid FSM transition according to the working and safety
rules mentioned in the previous chapters generates a result set that shows the
patients BG levels while the device is managing it. The results reveal that the
patient receives the regular insulin dosage “33” (shown on the graph) but it
transitions to wrong states unexpectedly “48” (shown in the graph) which is
unspecified BG level and “58-63” which are the meal supervision states. These
unexpected states are in accordance to unsafe states recorded in chapter 4.

34

Master Thesis by Hita Gambheer

Figure 5.3: Based on the results from the system check, the logic decides the
amount of insulin to be administered.

35

Master Thesis by Hita Gambheer

Figure 5.4: The results of the application look as above.

36

Master Thesis by Hita Gambheer

Figure 5.5: BG levels final analysis diverging from normal levels

5.5 System Under Test(SUT)

After we have all the requirements confirmed and aligned to the design of the
system, SUT[8] checks whether the system satisfies the specification.

SUT acts a blackbox in the sense that the internals are not cared about. Instead,
we interact with the SUT by means of inputs and outputs i.e., we provide cer-
tain inputs and observe the outputs. A test case implemented on the the SUT
would be a description of the flow of control in various circumstances. If the
behavior of the test case is expected the test is titled PASSED; however, if the
behavior is not expected the test case is titled FAILS. If the verdict of the test is
a FAIL the meaning would imply that the SUT does not meet its specifications.

In this context, the SUT would be the simulated Artificial Pancreas system
implemented in the previous sections. The test case generation is preferred to
be automatic because automatically synthesized tests would contain minimum
human errors. The goal would be to generate minimum test cases with maxi-
mum coverage of the specifications.

5.5.1 Test Generation

Tests are preferably generated by restricting the behaviors of the environment
to yield a deterministic testing automaton[8]. A test suite can therefore be a
finite set of executions of the environment automaton. In the previous chapters,
the main goal was to isolate a scenario which yields to a set of bad and/or un-
safe states of the system. This section will help build test cases to steer towards

37

Master Thesis by Hita Gambheer

these bad states using the RRT (Rapidly Exploring Random Tree) algorithm
and coverage guided strategy. These test cases will expect to FAIL since the
SUT was built with know defects.

Rapidly Exploring Random Trees

The RRT algorithm[13] begins from a root node and incrementally grows a tree
until the tree reaches the goal configuration. To grow the tree,

1. Pick a location (configuration), q
r

, (with some sampling strategy)

2. Find the vertex in the search tree closest to that random point, q
n

3. Try to add an edge (path) in the tree between q
n

and q
r

, if you can link
them without a collision occurring.

The process is repeated until the tree grows to within some user-defined thresh-
old of the goal.

1. state.init(q
o

);

2. for i = 1 to k do

3. state.add.vertex(↵(i));

4. q
n

 NEAREST (S(state),↵(i));

5. state.add.edge(q
n

,↵(i));

The most important property of the RRT in this scenario is understanding that
there are several paths to the goal state from any state and it can be infinitely
iterate. This property aligns with the fact that the Artificial Pancreas should
constantly monitor the human body. The following diagram describes the three
states the body can be in , i.e., normal BG, high BG and low BG. When random

Figure 5.6: Initial state of the tree

states are added to the above tree the infinite loop of the system can be depicted
by never ending expansions of the RRT as below.

A typical branch from the RRT of the artificial pancreas will look as follows:

38

Master Thesis by Hita Gambheer

Figure 5.7: Graphical demonstration of RRT

Figure 5.8: RRT an Artificial Pancreas in a single iteration

Pseudo Test Cases

The FAIL destination nodes are deemed as the bad states in the system. They
can arise from any state. Since test coverage should be maximum the test cases
should be deterministic. The coverage should include all possible inputs and
what the SUT should generate depending on the input i.e., the output.

In the case of the artificial pancreas any state should lead to the PASSING
state i.e., given any starting state the system should expect the body to return
to normal state after the state completes. Therefore, even if a state is con-
tinuously occurring it is standard to continue rectification till the goal state is
attained.

// test case pseudo-code: s := initialize state;
// this is the state of the tester
while(not some termination condition) do

39

Master Thesis by Hita Gambheer

Figure 5.9: Dense RRT after 1000 iterations

x := select input in set of legal inputs given s;
issue x to the SUT;
set timer to TIMEOUT;
wait until timer expires or SUT produces an output;
if (timer expired) then
s := update state s given TIMEOUT;
end if;
if (SUT produced output y, T time units after x) then
s := update state s given T and y;
end if;
if (s is not a legal state) then
announce that the SUT failed the test and exit;
end if;
end while;
announce that the SUT passed the test and exit;

Ideally, test cases should include all possible failure scenarios from every state.
They should also include the best case working scenario, where all the states
work ideally. So we write a test case with expectations and requirements embed-
ded in it initially. Initially it will fail as long as the system is under development.
After everything is properly set the test will pass. The graphical representation
of the test case for the Artificial Pancreas can be shown as below

40

Master Thesis by Hita Gambheer

Figure 5.10: Graphical Pass/Fail test scenarios with ideal passing test cases and
failure test cases.

41

Chapter 6

Future Work and
Conclusion

6.1 Possible Solution to Failures

6.1.1 Monitors

In order to formalize safety requirements it is often very convenient to use a
monitor automaton, also often called an observer, that watches the trajectories
of the system and enters the ”BAD” locations when one trajectory violates a
given safety property. Safety verification is then reduced to deciding the reach-
ability of a set of ”Bad” locations.

A monitor automaton can be defined as temporal logic formula which is a finite
automaton. It accepts exactly the behaviors that satisfy the safety properties.

Figure 6.1: Monitor Automaton

A trace is a sequence of the observable parts of the state, in our case they
can be called the reachable states path. Following figure shows the monitor for

42

Master Thesis by Hita Gambheer

the safety requirement (1), (2) and (3) respectively. These safety requirements
are the working rules defined in chapter 4. The monitor observes the value of
the risk and the patients BG levels whose dynamics is defined by the Artifi-
cial Pancreas automaton. BAD STATES will be defined as edge case scenarios
that cause unexpected behavior deadlocks or wrong decisions. Similarly, from
the reachability analysis we observed that sometimes the state transitions to
CB/BR even though the patient has normal BG levels. Thus to verify, we must
establish that no state in which the control of the monitor is in the BAD location
is reachable in [CONTROLLER

N
PUMP

N
SENSOR

N
MONITOR]. In

that case, we know that the controller ensures the requirement.

Figure 6.2: FSM with Monitor Automaton

Thus by adding a monitor state to the FSM we may catch the document and
catch ”unsafe” states and make sure our system is faultless.

6.2 Conclusion

We have studied and presented a methodology for design and model check-
ing of medical devices structured as Hybrid Automaton and Timed Petri Nets.
The methodology is based on isolating ”unsafe states” in the automaton using
reachability analysis. We confirmed that the states as ”unsafe” by producing

43

Master Thesis by Hita Gambheer

live results while simulating the faulty device. We also proposed to include a
”monitor” state that will handle the unsafe states in the edge case scenario. Fu-
ture work may include implementing the monitor to observe results and using
this strategy to build a new device with more complex requirements.

In such systems the obtained data from the human body are uncertain, and
unpredictable values should be supported. This means that the model used for
such purpose should have capability of reasoning based on uncertain informa-
tion. This research introduced a new model based o↵ not just rule-based hybrid
automata but also fuzzy incorporated timed petri net. We used TPN’s to model
the system knowledge and rules, and we demonstrated that the system hazards
can be derived easily by the model.

This method may be one of the strategies to address false positive faulty de-
signs like the one mentioned by the related paper’s author. Future work can
include implementing the monitor or integrating multiple monitors to increase
the robustness of the system.

44

Appendix A

Bibliography

[1] Eleftherakis, G., & Kefalas, P. (2001). Towards model checking of finite state machines extended with
memory through refinement. ​Advances in signal processing and compu​ ​ter technologies​ , 321-326.

[2] Banerjee, A., Zhang, Y., Jones, P., & Gupta, S. K. Using Formal Methods to Improve Safety of
Home-Use Medical Devices.

[3] Cobelli, C., Renard, E., & Kovatchev, B. (2011). Artificial pancreas: past, pre sent, future. ​Diabetes​ ,
60​ (11), 2672-2682.

[4] Eleftherakis, G., & Kefalas, P. (2001). Towards model checking of finite state machines extended with
memory through refinement. ​Advances in signal processing and​ ​computer technologies​ , 321-326.

[5] Automata theory. (n.d.). Retrieved October 08, 2016, from https://en.wikipedia.org/wiki/Automata_theory

[6] Jiang, Z., Pajic, M., Alur, R., & Mangharam, R. (2014). Closed-loop verification of medical devices with
model abstraction and refinement. ​International Journal on Software Tools for Technology Transfer​ , ​16​ (2),
191-213.

[7] Althoff, M. (2010). Reachability analysis and its application to the safety assessment of autonomous car
s. ​Technische Universitt Mnchen​ .

[8] Tripakis, S., & Dang, T. (2009). Modeling, verification and testing using timed and hybrid automata.
Model-Bas​ ​ed Design for Embedded Systems​ , 383-436.

[9] Predicate Logic. (n.d.). Retrieved from ​http://csitiub.pbworks.com/w/file/fetch/72718706/Notes

[10] Seshia, S. A. Introduction to Embedded Systems.

[11] ISTQB Exam Certification. (n.d.). Retrieved October 08, 2016, from
http://istqbexamcertification.com/what-is-validation-in-software-testing-or-what-is-software-validation /

[12] Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and Computer Science.

[13] Ferguson, D., Kalra, N., & Stentz, A. (2006, May). Replanning with rrts. In ​Proceedings 2006 IEEE
International Conf​ ​erence on Robotics and Automation, 2006. ICRA 2006. ​ (pp. 1243-1248). IEEE.

[14] Finite Automata. (n.d.). Retrieved October 08, 2016, from
https://www.cs.rochester.edu/~nelson/courses/csc_173/fa/fa.html

[15] Bengtsson, J., & Yi, W. (2004). Timed automata: Semantics, algorithms and tools. In ​Lectures on
concurrency and petri nets ​ (pp. 87-124). Springer Berlin Heidelberg.

[16] First Order Logic. (n.d.). Retrieved from
http://www.cs.cornell.edu/courses/cs4700/2011fa/lectures/16_firstorderlogic.pdf

[17] Raskin, J. (n.d.). An Introduction to Hybrid Automata. Retrieved from
http://www.cmi.ac.in/~madhavan/courses/qath-2015/reading/Raskin_Intro_Hybrid_Automata.pdf

[18] What is the pancreas? What is an artificial pancreas device system? (n.d.). Retrieved October 08, 2016,
from http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/HomeHealthandConsumer/Con
sumerProducts/ArtificialPancreas/ucm259548.htm

[19] Written by Allison Blass | Published on January 30, 2012. (2012). Tom Brobson: My Experience in the
Artificial Pancreas Clinical Trials. Retrieved October 08, 2016, from
http://www.healthline.com/diabetesmine/tom-brobson-my-experience-in-the-artificial-pancreas-clinic al-trials

[20] Software Verification and Validation. (2012). ​Reliable Design of Medical Devices, Third Edition,
401-410. doi:10.1201/b12511-35

[21] Introduction to predicate logic. (n.d.). doi:10.1075/ps.5.3.02chi.audio.2f

[22] Predicate Logic. (n.d.). Retrieved from http://infolab.stanford.edu/~ullman/focs/ch14.pdf

[23] UML 2 Use Case Diagrams: An Agile Introduction. (n.d.). Retrieved October 08, 2016, from
http://agilemodeling.com/artifacts/useCaseDiagram.htm

[24] ​Dotoli, Mariagrazia, and Maria Pia Fanti. "An urban traffic network model via coloured timed Petri nets."
Control Engineering Practice​ 14.10 (2006): 1213-1229.

http://csitiub.pbworks.com/w/file/fetch/72718706/Notes

[25] Petri Nets. (n.d). Retrieved October 30,2016 from https://en.wikipedia.org/wiki/Petri_net

[26] ​Chao, Crystal, and A. Thomaz. "Timed petri nets for multimodal interaction modeling." ​ICMI 2012
Workshop on Speech and Gesture Production in Virtually and Physically Embodied Conversational
Agents​ . 2012.

[27] ​Zuberek, W. M. "Throughput analysis of simple closed timed Petri net models." ​Circuits and Systems,
1993., Proceedings of the 36th Midwest Symposium on​ . IEEE, 1993.

[28] ​Huang, Yi-Sheng, and Ta-Hsiang Chung. "Modeling and Analysis of Urban Traffic Lights Control
Systems Using Timed CP-nets." ​J. Inf. Sci. Eng.​ 24.3 (2008): 875-890.

