
An improved upper bound and algorithm for
clique covers

Ryan McIntyre and Michael Soltys

California State University Channel Islands
Dept. of Computer Science

One University Drive
Camarillo, CA 93012, USA

{ryan.mcintyre466@myci.csuci.edu,michael.soltys@csuci.edu}

Abstract. Indeterminate strings have received considerable attention in
the recent past; see for example [1] and [3]. This attention is due to their
applicability in bioinformatics, and to the natural correspondence with
undirected graphs. One aspect of this correspondence is the fact that the
minimum alphabet size of indeterminates representing any given undi-
rected graph equals the size of the minimal clique cover of this graph.
This paper first considers a related problem proposed in [3]: character-
ize Θn(m), which is the size of the largest possible minimal clique cover
(i.e., an exact upper bound), and hence alphabet size of the correspond-
ing indeterminate, of any graph on n vertices and m edges. We provide
improvements to the known upper bound for Θn(m) in section 3.3. [3]
also presents an algorithm which finds clique covers in polynomial time.
We build on this result with a heuristic for vertex sorting which signifi-
cantly improves their algorithm’s results, particularly in dense graphs.

1 Background

Given an undirected graph G = (V,E), we say that c ⊆ V is a clique if every pair
of distinct vertices (u, v) ∈ c×c comprises an edge—that is, (u, v) ∈ E. A vertex
u is covered by c if u ∈ c. Similarly, edge (u, v) is covered by c if {u, v} ⊆ c;
we will often write (u, v) ∈ c instead, a convenient abuse of notation. Similarly,
instead of saying “the edges incident on v”, we will say “v’s edges”.

C = {c1, c2, · · · , ck} is a clique cover of G if size k if each ci is a clique,
and furthermore every edge and vertex in G is covered by at least one such ci.
Note that there are several variants of this definition. In some contexts, it is
only necessary to cover the edges; in others, only the vertices. We consider the
case in which both edges and vertices must be covered, and we will call these
three variations the edge cover, vertex cover, and complete cover respectively.
Whenever we say “clique cover” or “cover” without specifying the type, it should
be assumed that we are talking about a complete cover.

The neighborhood of a vertex v, denoted Nv is the set of all vertices adjacent
to v; that is, u ∈ Nv if (u, v) ∈ E. Every u ∈ Nv is a neighbor of v. The degree
of v, denoted dv, is the cardinality of Nv; dv = |Nv|. We denote by Rv the set

of vertices which are neither v nor in Nv. We say that v is isolated, or that v is
a singleton, if dv = 0.

The clique cover problem is the problem of algorithmically finding a minimal
clique cover, and is NP-hard. The decision version, finding a clique cover whose
cardinality is below a given value (or determining that no such cover exists) is
NP-complete.

Remark 1 If a graph has no singletons, then any edge clique cover is also a
complete clique cover. Otherwise, any complete cover consists of an edge cover
with the addition of a clique for each singleton.

Given two integers n and m such that n > 0 and 0 ≤ m ≤
(
n
2

)
, we let Gn,m

denote the set of all simple, undirected graphs on n vertices and m edges. Given
any graph G, we denote by θ(G) the size of a smallest cover of G ([6]). Finally, we
denote by Θn(m) the largest θ(G) of all graphs G ∈ Gn,m. For example, figure 1
shows Θ8(m) and Θ7(m) plotted together. The plot suggests that Θn(m) is a
very uniform function (parametrized by n).

0 2 4 6 8 10 12 14 16 18 20 22 24 26
edge count

0

2

4

6

8

10

12

14

16

cli
qu

e
co

ve
r s

ize

8

7

Fig. 1. Θ8(m) and Θ7(m)

We denote by iG the number of singletons in G, and with cG the number of
non-isolated vertices. Clearly, if G ∈ Gn,m then iG+cG = n. We let IG denote the
subgraph of G consisting of the all singletons, and CG the subgraph consisting

of all non-singletons and edges—|IG| = iG and |CG| = cG. Finally, we let SG
(with cardinality sG) denote the set of vertices which are adjacent to all other
vertices (we call them stars). That is, v ∈ SG if Nv = V − {v}.

We define DG to be the degree sum of G, and AG the average degree in G.
That is, DG =

∑
V dv and AG = DG/|G|. These will usually be denoted simply

with D and A if G is implied by the context.
Given a vertex or set of vertices v in graph G, we denote by G− v the graph

which results from removing v (or every vertex in v), along with all edges incident
to v, from G.

2 Summary of Results

In this paper, we explore two topics. First, we aim to characterize Θn(m) in
section 3. We synthesize theorems from Lovász (Theorem 3), Mantel and Erdős
(Theorem 2) to establish an upper bound for Θn(m) which is exact for some
values ofm but not for others. We establish that Θn(m) has recursive properties,
which we use to characterize it for some values of m and bound it in others. We
improve Lovász’s bound in Theorems 12 and 17. These improvements are likely
extendible to the complete characterization of Θn(m) (see conjecture 14). A
succinct summary of these results can be found in section 3.3.

Next, in section 4, we establish a heuristic to order vertices and edges. The
motivation is an algorithm developed in [3] which outputs a clique cover in
polynomial time with respect to the number of vertices; this algorithm does not
necessarily output a minimal or small cover, but it works quickly. Moreover, it
outputs covers of different sizes when presented with vertices in a different order.
We develop and explore a heuristic reminiscent of the PageRank algorithm (we
call it CliqueRank) and apply it in combination with some naïve heuristics. The
resulting covers are significantly smaller than those from the original algorithm,
particularly in dense graphs.

3 Characterizing Θn(m)

In [3, Problem 11] the authors pose the following problem: describe the function
Θn(m) for every n. They provide as an example a (slightly flawed) graph for
Θ7(m), where m ∈ [21] = [

(
7
2

)
] (see [3, Fig. 3]). For n > 7, the number of graphs

quickly becomes unwieldy, so it is desirable to compute Θn(m) analytically. Our
results do not necessarily apply to very small graphs; we assume throughout that
any graph worth discussing has at least 4 vertices, as we can characterize Θn(m)
for n < 4 easily by brute force. In fact, we have found Θn by brute force for all
n ≤ 8.

We know from [3] and from the results of Mantel and Erdős [5, 2] that
the global maximum of Θn(m) is reached at m = bn2/4c. The reason is that
this is the largest number of edges which can fit on n vertices without forcing
triangles. This maximum is realized in complete bipartite graphs—such graphs
have no triangles or singletons, so covers consist of all edges. The expression

‘bn2/4c’ will be used frequently, so we abbreviate it: for any expression exp, we
let exp = bexp2/4c.

Figure 2 displays the largest complete bipartite graphs on five and six vertices
respectively: K3,2 and K3,3. Note that θ(K3,2) = 6 = 5 and θ(K3,3) = 9 = 6. For
any natural n, θ(Kdn/2e,bn/2c) = n.

• • •

•

• • •

•

• • •

K3,2 K3,3

Fig. 2. Complete bipartite graphs

Theorem 2 (Mantel, Erdős) If a graph on n vertices contains no triangle,
then it contains at most n edges.

Theorem 3 (Lovász) Given G ∈ Gn,m, let k be the number of missing edges
(i.e. k =

(
n
2

)
−m), and let t be the largest natural number such that t2 − t ≤ k.

Then θ(G) ≤ k + t. Moreover, this bound is exact if k = t2 or k = t2 − t.

For m ≤ n, we rely primarily on the theorems above, provided by Mantel
and Erdős [5, 2] (Theorem 2) and Lovász [4] (Theorem 3); we use them to
prove our first contribution, namely that Θn(m) has some recursive properties.
These properties provide an exact upper bound when m ≤ n. Lovász provides an
inexact upper bound when m ≥ n. We propose two improvements to Lovász’s
bound in Theorems 12 and 17, for which proofs can be found in section 3.2;
these improvements comprise our most notable theoretical results in this paper.
We also give conjecture 14; if proven true, this conjecture finishes the complete
exact upper bound of for m ≥ n.

Theorem 12 If m > n then Θn(m) ≤ n− 1.

Theorem 17 If m >
(
n
2

)
− n− 2 then Θn(m) ≤ n− 2.

Conjecture 14 If k < p, then Θn(
(
n
2

)
− k) ≤ p.

3.1 Pre-maximum: Θn(m) for m ≤ n

We begin by introducing our results informally. We then prove a sequence of
auxiliary results which will help us characterize Θn(m). The forthcoming mate-
rial is rather technical, but the reader will find it easier to follow by keeping the
graph in figure 3 in mind.

0 0 1 1 2 2 3
edges

cli
qu

e c
ov

er
 si

ze

n = 2
n = 3
n = 4

n = 5
n = 6

n = 7
n = 8

Fig. 3. Left sides of Θn(m) for n ∈ [2, 8]

We will refer to the portion of Θn(m) where m ≤ n as the left side of
the function. As figure 3 displays, we can obtain the left side of Θn(m) for
n ≥ 3 by translating that of Θn−1(m) upward by one, and then extending it
by a new segment δb(n−1)/2c. Here, δk represents a series of changes (∆x,∆y),
consisting first of (+1,+0) followed by k iterations of (+1,+1). For example,
δ3 = {(+1,+0), (+1,+1), (+1,+1), (+1,+1)}, as shown in figure 4.

•

• •

• •

• • • •
δ2 δ3

Fig. 4. δ2 and δ3

We can easily determine the first seven points in Θn(m) via brute force.
Clearly, Θn(0) = n; each vertex must be covered individually by a single clique,
as there are no edges. The addition of a single edge allows two vertices to be
covered with this edge, so Θn(1) = n − 1. Figure 5 provides visual justification
for the first seven points of Θn(m) for n ≥ 5.

n+ 1 •6

n •0 •4 •5

n− 1 •1 •2 •3

• • • • • • •

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •
0 1 2 3 4 5 6

Fig. 5. Θn(m) for n ≥ 5 and m ≤ 6 with corresponding graphs

Claim 4 If n ≥ 4, then Θn(0) = Θn(4) = n and Θn(1) = Θn(2) = Θn(3) =
n− 1.

Claim 5 Θn(m+ 1) ≤ Θn(m) + 1

Claim 4 can be verified quickly by checking every possible configuration of
0-4 edges. Claim 5 is true because any edge added to a graph can simply be
covered by a single additional clique consisting of that edge’s vertices.

Lemma 6 For any graph G, θ(G) ≤ cG+ iG, where iG is the number of single-
tons and cG the non-isolated vertices.

Proof. Theorem 2 guarantees that CG can be covered by cG cliques. IG can be
covered by iG cliques, each consisting of a singleton vertex. Every edge is in CG,
and every vertex is either in IG or CG, so the union of the covers of CG and IG
covers G and contains at most cG + iG cliques. ut

Lemma 7 If G ∈ Gn,m for some m ≤ n, then(
G contains triangles =⇒ θ(G) < Θn(m)

)
Proof. Assume that G ∈ Gn,m for some m ≤ n, and furthermore that G has
at least one triangle. Three edges can be covered with this triangle, so θ(G) ≤
m− 2 + iG.

Case 1:m ≤ cG. We can construct a triangle-free graph C ∈ GcG,m and singleton
graph I ∈ GiG,0. Let G′ = C ∪ I. Then G′ ∈ Gn,m. Moreover, it has no triangles,
so every edge must be covered individually, as must the singletons. Thus, θ(G′) =
m+ iG > m+ iG − 2 ≥ θ(G), so θ(G) < Θn(m).
Case 2: m > cG. We must first note that iG 6= 0, as this would imply that
m > n, which directly contradicts the hypothesis.

Lemma 6 guarantees that θ(G) ≤ cG+iG; call this upper bound β0. Consider
a graph G1 ∈ Gn,m such that cG1

= cG + 1 and iG1
= iG − 1. Such a graph can

be constructed easily—G contains a triangle, so simply remove an edge from
this triangle and use it to connect a vertex in IG to one in CG. Again, lemma 6
grants θ(G1) ≤ cG1

+ iG1
; call this bound β1. Let’s compare these two bounds.

If cG is even, then (cG + 1) − cG = cG/2. Since CG contains a triangle and
has an even vertex count, cG ≥ 4. Thus, cG1

− cG ≥ 2. Otherwise, cG is odd, so
(cG + 1) − cG = (cG + 1)/2. Again, there are at least three vertices in CG, so
cG1 − cG ≥ 2.

Whether cG is even or odd, β1 > β0. Of course, this does not prove that
θ(G1) > θ(G). The process can be repeated on G1 to gain G2 with bound
β2 > β1, and so on, until a Gα is reached such that cGα ≥ m. Since m ≤ n, this
will necessarily happen before or when we run out of singletons.

If α = 1, then (cG + 1) ≥ m, so we can construct a triangle-free graph
C ∈ G(cG+1),m and a graph I ∈ G(iG−1),0 consisting of (iG − 1) singletons. Let
G′ = C ∪ I. Clearly, G′ ∈ Gn,m. Moreover, θ(G′) = m+ iG1 = m+ iG− 1. Recall
that θ(G) ≤ m+ iG − 2. So we have found a G′ ∈ Gn,m such that θ(G′) > θ(G).
Therefore, θ(G) < Θn(m).

If α > 1, then we can construct a triangle-free graph C ∈ GcGα ,m (Theorem 2
guarantees that such a graph exists) and singleton graph I ∈ GiGα ,0. Let G

′ =
C ∪ I. Then θ(G′) = m + iGα . Moreover, m ≥ cGα−1 + 1 or we would have
stopped before Gα; iGα = iGα−1 − 1 by construction, so θ(G′) ≥ βα−1. Thus,
θ(G′) > θ(G), so θ(G) < Θn(m).

Regardless of α’s value, we have shown that θ(G) < Θn(m). ut

An immediate consequence of lemma 7 is: if G ∈ Gn,m for some m ≤ n and
θ(G) = Θn(m) then G contains no triangles. With this, we can fully characterize
Θn(m) for m ≤ n in Theorem 8.

Theorem 8 If m ≤ n, let p be the smallest natural number such that p ≥ m.
Then Θn(m) = m+ n− p.

Proof. Let m ≤ n, and let G be a graph in Gn,m such that θ(G) = Θn(m). G has
no triangles, so its minimal cover consists of a clique for each edge, and one for
each singleton vertex. That is, θ(G) = m+ iG. m is constant, so θ(G) is entirely
dependent on iG. As such, G is any triangle-free graph on n vertices and m
edges which maximizes iG, or equivalently minimizes cG. Theorem 2 grants that
m edges can be placed without triangles on cG vertices if and only if cG ≥ m,
so cG must be the smallest number meeting this condition; cG = p, where p is
the smallest natural number such that p ≥ m. As such iG = n− cG = n− p, so
θ(G) = m+ n− p. ut

The following conclusions can quickly be drawn from Theorem 8:

Lemma 9 If p < n, then Θn(p) = Θn(p+ 1).

Proof. Theorem 8 implies that Θn(p) = p + n − p and that Θn(p + 1) = (p +
1) + n− (p+ 1) = p+ n− p. ut

Lemma 10 If m ≤ n, then Θ(n+1)(m) = Θn(m) + 1.

Proof. Since m ≤ n < n+ 1, Theorem 8 proves that Θn(m) = m + n − p and
Θn+1(m) = m+(n+1)−p = Θn(m)+1, where p is the smallest natural number
such that p ≥ m. ut

While lemma 9 is not necessary for the characterization, it does explain the
distribution of short plateaus throughout the left side of Θn.

Lemma 10 shows that Θn(m) behaves recursively on the left side; while this
fact is not needed to prove our results, it displays their structural causes. Note
that lemma 10 is actually a direct result of lemma 7, and could be used to
prove Theorem 8—in fact, this was the approach we used in early versions of
the proofs above. As such, lemma 10 should be considered the recursive version
of Theorem 8. The δs described in figures 3 and 4 are necessary to complete the
recursion; after moving the left side of Θn(m) upward by 1, we must extend it
by δbn/2c to complete the left side of Θn+1(m). The shape of these extensions
can be proven accurate with lemma 7 or 9 in conjunction with claim 5.

3.2 Post-maximum: Θn(m) for m ≥ n

Again, we begin by informally discussing our results before delving into proofs.
We will refer to the part of Θn(m) where m ≥ n as the right side of the function.
The left side was shown to behave recursively with respect to n. The right side
appears to do the same for small n, and we conjecture that it does for all n.

Lovász’s Theorem (Theorem 3) provides an upper bound for Θn(m) based
on the number of missing edges. Here, we restate it:

Theorem 3 (Lovász) Given G ∈ Gn,m, let k be the number of missing edges
(i.e. k =

(
n
2

)
−m), and let t be the largest natural number such that t2 − t ≤ k.

Then θ(G) ≤ k + t. Moreover, this bound is exact if k = t2 or k = t2 − t.

First, note that Theorem 3 relies solely on the number of missing edges. It
is exact at the specified values of k, but only if k ≤ n− 1. If k > n− 1, then
m < n and a better bound can be found using our characterization of the left
side of Θn.

Of course, Lovász’s bound is not exact for all m ≥ n. As shown in figure 6
and stated in Theorem 3, it is only necessarily exact if k = t. Between these
exact values, Lovász’s bound appears to be a smoother version of Θ; where the
right side of Θ is a jagged series of plateaus, Lovász’s bound is nearly linear.

Lovász bound is difficult to apply as presented. We rephrase it here. Clearly,
2t = t2 and 2t± 1 = t2 ± t. Moreover, any natural number can be written as 2t
or 2t− 1 for some value of t. As such, we can adopt Theorem 3 to our notation:

01246912
missing edges (right to left)

0
1
2

4

6

9

12

16

cli
qu

e
co

ve
r s

ize
exact bound
Lovasz

Fig. 6. Lovász’s bound vs the right side of Θ8

Theorem 3 (Lovász restated) Given m ≥ n and k =
(
n
2

)
−m:

– If k = t for some natural number t, then Θn(m) = t+ 1.
– Otherwise, if t is the largest natural number such that 2t− 1 ≤ k, then
θ(G) ≤ k + t.

The plateaus on the right side of Θ are identical between different n for n ≤ 8,
and we conjecture this is true for larger n. It appears that if m ≥ n, then Θn(m)
is a function of the number of missing edges, independent of the vertex count.
This is displayed in figure 7.

The differences between the left and right sides raise an immediate, funda-
mental question: why is the right side of Θ characterized by large value changes
where the left is smooth (i.e. never changing by more than one clique per edge)?
What are the structural causes behind this difference? It seems that the answer
to this question can be reduced to the behavior of complete bipartite graphs;
if such a graph is missing an edge, then its cover size is simply one less. If it
has an extra edge, however, this edge completes several triangles, resulting in a
larger drop in cover size coupled with the capability of adding some additional
edges without affecting cover size. As an example of this phenomenon, we pro-
vide figure 8, which shows the graphs corresponding to maximum cover size on
the right side of Θ7.

01246912
missing edges (right to left)

0
1
2

4

6

9

12

16

cli
qu

e
co

ve
r s

ize

n = 8
n = 7

n = 6
n = 5

n = 4
n = 3

Fig. 7. The right sides of Θn for 3 ≤ n ≤ 8

• • • • •
• • • • •

• • • • •
• • • • •

• • • • •
• • • • •

• • • • •
k = 0 k = 1 k = 2 k = 3 k = 4

θ = 1 θ = 2 θ = 4 θ = 4 θ = 6

• • • • •
• • • • •

• • • • •
• • • • •

• • • • •
• • • • •

• • • • •
k = 5 k = 6 k = 7 k = 8 k = 9

θ = 6 θ = 9 θ = 9 θ = 9 θ = 12

Fig. 8. The largest possible bipartite graph (black) for k missing edges corresponds to
Θn((

(
n
2

)
− k)) for n ≤ 8. We conjecture that this is true for all n (see conjecture 14).

We will now begin a series of proofs to show that some of the plateaus in the
right side (specifically, the first two after the global maximum) necessarily exist
for all n. These are a direct improvement to Lovász bound.

Lemma 11 Given a graph G with triangle ∆, remove all edges from ∆ to obtain
G′. Then θ(G′) ≥ θ(G)− 1.

Proof. Let C ′ be a minimal cover of G′. Let C = C ′ ∪ {∆}; that is, C is C ′
with a single additional clique, containing only the three vertices in ∆. Clearly,
C covers G, so θ(G) ≤ θ(G′) + 1. ut

We can now prove Theorems 12 and 17. Recall:

Theorem 12 If m > n then Θn(m) ≤ n− 1.

Proof. This can be shown quickly through enumeration of all arrangements of
edges for three or four vertices. We present a proof by strong induction for larger
graphs. That is, we assume that it is true for all n0 ≤ n, and prove that it is
true for n+ 1.

If m ≥
(
n
2

)
−n− 2, then Theorem 3 provides proof. As such, we assume that

n < m <

(
n

2

)
− n− 2 (1)

Case 1: n is even and at least 4. Consider G ∈ G(n+1),m where n+ 1 < m <(
n+1
2

)
− n− 1. The degree sum D of G is exactly twice the number of edges, so

(1) grants that 2n+ 1 < D < 2
(
n+1
2

)
− 2n− 1 = n2+4n

2 . Clearly, the average
degree A must be D/(n+ 1). Thus

A <
n2 + 4n

2(n+ 1)
<
n+ 3

2

Let v be a minimum degree vertex. The minimum degree is at most the
average degree, so dv ≤ bAc ≤ b(n + 3)/2c. Since n is even, this means dv ≤
n/2 + 1.
Subcase 1.1: dv = n/2 + 1.
Subcase 1.1.1: m = n+ 1 + 1. Then

D = 2n+ 1 + 2 =
(n+ 1)2 + 3

2
, so A =

D

n+ 1
=
n+ 1

2
+

3

2(n+ 1)

and since n ≥ 4 . . .

A <
n

2
+ 1

A < n/2+1, so dv ≤ n/2, which contradicts the conditions of this subcase. This
set of conditions cannot occur, so it need not be considered any further.
Subcase 1.1.2: m ≥ n+ 1+2. Let w be any vertex in Nv; clearly dw ≥ n/2+1
as well. Other than v and w, there are (n− 1) vertices in G. Moreover, v and w
are each connected to at least n/2 of these (n − 1) vertices; they have at least
one neighbor u in common. (u, v, w) is a triangle.

Nv

•w
v•

•u

Remove v and all n/2+ 1 of its edges from G to obtain G′. G′ has n vertices
and at least n+ 1+2− (n/2+1) > n edges. The hypothesis grants that θ(G′) ≤
n− 1. Moreover, v and the two edges (v, u) and (v, w) can be covered with the
triangle (u, v, w). The remaining n/2−1 edges adjacent to v can each be covered
by their own clique. Thus, θ(G) ≤ θ(G′) + n/2 ≤ n− 1 + n/2 = n. That is,
θ(G) ≤ n.
Subcase 1.2: dv ≤ n/2. Our job is much easier in this case; v and its edges can
be covered by at most n/2 cliques. The rest of G consists of n vertices and more
than n+ 1− n/2 = n edges; the hypothesis grants that it can be covered by at
most n− 1 cliques. Thus, θ(G) ≤ n− 1 + n/2 = n.
Case 2: n is odd and at least 3. Consider G ∈ G(n+1),m such that n+ 1 < m <(
n+1
2

)
− n− 1.

2n+ 1 < D < 2

(
n+ 1

2

)
− 2n− 1

(n+ 1)2

2
< D <

(n+ 1)(n+ 3)

2
− 2

so, since A = D/(n+ 1)

n+ 1

2
< A <

n+ 3

2
− 2

n+ 1

Let v be a minimum degree vertex. dv ≤ bAc, so dv ≤ n+1
2 .

Subcase 2.1: dv = (n+ 1)/2. We first show that there is a vertex w such that
dw = (n+1)/2 and w is in a triangle. If v is in a triangle, then w is v. Otherwise,
Nv contains (n+1)/2 vertices and no edges. The vertices in Nv each have at least
(n+1)/2 neighbors themselves—but there are only (n+1)/2 vertices (including
v) which are not inNv. Thus, every vertex inNv has a degree of exactly (n+1)/2,
and these edges connect every vertex in Nv to every vertex in Rv. Let’s count
edges: there are (n+1)/2 edges connecting v to Nv, none within Nv, and another
(n+1)(n− 1)/4 connecting Nv to Rv. This totals n+ 1 edges; at least one edge
is unaccounted for, and the only remaining space is between vertices which are
neither v nor in Nv. This edge is in triangles with every element of Nv, each of
which have degree (n+ 1)/2; let w be any one of Nv’s vertices.

Nv Rv

•
v• w•

•

We have a vertex w such that dw = (n + 1)/2 and w is in a triangle. As
such, w and all of its adjacent edges can be covered with (n − 1)/2 cliques—
two of the edges are covered by this triangle. The rest of the graph consists of
n vertices and more than n+ 1 − (n + 1)/2 = n edges. By the hypothesis, it
can be covered by at most n− 1 cliques. As such, G can be covered by at most
n− 1 + (n− 1)/2 = n cliques.
Subcase 2.2: dv ≤ (n − 1)/2. Let v be a vertex with dv ≤ (n − 1)/2. Then v
and all of its incident edges can be covered by at most (n − 1)/2 cliques. The
rest of G consists of n vertices and more than n edges, so the hypothesis grants
that it can be covered with n− 1 cliques. Thus, θ(G) ≤ n. ut

Theorem 12 provides the bound shown in the first “plateau” of Θn(m) afterm
passes n; it is easy to construct a graph with this exact cover size; simply create
the largest complete bipartite subgraph possible with the number of missing
edges. Thus, this upper bound is exactly Θn(m) for n < m ≤

(
n
2

)
− n− 2

Remark 13 n =
(
n
2

)
− n− 1, so Theorem 12 identically reads:

If m >
(
n
2

)
− n− 1 then Θn(m) ≤ n− 1.

The largest complete bipartite graph that can be constructed on n vertices
has m = n edges and k = n− 1 missing edges; in fact, even for larger numbers of
vertices this is the largest such graph with less than n edges missing. Moreover,
for n ≤ 8 we have determined via brute force that, when m > n, the largest pos-
sible complete bipartite subgraph matches the maximum cover size. We suspect
that this is true for larger n:

Conjecture 14 If k < p, then Θn(
(
n
2

)
− k) ≤ p.

We prove in Theorems 12 and 17 that conjecture 14 holds when p is n− 1 or
n− 2, respectively. Remarks 15 and 16, while not necessary to prove our results,
may be useful in proving conjecture 14.

Remark 15 If G ∈ Gn,m for some m > n and iG > 0, then θ(G) < Θn(m).

Proof. Assume g contains singleton vertex z. Because m > n, G necessarily
contains a triangle∆ = (u, v, w). Let G′ be G, without the edges in∆. Lemma 11
grants that θ(G′) ≥ θ(G)− 1. Let G′′ be G′, with three additional edges: (u, z),
(v, z), and (w, z). z was a singleton prior, and there are no edges between u, v,
and w in G′′, so none of these three new edges is in a triangle; they must be
covered individually, but they also cover z (which required its own clique in G).
Thus, θ(G′′) ≥ θ(G′) + 2 ≥ θ(G) + 1. Clearly G′′ ∈ Gn,m, so θ(G) < Θn(m). ut

The proof of lemma 15 could be easily improved to apply whenever m >
n− 1. To see this, note that if n− 1 < m ≤ n, then a singleton guarantees
(via Theorem 2) that the remaining (n− 1) vertices contain triangles. Lemma 7
finishes the proof.

Remark 16 If SG is nonempty for some graph G with at least two vertices,
then let s ∈ SG and let G′ be the result of removing s and all of its edges from
G. Then θ(G′) = θ(G).

Proof. Let C ′ be a cover for G′. Define C with:

C =
⋃
c∈C′
{c ∪ {s}}

|C| = |C ′| and C covers G, so θ(G) ≤ θ(G′).
Similarly, let C be a cover for G; we can assume without loss of generality

that s is in every clique in C, because s can be part of any clique in G due to
its adjacency with every vertex in G. Construct C ′:

C ′ =
⋃
c∈C
{c− {s}}

C ′ covers G′ and has the same cardinality as C. Thus, θ(G′) ≤ θ(G). ut

Finally, we extend the bound in conjecture 14 to a second plateau. The proof
of Theorem 17 is lengthy and technical with many subcases.

Theorem 17 If m >
(
n
2

)
− n− 2 then Θn(m) ≤ n− 2.

Proof. We have determined through exhaustive search that this lemma is true
for all n ≤ 8. We present an inductive proof for n > 8. Note that

(
n
2

)
− n− 2 =

n+ 1− 1, so m ≥ n+ 1 provides an identical lower bound for m; this is version
of the bound we’ll use in this proof. Much like in Theorem 12, we can rely on
Lovász’s (Theorem 3) for m ≥

(
n
2

)
−n− 3. As such, we assume throughout that

m <
(
n
2

)
− n− 3.

Case 1: n is even and at least 10. Let G ∈ Gn,m. We assume m ≥ n+ 1, so
the degree sum D of G is at least 2n+ 1. That is, D ≥ (n2 + 2n)/2. As such,
the average degree A of G is at least n/2 + 1. Similarly, m <

(
n
2

)
− n− 3, so

D < (n2)/2 + 2n− 4. Thus, A < n/2 + 2.
Let v be a minimum degree vertex in G; dv ≤ bAc ≤ n/2 + 1.

Subcase 1.1: dv ≤ n/2 − 1. We can cover v and all of its edges with at most
n/2− 1 cliques. Let G′ be the rest of G; it consists of n− 1 vertices and at least
n+ 1 − (n/2 − 1) > n edges, so by the hypothesis θ(G′) ≤ n− 3. Therefore,
θ(G) ≤ n− 3 + n/2− 1 = n− 2.
Subcase 1.2: dv = n/2. We first prove that there is a vertex w of degree n/2
which is in a triangle. If v is in a triangle, we’re done. Otherwise, there are no
edges within Nv. There are n/2 vertices in Nv, n/2 − 1 in Rv, and of course v
itself. Notice that, if there are no edges within Nv, then each vertex in Nv has

at most n/2 edges (those leading to v or Rv). Since n/2 is the minimum degree,
every vertex in Nv must be connected to v and all of Rv. So, there are n/2 edges
connecting v to Nv, no edges within Nv, and another n

2 (
n
2 − 1) between Nv and

Rv. We have counted n edges; there are at least n/2 edges unaccounted for, and
these edges must be within Rv. So, choose any edge (a, b) in Rv and any vertex
w ∈ Nv; (w, a, b) is a triangle and dw = n/2.

Nv Rv

•a
v• w•

•b

So there is some vertex w in a triangle, such that dw = n/2. Because w is in
a triangle, it and its n/2 edges can be covered with at most n/2− 1 cliques. Let
G′ be the rest of G; G′ has n− 1 vertices and at least n edges, so θ(G′) ≤ n− 3
by the hypothesis. Thus, θ(G) ≤ n− 3 + n/2− 1 = n− 2.
Subcase 1.3: dv = n/2 + 1.
Subcase 1.3.1: m = n+ 1. All n vertices have degree of at least n/2 + 1; this
alone accounts for all n+ 1 edges, so every vertex has this degree exactly. Since
m > n, there is some triangle (u, v, w) in G. u, v and w each have n/2+1 edges,
two of which are within this triangle. As such, they each have n/2 − 1 edges
connecting them to the other n− 3 vertices. In other words, there are a total of
3n/2− 3 edges connecting (u, v, w) to the rest of G. Let G′ be G without u, v,
w or their edges. There are exactly n− 3 vertices in G′; given a vertex a in G′,
all edges (if any exist) from (u, v, w) to a can be covered by a single clique. As
such, the edges from (u, v, w) to G′ can be covered by n − 3 cliques. Moreover,
these cliques necessarily cover the edges in (u, v, w) because 2(n/2− 1) = n− 2,
so each pair in (u, v, w) has at least one neighbor in G′ in common.

u•

•w

v•

G′ consists of n − 3 vertices and n+ 1 − 3n/2 = n− 2 − 1 edges. n > 4,
so n− 2 − 1 > n− 3. Theorem 12 grants that θ(G′) ≤ n− 4. Thus, θ(G) ≤
n− 4 + n− 3 = n− 2.
Subcase 1.3.2: m > n+ 1. So m = n+ 1 + d for some d > 0. v is in a
triangle (u, v, w), just like the previous subcase, but there are up to d additional
edges connecting (u, v, w) to the rest of G; any of the d extra edges not between

(u, v, w) and G′ are within G′. As such, we can use the exact bound described in
the previous case, both for the edges connecting (u, v, w) to the rest of G, and
for the rest of G. Additional edges in G′ do not invalidate our upper bound for
θ(G′), nor can the extra edges between (u, v, w) increase the number of cliques
necessary to cover these edges with the method described in the previous subcase.
Thus, we have the same bound: θ(G) ≤ n− 2.
Case 2: n is odd and at least 9. Just as in the previous case, the average degree
A of graph G ∈ Gn,m is less than n/2 + 2. Therefore the minimum degree dv is
at most (n+ 3)/2.
Subcase 2.1: dv = (n+3)/2. In this case, the degree sum is at least (n2+3n)/2,
so (n2 + 3n)/4 ≤ m <

(
n
2

)
− n− 3. In other words, m = (n2 + 3n)/4 + d where

0 ≤ d < (n− 9)/4. By Theorem 2, any graph G ∈ Gn,m has a triangle (u, v, w).
Let G′ be G without (u, v, w). Given a vertex a in G′, every edge between
(u, v, w) and a can be covered in a single clique, so the edges from this triangle
to G′ can be covered by at most n − 3 cliques. Moreover, the minimum degree
(n+3)/2 guarantees that any vertex in (u, v, w) is adjacent to at least (n− 1)/2
vertices outside of this triangle, so any two vertices in (u, v, w) have a common
neighbor not in (u, v, w). Thus, the edges (u, v), (u,w) and (v, w) are necessarily
covered in triangles with the n − 3 cliques covering the edges from (u, v, w) to
G′. The minimum degree accounts for (n2 + 3n)/4 of the edges, so there are at
most d additional edges (other than those implied by the minimum degree sum)
between (u, v, w) and G′. There are 3 edges in (u, v, w), and at most 3(n−1)/2+d
edges from (u, v, w) to G′, so there are m′ ≥ m − 3 − 3(n − 1)/2 − d edges in
G′. m = (n2 + 3n)/4 + d, so m′ ≥ (n2 − 3n− 6)/4. Moreover, since n ≥ 9, this
implies that m′ ≥ (n2−4n+3)/4; that is, m′ ≥ n− 2. G′ only has n−3 vertices,
so by the hypothesis θ(G′) ≤ n− 5. As such, θ(G) ≤ n− 5 + n − 3 < n− 2. In
fact, in this case our upper bound for θ(G) is n− 3 + 1.
Subcase 2.2: dv = (n + 1)/2. For every vertex w ∈ Nv, the minimum degree
guarantees that Nv ∩ Nw 6= ∅; that is, v and w have at least one neighbor in
common. This common neighbor corresponds to an edge in Nv.
Subcase 2.2.1: All of these edges within Nv share a common vertex, a. Then
every w ∈ Nv − {a} has no neighbors other than a in Nv. So, w is connected to
v and a, along with at least (n − 3)/2 other vertices, none of which can be in
Nv. There are only (n− 3)/2 vertices in Rv, so every such w must be adjacent
to them all. That is, Nw = {v, a} ∪ Rv, and dw = (n+ 1)/2.

If a is connected to every element of Rv, then a ∈ SG and can be removed
without reducing the cover size (remark 16), leaving a graph on n − 1 vertices
and n+ 1 − (n − 1) edges. n+ 1 − (n − 1) = n− 1 + 1, so Theorem 12 shows
that θ(G) ≤ n− 2.

As such, it is safe to assume that a is adjacent to at most (n − 5)/2 of the
(n − 3)/2 vertices in Rv. There are at most (n2 − 4n + 3)/4 additional edges
between the other (n − 1)/2 vertices in Nv and those in Rv. Finally, there are
the (n+ 1)/2 edges from v to Nv and the (n− 1)/2 within Nv; we have a total
of at most (n2 +2n− 7)/4 edges accounted for. There are at least 2 more edges,
which must be in Rv.

•w •

v•
•a •

Consider any w ∈ Nv−{a}. dw = (n+1)/2, and Nw = {v, a}∪Rv. Any edge
in Rv is opposite w in a triangle; since there are edges in Rv, w is in a triangle
involving itself and two elements of Rv. w is also in the triangle (w, a, v). w
meets the conditions imposed on v in the next subcase: it has two disjoint edges
in its neighborhood. Subcase 2.2.2 finishes the proof that θ(G) ≤ n− 2.
Subcase 2.2.2: There are edges (a, b) and (c, d) on 4 unique vertices in Nv, or
there is a triangle (a, b, c) in Nv. In the prior case, the edges (v, a) and (v, b)
can be covered by triangle (v, a, b), as can (v, c) and (v, d) by (v, c, d), so v’s
(n + 1)/2 edges can be covered by (n − 3)/2 cliques. Similarly, in the case of a
triangle in Nv, three of v’s edges can be covered by a single 4-clique (consisting
of v and this triangle), which results in the same upper bound. Let G′ be G
without v or its edges. G′ has at least n+ 1− (n+ 1)/2 edges. That is, G′ is on
n− 1 vertices and at least n edges. By the hypothesis, θ(G′) ≤ n− 3. As such,
θ(G) ≤ n− 3 + (n− 3)/2 = n− 2.
Subcase 2.3: dv = (n− 1)/2.
Subcase 2.3.1: v is in a triangle. Let G′ be G without v or its (n− 1)/2 edges.
G′ has n−1 vertices and more than n edges, so θ(G′) ≤ n− 3 by the hypothesis.
v’s (n−1)/2 edges can be covered by (n−3)/2 cliques because v is in a triangle,
so θ(G) ≤ n− 3 + (n− 3)/2 = n− 2.
Subcase 2.3.2: v is not in a triangle. Then there are no edges within Nv. As
such, every vertex in Nv is connected to at least (n − 3)/2 of the (n − 1)/3
vertices in Rv. This accounts for (n2 − 4n + 3)/4 edges. Adding the (n − 1)/2
from v to Nv raises this total to (n2 − 2n+ 1)/4; there are least n more edges.
There is only room for (n− 1)/2 additional edges between Nv and Rv, so there
are at least (n+ 1)/2 edges in Rv.

If there are any additional edges between Nv and Rv, let w ∈ Nv be adjacent
to one of these edges. dw = (n + 1)/2, and every edge in Rv is in Nw. There
are at least (n + 1)/2 edges on the (n − 1)/2 vertices in Rv; only (n − 3)/2 of
these edges can be adjacent to a single vertex, so there is either a pair of edges
(a, b) and (c, d) on four unique vertices in Rv or a triangle in Rv. w meets the
conditions imposed on v in subcase 2.2.2, which completes the proof that that
θ(G) ≤ n− 2.

If there are no additional edges between Nv and Rv, then there are at least
n edges on Rv’s (n−1)/2 vertices. Consider w ∈ Nv; it has degree (n−1)/2 and
is connected to all but one of the (n − 1)/2 vertices in Rv. Let a ∈ Rv be this
vertex. Clearly, the n edges in Rv cannot all be adjacent to a. The rest of Rv is
in Nw, so there is an edge in Nw. We have found a vertex of degree (n − 1)/2
which is in a triangle. Subcase 2.3.1 shows that θ(G) ≤ n− 2.

Subcase 2.4: dv ≤ (n−3)/2. Let G′ be G without v. G has n−1 vertices and at
least n+ 1− (n− 3)/2 > n edges. The hypothesis provides that θ(G′) ≤ n− 3.
Thus, θ(G) ≤ n− 3 + (n− 3)/2 = n− 2. ut

Note that we have bounded cover size several times using the following
method: select a vertex v and cover everything except v and its edges, and then
add cliques to cover these ommited edges. The cover of v’s edges is equivalent
to a vertex cover of Nv. For any v in graph G, we define φ(v) to be a minimal
vertex clique cover of Nv.

Remark 18 If graph G with vertex set V has no singletons, then θ(G) ≤
minv∈V {θ(G− v) + φ(v)}.

Proof. Clearly, G−v can be covered with θ(G−v) cliques. This covers everything
in G except v and its incident edges. Let C be a minimal vertex cover of Nv,
and let C ′ =

⋃
c∈C{c ∪ {v}}. C ′ consists of φ(v) cliques, which cover v and all

of its edges. ut
In the proof of Theorem 17 we also bound the cover size by isolating a clique

and covering everything which is not adjacent to this clique, then covering it
and the edges connecting it to the rest of the graph.

Remark 19 If a graph G with n vertices has no singletons and contains clique
∆ with d vertices, then θ(G) ≤ θ(G−∆) + n− d+ 1.

Proof. Clearly, G−∆ can be covered with θ(G−∆) cliques. All edges between
∆ and a vertex v /∈ ∆ can be covered by a single clique; there are at most n− d
such vertices. Finally, ∆ itself may need to be covered (though it may not, if the
n− d cliques coincidentally covered ∆ as well). ut

3.3 The complete upper bound

We list three versions of the upper bound: one with Lovász and Mantel’s Theo-
rems along with lemma 10; one with the improvements provided in Theorems 12
and 17; and finally the hypothesized exact upper bound pending proof of con-
jecture 14. In all three bounds, n is the number of vertices, m the edges, and k
the missing edges. All values are assumed to be natural numbers.

With Lovász’s Theorem and lemma 10, we can form an upper bound for Θn:

Θ(2)
n (m)


= Θn−1(m) + 1 for m ≤ n− 1 (2a)
= m for n− 1 < m ≤ n (2b)
≤ k +max{t|t2 − t ≤ k} for n < m ≤

(
n
2

)
(2c)

With Theorems 12 and 17, we can improve the previous bound:

Θ(3)
n (m)



= Θn−1(m) + 1 for m ≤ n− 1 (3a)
= m for n− 1 < m ≤ n (3b)
= n− 1 for n− 1 > k ≥ n− 2 (3c)
= n− 2 for n− 2 > k ≥ n− 3 (3d)
≤ k +max{t|t2 − t ≤ k} for n− 3 > k ≥ 0 (3e)

If conjecture 14 is proven true, the bound can be simplified and made exact
for all m:

Θ(4)
n (m) =


Θn−1(m) + 1 for m ≤ n− 1 (4a)
m for n− 1 < m ≤ n (4b)

min{t|t > k} for m > n (4c)

Note that these three formulations form a refinement of the upper bound;
Θ

(4)
n (m) ≤ Θ(3)

n (m) ≤ Θ(2)
n (m) for all m. Conjecture 14 is sufficient to show that

Θn = Θ
(4)
n .

4 Finding covers

The authors of algorithm 1 in [3] provide a process which finds a clique cover in
polynomial time (O(n4)) on the number of vertices. It works by assigning symbols
to sets of vertices; each symbol corresponds to a clique, and each vertex is in a
symbol’s clique if an only if it has been assigned that symbol. The algorithm’s
purpose is to construct an indeterminate string from its associated graph, but
this is identical to covering said graph. We paraphrase this process in algorithm 1.
It produces different results for isomorphic graphs based on the order in which
the vertices are presented. In [3, conjecture 12], it is proposed that there is an
ordering of vertices which results in an optimal (i.e., minimal) cover.

Algorithm 1 Labelling [3, algorithm 1]
Require: Graph G = (V,E)
1: λ← 1
2: For each v ∈ V , label(v) = {}
3: for v ∈ V do
4: if dv = 0 then
5: label(v)← {λ}
6: λ← λ+ 1
7: else
8: for w ∈ Nv do
9: if label(v) ∩ label(w) = ∅ then
10: label(v)← label(v) ∪ {λ}
11: label(w)← label(w) ∪ {λ}
12: clique← {w}
13: for q ∈ Nv − {w} do
14: if clique ⊆ Nq then
15: label(q)← label(q) ∪ {λ}
16: clique← clique ∪ {q}
17: λ← λ+ 1

In this section, we present an original heuristic, which we call CliqueRank in
tribute to its inspiration, PageRank. We show that CliqueRank reduces the size

of algorithm 1’s output covers, particularly in dense graphs. Figure 10 displays
the results of applying CliqueRank to algorithm 1 with several different methods;
the relevant methods will be explained in section 4.2.

4.1 CliqueRank

CliqueRank assigns a value to all vertices and edges in a graph. It operates as
follows:

1. Every vertex is given an initial value of 1.
2. The value of each vertex is redistributed uniformly among the edges in its

neighborhood. An edge (v, w) is in u’s neighborhood if v, w ∈ Nv. Recall
that v itself is not in Nv; this value is being redistributed among those edges
which are opposite v in triangles. So if there are m edges in Nv, each of these
edges receives (1/m) of v’s value. An edge’s value for this iteration is the
sum of such inputs from vertices.

3. Each edge then splits its value evenly between its two vertices.

For a visual demonstration of an iteration of CliqueRank, see figure 9. Steps 2
and 3 are intended for iteration, as their descriptions imply. Note that when an
object “redistributes its value”, it loses this value; no value is being created other
than the initial assignment of 1 to every vertex. As such, at the end of an
iteration, the edges all have 0 value. When we reference an edge’s value after
n iterations, however, we will actually be referring to its value during the n’th
iteration, after it has been given value by vertices and before it has redistributed
this value to vertices.

During the first iteration, any vertices which are not in triangles lose all of
their value; it is redistributed among 0 edges, so it ceases to exist. Moreover,
these triangle-less vertices share this property with their edges, so these edges
never gain value. Thus, all edges and vertices which are not in triangles have
value equal to 0 after the any positive number of iterations.

If a vertex or edge is in a triangle, however, then it is easy to prove through
induction that it has nonzero value after every iteration. Moreover, it is also easy
to prove that edges which are in exactly one triangle will have value less than
edges in multiple triangles. That is, edges which are “easier to cover”, meaning
they are in multiple cliques, tend toward larger values. This falls apart when 4-
cliques come into play; if an edge is in exactly one 4-clique, and no triangles other
than those within this 4-clique, it will still appear to be “in three triangles”. That
is, its value will not be as low as those edges which are in exactly one triangle,
even though it is contained in exactly one maximal clique.

This presents intuitive strategies for covering a graph. First, edges with zero
value should be covered; they are not in triangles, so they must be covered
individually (as must singleton vertices, which will also be given zero value).
Then, a vertex with a low value and uncovered edges can be selected (v in
algorithm 1), and its neighbors (w and q) can be considered in any order. There
are many ways in which neighbors can be prioritized, and we consider a few of
them in section 4.2.

(1) •1 (2) •

.5 �� .5��

1• •1 • 1 // •1oo

1• •1 •

.5
XX

.5
FF

•

1OO

(3) •

2

(4) •
.25

		

.25 ,, .25rr
.25

��
•

.5

.5

•

.5

.5

0
• 1

]]

1

��

•

.25

VV

.25
44

.25
jj

.25

JJ
0tt

0

��
• • • •

(5) •1.5

.5• •.5

1.5• •0

Fig. 9. An iteration of CliqueRank

4.2 Applying CliqueRank to algorithm 1

CliqueRank provides a method of assigning values to edges and vertices; these
values can be applied to algorithm 1 in an assortment of ways, some of which are
effective and some of which are not. In this section, we define and evaluate the
effectiveness of some of these methods of application. Methods will be named in
correspondence with the legend in figure 10. All methods can be applied after
any positive number of iterations of CliqueRank. Surprisingly, it is rare for extra
iterations to improve the resulting cover size; the best cover is usually found
after a single iteration, but occasionally better covers can be found by iterating
to convergence. An iteration of CliqueRank is O(n3), so on large graphs it is
prudent to iterate just once.

We next examine a few methods of application of CliqueRank to algorithm 1.
In figure 10 and the following descriptions, we use Vscore to refer to vertex values,
Escore to refer to edge values, and ECC to refer to “edge cover count”, i.e., a
counter of the number of times each edge has been covered.

Fig. 10. Cover size vs edge density and time vs edge density for Algorithm 1

CR by Vscore: As the name implies, this method of application of CliqueRank
to algorithm 1 works simply by sorting the vertices in ascending order with re-
spect to their CliqueRank values; that is, low valued vertices are considered first
in lines 3, 8, and 13 of algorithm 1. This method is not shown in figures, but the
following method is nearly identical to it, with one small variation.

Dynamic CR by Vscore: This method sorts vertices in non-decreasing
CR score as well, but whenever a clique is added to the cover-in-progress, this
vertex’s score is increased by 1.

CR by Escore: This method operates as follows: in algorithm 1, line 3 is
sorted by non-decreasing vertex score, and lines 8 and 13 are sorted (again,
non-decreasing) by the edge scores of the edge connecting the new vertex to
the vertex selected in line 3. Its results are not included in figures as it is not
particularly effective; it is of note because we expected it to be a top competitor,
and as such we mention it as a possibility which we have found to be ineffective.

CR, ECC, Removals: This method, shown in grey, operates as follows:
vertices are initially put in non-decreasing order by CR score in line 3. Vertices
in line 8 are sorted primarily by whether the corresponding edge (connecting w
to v in the pseudocode) is covered—uncovered edges come first. They are sorted
secondarily in non-decreasing order of edge score from CR. Finally, vertices in
line 13 are sorted by the number of uncovered edges connecting them to the
clique in construction, in non-increasing order. When the graph is covered, we
then review all cliques in non-decreasing order of size. If every edge in a given
clique is covered more than once by remaining cliques, then the clique in question
is superfluous and is removed from the cover. This last step rarely finds any
redundancy, but occasionally reduces cover size minutely.

5 Conclusion and Future Work

The function Θn(m) is the exact upper bound on the size of a minimal clique
cover for a graph with n vertices and m edges. We progress toward an exact
characterization of the shape of Θn for any n; using theorems from Erdős and
Mantel, we fully characterize Θn(m) for m ≤ n via the recursive properties in
lemma 10. Lovász provides an upper bound for Θn(m) when m > n, and we
improve this to an exact characterization for m ≤

(
n
2

)
−n− 3 with Theorems 12

and 17.
If conjecture 14 is true, it completes the characterization of Θn for all n.

Conjecture 14 If k < p, then Θn(
(
n
2

)
− k) ≤ p.

Remarks 18 and 19 formalize the strategies used in the proofs of Theorems 12
and 17 to bound cover size; they may be useful in completing the characterization
of Θn(m). Remarks 15 and 16 may also prove useful in this pursuit.

We then move on to application; bioinformatics provides motivation to find
small clique covers. We develop a method for ordering vertices (CliqueRank) and
apply it to a recently developed algorithm for indeterminate string construction.

Much of the motivation for graphs and graph algorithms originates in net-
works situated in space, which (among other applications) are represented by
graphs in euclidean space. In figure 11, we show the results of algorithm 1 on
metric graphs.

We generate these graphs as follows: points are randomly distributed in the
n-dimensional box [0, 1]n. These points are the vertices. Any two vertices which
are within a specified distance of eachother, under a given metric, are connected.
Figure 11 shows the results of algorithm 1 on 2-dimensional graphs using the
euclidean metric.

It is of interest to improve performance on metric graphs. Also, as demon-
strated by algorithm 1’s motivation in bioinformatics and string processing, it
is pertinent to generate graphs via construction of indeterminate strings, and
to analyze and improve performance and effectiveness on this particular class of
graphs.

References

[1] Manolis Christodoulakis, P.J. Ryan, W.F. Smyth, and Shu Wang. Indeterminate
strings, prefix arrays and undirected graphs. Theoretical Computer Science, 600:34
– 48, 2015.

[2] Paul Erdos, A.W. Goodman, and Louis Posa. The representation of a graph by set
intersections. Canadian Journal of Mathematics, 18:106–112, 1966.

[3] Joel Helling, P. J. Ryan, W. F. Smyth, and Michael Soltys. Constructing an inde-
terminate string from its associated graph. Accepted for publication in the Journal
of Theoretical Computer Science, 2017.

[4] L. Lovász. On covering of graphs. In G. Katona P. Erdos, editor, Theory of graphs.
Akad. Kiadó, 1968.

[5] W. Mantel. Problem 28 (solution by H. Gouweniak, W. Mantel, J. Texeira de
Mattes, F. Schuh, and W.A Whythoff). Wiskundige Opgaven, 10(60–61), 1907.

[6] Fred S. Roberts. Applications of edge coverings by cliques. Discrete Applied Math-
ematics, 10:93–109, 1985.

Fig. 11. Cover size and time vs density for 2D metric graphs

