
A formal framework for Stringology

Michael Soltysa, Neerja Mhaskarb,∗

aCalifornia State University Channel Islands, Dept. of Computer Science,
One University Drive, Camarillo, CA 93012, USA

bMcMaster University, Dept. of Computing & Software, 1280 Main Street West,
Hamilton, Ontario L8S 4K1, CANADA

Abstract

A new formal framework for Stringology is proposed, which consists of a
three-sorted logical theory S designed to capture the combinatorial reasoning
about finite strings. We propose a language LS for expressing assertions
about strings, and study in detail two sets of formulas ΣB

0 , a set of formulas
decidable in polytime, and ΣB

1 , a set of formulas with the property that those
provable in S yield polytime algorithms.

Keywords: Proof complexity, string algorithms

1. Introduction

Finite strings are an object of intense scientific interest. This is due
partly to their intricate combinatorial properties, and partly to their emi-
nent applicability in such diverse fields as genetics, language processing, and
pattern matching. Many techniques have been developed over the years to
prove properties of finite strings, such as suffix arrays, border arrays, and de-
composition algorithms such as Lyndon factorization. However, there is no
unifying theory or framework, and often the results consist in clever but ad
hoc combinatorial arguments. In this paper we propose a unifying theory of
strings based on a three sorted logical theory, which we call S. By engaging
in this line of research, we hope to bring the richness of the advanced field
of Proof Complexity to Stringology.

∗Corresponding author
Email addresses: michael.soltys@csuci.edu (Michael Soltys),

pophlin@mcmaster.ca (Neerja Mhaskar)

Preprint submitted to Elsevier Saturday 31st March, 2018

The great advantage of this approach is that proof theory integrates proofs
and computations; this can be beneficial to Stringology as it allows us to
extract efficient algorithms from proofs of assertions. More concretely, if we
can prove in S a property of strings of the form: “for all strings v, there
exists a string u with property α,” i.e., ∃u ≤ Iα(u,v), where |u| ≤ I, then
we can mechanically extract an actual algorithm which computes u for any
given v.

For example, suppose that we show that S proves that every string has
a certain decomposition; then, we can actually extract a procedure from the
proof for computing such decompositions. Furthermore, we can refine S to
make guarantees about the complexity of the algorithm. This refinement
is usually brought about by restricting induction to be over formulas of a
certain syntactic form, and by choosing the axioms to reflect a certain level
of computational complexity.

Our contribution is conceptual; we do not propose new or faster algo-
rithms. Rather, we propose a unified logical theory of strings. The reward
of this exercise is that we make many implicit assumptions of Stringology
explicit; for example, we define alphabet symbols with the successor func-
tion, a constant, and an ordering relation. We also discover that the theory
of strings consists in rudimentary number theory on the indices of a one-
dimensional array, with combinatorial sophistication arising from the drive
that make all algorithms linear time. Thus Stringology can be viewed as the
study of one-dimensional arrays with entries from a (normally small) ordered
set. Such observations are valuable insights into this beautiful field.

For a background on Proof Complexity see [CN10] which contains a com-
plete treatment of the subject; we follow its methodology and techniques for
defining our theory S. We also use some rudimentary λ-calculus in the style
of [SC04].

2. Formalizing the theory of finite strings

We propose a three sorted theory that formalizes the reasoning about
finite strings. We call our theory S. The three sorts are indices, symbols, and
strings. We start by defining a convenient and natural language for making
assertions about strings.

2

2.1. The language of strings LS

Definition 1. LS, the language of strings, is defined as follows:

LS = [0index, 1index,+index,−index, ·index, divindex, remindex,

0symbol, σsymbol, condsymbol, ||string, estring;<index,=index<symbol,=symbol,=string]

The table below explains the intended meaning of each symbol.

Formal Informal Intended Meaning
Index

0index 0 the integer zero
1index 1 the integer one
+index + integer addition
−index − bounded integer subtraction
·index · integer multiplication (informally we use juxtaposition)
divindex div integer division
remindex rem remainder of integer division
<index < less-than for integers
=index = equality for integers

Alphabet symbol
0symbol 0 default symbol in every alphabet
σsymbol σ unary function for generating arbitrary numbers of symbols
<symbol < ordering of alphabet symbols
condsymbol cond a conditional function
=symbol = equality for alphabet symbols

String
||string || unary function for string length
estring e binary function for extracting the i-th symbol from a string
=string = string equality

Note that in practice we use the informal language symbols as otherwise
it would be tedious to write terms, but the meaning will be clear from the
context. When we write i ≤ j we abbreviate the formula i < j ∨ i = j.

2.2. Syntax of LS

We use metavariables i, j, k, l, . . . to denote indices, metavariables a, b, c, . . .
to denote alphabet symbols, and metavariables u,v,w, . . . to denote strings.

3

When a variable can be of any type, i.e., a meta-meta variable, we write it
as x, y, z We use I to denote an index term, for example i + j, S to
denote a symbol term, for example σσσ0, and T to denote string terms. We
use t, t1, t2, . . ., to denote terms of any type. Finally, we use Greek letters
α, β, γ, . . ., to denote formulas.

Definition 2. LS-Terms are defined by structural induction as follows:

1. Every index variable is a term of type index (index term).
2. Every symbol variable is a term of type symbol (symbol term).
3. Every string variable is a term of type string (string term).
4. If I1, I2 are index terms, then so are (I1 ◦ I2) where ◦ ∈ {+,−, ·},

div(I1, I2), and rem(I1, I2).
5. If S is a symbol term then so is σS.
6. If T is a string term, then |T | is an index term.
7. If I is an index term, and T is a string term, then e(T, I) is a symbol

term.
8. All constant functions (0index, 1index,0symbol) are terms.

We define the term cond once we define formulas (see Definition 6).

Definition 3 (Bound and Free variables). An occurrence of a variable x in
a formula α is said to be bound iff it is in a subformula β of α of the form
∀xβ or ∃xβ. Otherwise the occurrence is free.

Definition 4 (Substitution). Let t1, t2 be terms, and α a formula. Then
t2(t1/x) is the result of replacing all occurrences of x in t2 by t1, and α(t1/x)
is the result of replacing all free occurrences of x in α by t1.

We are going to employ the lambda operator λ for building terms of type
string.

Definition 5. Given a term I of type index, and given a term S of type
symbol, the following is a term T of type string:

λi〈I, S〉. (1)

T is a term of type string, and is of length I and i occurs in S. The j-th sym-
bol of the string T is obtained by evaluating S at j, i.e., by evaluating S(j/i).
Note that, S(j/i) is the term obtained by replacing every free occurrence of i
in S with j. Since (1) is a λ-term, i is considered to be a bound variable and
its value ranges in [0..I − 1]. This concept is formalized in Axiom B22.

4

For examples of string constructors see Section 2.4.

Definition 6. LS-Formulas are defined by structural induction as follows:

1. If I1, I2 are two index terms, then I1 < I2 and I1 = I2 are atomic
formulas.

2. If S1, S2 are symbol terms, then S1 < S2 and S1 = S2 are atomic
formulas.

3. If T1, T2 are two string terms, then T1 = T2 is an atomic formula.

4. If α, β are formulas, so are the following: ¬α, (α∧β), (α∨β),∀xα, ∃xα,
where x is a variable.

5. Given a formula α, and two terms S1, S2 of type symbol, then cond(α, S1, S2)
is a term of type symbol.

Note that in order to define all the terms (Definition 5) we need to first
define formulas (Definition 6), as cond is defined in terms of both; but formu-
las require terms. In order to avoid the appearance of circularity, we could
combine Definitions 5 and 6, but it is clearer to have two definitions, where
care needs to be taken in the definition of cond.

We are interested in a restricted mode of quantification. We say that an
index quantifier is bounded if it is of the form ∃i ≤ I or ∀i ≤ I, where I is
a term of type index and i does not occur free in I. Similarly, we say that a
string quantifier is bounded if it is of the form ∃u ≤ I or ∀u ≤ I, where this
means that |u| ≤ I and u does not occur in I.

Definition 7. Let ΣB
0 be the set of LS-formulas without string or symbol

quantifiers, where all index quantifiers (if any) are bounded. For i > 0, let
ΣB
i (ΠB

i) be the set of LS formulas of the form: once the formula is put in
prenex form, there are i alternations of bounded string quantifiers, starting
with an existential (universal) one, and followed by a ΣB

0 formula.

We want our theory to be strong enough to prove interesting theorems,
but not too strong so that proofs yield feasible algorithms. When a the-
ory is strong (say the axioms express strong properties, such as correctness
of f(α) = t, where f is a function computing a satisfying assignment t for
formula α, when it exists), then the function witnessing the existential quan-
tifiers will be of a higher complexity. For this reason we will restrict the α
in the cond(α, S1, S2) to be ΣB

0 . Thus, given such an α and assignments of
values to its free variables, we can evaluate the truth value of α, and output
the appropriate Si, in polytime – see Lemma 10.

5

The alphabet symbols are as follows, 0, σ0, σσ0, σσσ0, . . ., that is,
the unary function σ allows us to generate as many alphabet symbols as
necessary. We are going to abbreviate these symbols as σ0, σ1, σ2, σ3, In
a given application in Stringology, an alphabet of size three would be given
by Σ = {σ0, σ1, σ2}, where σ0 < σ1 < σ2, inducing a standard lexicographic
ordering. We make a point of having an alphabet of any size in the language,
rather than a fixed constant size alphabet, as this allows us to formalize
arguments of the type: given a particular structure describing strings, show
that such strings require alphabets of a given size (see [BS13] or [HRSS17]).

2.3. Semantics of LS

Assigning a standard interpretation to the syntax of a given formalism
is the ensign of developing a logical theory. In our case it is more than
just a formal exercise as we are giving a formal meaning to the notations and
syntactical constructions of Stringology. In order to provide an interpretation
of LS, we first define a structure and then give a standard interpretation for
Stringology, which we call S = (N,Σ,S).

We denote a structure for LS with M. A structure is a way of assigning
values to the terms, and truth values to the formulas. We base our pre-
sentation on [CN10, §II.2.2]. We start with a non-empty set M called the
universe. The variables in any LS are intended to range over M . Since our
theory is three sorted, the universe is M = (I,Σ,S), where I denotes the
set of indices, Σ the set of alphabet symbols, and S the set of strings.

We start by defining the semantics for the three 0-ary (constant) function
symbols:

0M
index ∈ I, 1M

index ∈ I, 0M
symbol ∈ Σ,

for the two unary function symbols:

σM
symbol : Σ −→ Σ, ||Mstring : S −→ I,

for the six binary function symbols:

+M
index : I2 −→ I, −M

index : I2 −→ I, ·Mindex : I2 −→ I

divM
index : I2 −→ I, remM

index : I2 −→ I, eMstring : S × I −→ Σ.

With the function symbols defined according to M, we now associate relations
with the predicate symbols, starting with the five binary predicates:

<M
index⊆ I2, =M

index⊆ I2, <M
symbol⊆ Σ2, =M

symbol⊆ Σ2, =M
string⊆ S2,

6

and finally we define the conditional function as follows: condM
symbol(α, S1, S2)

evaluates to SM
1 if αM is true, and to SM

2 otherwise.
Note that =M must always evaluate to true equality for all types; that

is, equality is hardwired to always be equality. However, all other function
symbols and predicates can be evaluated in an arbitrary way (that respects
the given arities).

Definition 8. An object assignment τ for a structure M is a mapping from
variables to the universe M = (I,Σ,S), that is, M consists of three sets that
we call indices, alphabet symbols, and strings.

The three sorts are related to each other in that S can be seen as a
function from I to Σ, i.e., a given u ∈ S is just a function u : I −→ Σ. In
Stringology we are interested in the case where a given u may be arbitrarily
long but it maps I to a relatively small set of Σ: for example, binary strings
map into {0, 1} ⊂ Σ. Since the range of u is relatively small this leads to
interesting structural questions about the mapping: repetitions and patterns.

We start by defining τ on terms: tM[τ]. Note that if m ∈ M and x is a
variable, then τ(m/x) denotes the object assignment τ but where we specify
that the variable x must evaluate to m.

We define the evaluation of a term t under M and τ , tM[τ], by structural
induction on the definition of terms given in Section 2.1. First, xM[τ] is just
τ(x), for each variable x. We must now define object assignments for all the
functions. Recall that I, I1, I2 are index terms, S is a symbol term and T is
a string term.

(I1 ◦index I2)M[τ] = (IM1 [τ] ◦Mindex IM2 [τ]),

where ◦ ∈ {+,−, ·} and

(div(I1, I2))
M[τ] = divM(IM1 [τ], IM2 [τ]),

(rem(I1, I2))
M[τ] = remM(IM1 [τ], IM2 [τ]).

and for symbol terms we have:

(σS)M[τ] = σM(SM[τ]).

Finally, for string terms:

|T|M[τ] = |(TM[τ])|.

7

(e(T, I))M[τ] = eM(TM[τ], IM[τ]).

Given a formula α, the notation M � α[τ], which we read as “M satisfies
α under τ” is also defined by structural induction. We start with the basis
case:

M � (S1 <symbol S2)[τ] ⇐⇒ (SM
1 [τ], SM

2 [τ]) ∈<M
symbol .

We deal with the other atomic predicates in a similar way:

M � (I1 <index I2)[τ] ⇐⇒ (IM1 [τ], IM2 [τ]) ∈<M
index,

M � (I1 =index I2)[τ] ⇐⇒ IM1 [τ] = IM2 [τ],

M � (S1 =symbol S2)[τ] ⇐⇒ SM
1 [τ] = SM

2 [τ],

M � (T1 =string T2)[τ] ⇐⇒ TM
1 [τ] = TM

2 [τ].

Now we deal with Boolean connectives:

M ` (α ∧ β)[τ] ⇐⇒ M � α[τ] and M � β[τ],

M ` ¬α[τ] ⇐⇒ M 2 α[τ],

M ` (α ∨ β)[τ] ⇐⇒ M � α[τ] or M � β[τ].

Finally, we show how to deal with quantifiers, where the object assignment
τ plays a crucial role:

M � (∃xα)[τ] ⇐⇒ M � α[τ(m/x)] for some m ∈M,

M � (∀xα)[τ] ⇐⇒ M � α[τ(m/x)] for all m ∈M.

Definition 9. Let S = (N,Σ,S) denote the standard model for strings, where
N are the standard natural numbers, including zero, Σ = {σ0, σ1, σ2, . . .}
where the alphabet symbols are the ordered sequence σ0 < σ1 < σ2, . . ., and
where S is the set of functions u : I −→ Σ, and where all the function and
predicate symbols get their standard interpretations.

The following lemma is important in that it reassures us of the “reason-
ableness” of the logical theory that we proposed: given a formula without
unbounded quantifiers, we can always check its truth in the standard model,
for particular parameter values, in polynomial time (in the size of the encod-
ing of those values).

8

lemma 10. Given any formula α ∈ ΣB
0 , and a particular object assignment

τ , we can verify S � α[τ] in polytime in the lengths of the strings and values
of the indices in α.

Proof. Let t, t1, t2 denote terms of any type (index, symbol or strings). We
first show that evaluating a term t, i.e., computing tS[τ], can be done in
polytime. We do this by structural induction on t. If t is just a variable then
there are three cases:

• t is i, an index variable: iS[τ] = τ(i) ∈ N.

• t is u, a symbol variable: uS[τ] = τ(u) ∈ Σ.

• t is u, a string variable: uS[τ] = τ(u) ∈ S.

Note that the assumption is that computing τ(x) is for free, as τ is given as a
table which states which free variable gets replaced by what concrete value.
Therefore evaluating t in the base case when it is just a variable is done in
constant time.

Recall that all index values are assumed to be given in unary, and all the
function operations we have are clearly polytime in the values of the argu-
ments (index addition, subtraction, multiplication, etc.). Therefore, evaluat-
ing t in this case is done in polytime in the values of the arguments. Hence
so is evaluating the atomic formulas (t1 < t2)

S[τ] and (t1 = t2)
S[τ], where t1

and t2 are terms of any type (index, symbols or strings), or their Boolean
combinations.

Finally, we consider quantification; but we are only allowed bounded index
quantification: (∃i ≤ Iα)S[τ], and (∀i ≤ Iα)S[τ]. This is equivalent to
computing:

IS[τ]∨
j=0

αS[τ(j/i)], and

IS[τ]∧
j=0

αS[τ(j/i)].

Since this can be done in polytime, we conclude that evaluating any formula
can be done in polytime.

2.4. Examples of string constructors

In the previous sections we have formalized Stringology and we have given
it a formal interpretation. We now seek to demonstrate that our theory is
useful in the sense that it can express standard properties of strings in a

9

succinct manner. We are going to show more examples of applications in
Section 4, once we introduce the axioms and rules of inference for S.

The string 000 can be represented by:

λi〈1 + 1 + 1,0〉.

Given an integer n, let n̂ abbreviate the term 1 + 1 + · · ·+ 1 consisting of n
many 1s. Using this convenient notation, a string of length 8 of alternating
0s and 1s can be represented by:

λi〈8̂, cond(∃j ≤ i(j + j = i),0, σ0)〉. (2)

Note that this example illustrates that indices are going to be effectively
encoded in unary; this is fine as we are proposing a theory for strings, and so
unary indices are an encoding that is linear in the length of the string. The
same point is made in [CN10], where the indices are assumed to be encoded
in unary, because the main object under investigation are binary strings, and
the complexity is measured in the lengths of the strings, and unary encoded
indices are proportional to those lengths.

Also note that there are various ways to represent the same string; for
example, the string given by (2) can also be written as:

λi〈2̂ · 4̂, cond(∃j ≤ i(j + j = i+ 1), σ0,0)〉. (3)

For convenience, we define the empty string ε as follows:

ε := λi〈0,0〉.

Let u be a binary string, and suppose that we want to define ū, which is
u with every 0 (denoted 0) flipped to 1 (denote σ0), and every 1 flipped to
0. We can define ū as follows:

ū := λi〈|u|, cond(e(u, i) = 0, σ0,0)〉.

We can also define a string according to properties of positions of indices;
suppose we wish to define a binary string of length n which has one in all
positions which are multiples of 3:

v := λi〈n̂, cond(∃j ≤ n(i = j + j + j), σ0,0)〉.

Note that both ū and v are defined with the conditional function where the
formula α conforms to the restriction: variables are either free (like u in ū),

10

or, if quantified, all such variables are bounded and of type index (like j in
v).

Note that given a string w, |w| is its length. However, we number the
positions of a string starting at zero, and hence the last position is |w| − 1.
For j ≥ |w| we are going to define a string to be just 0s.

Suppose we want to define the reverse of a string, namely if u = u0u1 . . . un−1,
then its reverse is uR = un−1un−2 . . . u0. Then,

uR := λi〈|u|, e(u, (|u| − 1)− i)〉,

and the concatenation of two strings u and v, which we denote as “·”, can
be represented as follows:

u · v := λi〈|u|+ |v|, cond(i < |u|, e(u, i), e(v, i− |u|))〉. (4)

2.5. Axioms of the theory S

We assume that we have the standard equality axioms which assert that
equality is true equality — see [Bus98, §2.2.1]. So we will not give those
axioms explicitly.

Since we are going to use the rules of Gentzen’s calculus, LK, we present
the axioms as Gentzen’s sequents, that is, they are of the form Γ→ ∆, where
Γ,∆ are comma-separated lists of formulas. That is, a sequent is of the form:

α1, α2, . . . , αn → β1, β2, . . . , βm,

where n or m (or both) may be zero, that is, Γ or ∆ (or both) may be
empty. The semantics of sequents is as follows: a sequent is valid if for any
structure M that satisfies all the formulas in Γ, satisfies at least one formula
in ∆. Using the standard Boolean connectives this can be stated as follows:
¬
∧
i αi ∨

∨
j βj, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. To prove a formula α we

need to derive → α and to refute it we need to derive α→.
The index axioms are the same as 2-BASIC in [CN10, pg. 96], plus we add

four more axioms (B7 and B15, B8 and B16) to define bounded subtraction,
as well as division and remainder functions. The 2-BASIC axioms: B1, B2,
define that there are no negative numbers and that the successor function
is a bijection. The axioms B3, B4, and B5, B6 provide recursive definitions
of addition and multiplication respectively. Axioms B9, B10 provide basic
properties of ≤ and axiom B12 expresses that the elements of the index sort
are totally ordered. Finally, the axiom B11 defines that 0 is the minimum
number, B13 defines discreteness, and B14 defines the predecessor function.

11

Keep in mind that a formula α is equivalent to a sequent → α, and so,
for readability we sometimes mix the two.

Index Axioms
B1. i+ 1 6= 0 B9. i ≤ j, j ≤ i→ i = j
B2. i+ 1 = j + 1→ i = j B10. i ≤ i+ j
B3. i+ 0 = i B11. 0 ≤ i
B4. i+ (j + 1) = (i+ j) + 1 B12. i ≤ j ∨ j ≤ i
B5. i · 0 = 0 B13. i ≤ j ↔ i < j + 1
B6. i · (j + 1) = (i · j) + i B14. i 6= 0→ ∃j ≤ i(j + 1 = i)
B7. i ≤ j, i+ k = j → j − i = k B15. i 6≤ j → j − i = 0
B8. j 6= 0→ rem(i, j) < j B16. j 6= 0→ i = j · div(i, j) + rem(i, j)

The alphabet axioms express that the alphabet is totally ordered accord-
ing to “<” and define the function cond.

Alphabet Axioms
B17. a � σa
B18. a < b, b < c→ a < c
B19. α→ cond(α, a, b) = a
B20. ¬α→ cond(α, a, b) = b

Note that α in cond is a formula with the following restrictions: it only
allows bounded index quantifiers and hence evaluates to true or false, in the
standard model, once all free variables have been assigned values. Hence
cond always yields the symbol term S1 or the symbol term S2, according to
the truth value of α.

Note that the alphabet symbol type is defined by four axioms, B17–B20,
two of which define the cond function. These four axioms define symbols to be
ordered “place holders” and nothing more. This is consistent with alphabet
symbols in classical Stringology, where there are no operations defined on
them (for example, we do not add or multiply alphabet symbols).

Finally, these are the axioms governing strings:

String Axioms
B21. |λi〈I, S〉| = I
B22. j < I → e(λi〈I, S〉, j) = S(j/i)
B23. |u| ≤ j → e(u, j) = 0
B24. |u| = |v|,∀i < |u|e(u, i) = e(v, i)→ u = v

12

Note that axioms B22–24 define the structure of a string. In our theory,
a string can be given as a variable, or it can be constructed. Axiom B21
defines the length of the constructed strings, and axiom B22 shows that if j
is less than the length of the string, then the symbol in position j is given
by substituting j for all the free occurrences of i in S; this is the meaning of
S(j/i). On the other hand, B23 says that if j is greater than or equal to the
length of a string, then e(u, j) defaults to 0. The last axioms, B24, says that
if two strings u and v have the same length, and the corresponding symbols
are equal, then the two strings are in fact equal.

In axiom B24 there are three types of equalities, from left to right: index,
symbol, and string, and so B24 is the axiom that ties all three sorts together.
Note that formally strings are infinite ordered sequences of alphabet symbols.
But we conclude that they are equal based on comparing finitely many entries

∀i < |u|e(u, i) = e(v, i).

This works because by B23 we know that for i ≥ |u|, e(u, i) = e(v, i) = 0
(since |u| = |v| by the assumption in the antecedent). A standard string of
length n is an object of the form:

σi0 , σi1 , . . . , σin−1 ,0,0,0, . . . ,

i.e., an infinite string indexed by the natural numbers, where there is a po-
sition so that all the elements greater than that position are 0.

A rich source of insight is to consider non-standard models of a given
theory. We have described S, the standard theory of strings, which is in-
tended to capture the mental constructs that Stringologists have in mind
when working on problems in this field. It would be very interesting to con-
sider non-standard strings that satisfy all the axioms, and yet are not the
“usual” object.

2.6. The rules of S

We use the Gentzen’s predicate calculus, LK, as presented in [Bus98].

2.6.1. Weak structural rules

exchange-left:
Γ1, α, β,Γ2 → ∆

Γ1, β, α,Γ2 → ∆
exchange-right:

Γ→ ∆1, α, β,∆2

Γ→ ∆1, β, α,∆2

contraction-left:
α, α,Γ→ ∆

α,Γ→ ∆
contraction-right:

Γ→ ∆, α, α

Γ→ ∆, α

13

weakening-left:
Γ→ ∆

α,Γ→ ∆
weakening-right:

Γ→ ∆

Γ→ ∆, α

2.6.2. Cut rule
Γ→ ∆, α α,Γ→ ∆

Γ→ ∆

2.6.3. Rules for introducing connectives

¬-left:
Γ→ ∆, α

¬α,Γ→ ∆
¬-right:

α,Γ→ ∆

Γ→ ∆,¬α

∧-left:
α, β,Γ→ ∆

α ∧ β,Γ→ ∆
∧-right:

Γ→ ∆, α Γ→ ∆, β

Γ→ ∆, α ∧ β

∨-left:
α,Γ→ ∆ β,Γ→ ∆

α ∨ β,Γ→ ∆
∨-right:

Γ→ ∆, α, β

Γ→ ∆, α ∨ β

2.6.4. Rules for introducing quantifiers

∀-left:
α(t),Γ→ ∆

∀xα(x),Γ→ ∆
∀-right:

Γ→ ∆, α(b)

Γ→ ∆,∀xα(x)

∃-left:
α(b),Γ→ ∆

∃xα(x),Γ→ ∆
∃-right:

Γ→ ∆, α(t)

Γ→ ∆,∃xα(x)

Note that b must be free in Γ,∆.

2.6.5. Induction rule

Ind:
Γ, α(i)→ α(i+ 1),∆

Γ, α(0)→ α(I),∆

where i does not occur free in Γ,∆, and I is any term of type index. By
restricting the quantifier structure of α, we control the strength of this in-
duction. We call ΣB

i -Ind to be the induction rule where α is restricted to be
in ΣB

i . We are mainly interested in ΣB
i -Ind where i = 0 or i = 1, as other-

wise, it might not be possible to compute the actual value of the existential
quantifier feasibly.

Definition 11. Let Si be the set of formulas (sequents) derivable from the
axioms B1-24 using the rules of LK, where the α formula in cond is restricted
to be in ΣB

0 and where we use ΣB
i -Ind.

14

Theorem 12 (Cut-Elimination). If Φ is a Si proof of a formula α, then Φ
can always be converted into a Φ′ Si proof where the cut rule is applied only
to formulas in ΣB

i .

We do not prove Theorem 12, but the reader is pointed to [Sol99] to see
the type of reasoning that is required. The point of the Cut-Elimination
Theorem is that in any Si proof we can always limit all the intermediate
formulas to be in ΣB

i , i.e., we do not need to construct intermediate formulas
whose quantifier complexity is more than that of the conclusion.

As an example of the use of Si we outline an S0 proof of the equality of (2)
and (3). Note that the truth of the statement is obvious, and the proof is
tedious, but we use it to illustrate the application of the axioms and rules of
our theory.

First note that by axiom B21 we have that:

|λi〈8̂, cond(∃j ≤ i(j + j = i),0, σ0)〉| = 8̂

|λi〈2̂ · 4̂, cond(∃j ≤ i(j + j = i+ 1), σ0,0)〉| = 2̂ · 4̂.

Using Axioms B3, B5 and B6 we can show that 2̂ · 4̂ equals the sum of
eight 1s, and since that is 8̂ by definition, we have 8̂ = 2̂ · 4̂. And so,

|λi〈8̂, cond(∃j ≤ i(j+j = i),0, σ0)〉| = |λi〈2̂·4̂, cond(∃j ≤ i(j+j = i+1), σ0,0)〉|.

Now we have to show that:

∀i < 8̂(cond(∃j ≤ i(j + j = i),0, σ0) = cond(∃j ≤ i(j + j = i+ 1), σ0,0))
(5)

and then, using axiom B24 and some cuts on ΣB
0 formulas we can prove that

in fact the two terms given by (2) and (3) are equal.
In order to prove (5) we show that:

i < 8̂ ∧ (cond(∃j ≤ i(j + j = i),0, σ0) = cond(∃j ≤ i(j + j = i+ 1), σ0,0))
(6)

and then we can introduce the quantifier with ∀-intro right. We prove (6) by
proving:

i < 8̂→ cond(∃j ≤ i(j + j = i),0, σ0) = cond(∃j ≤ i(j + j = i+ 1), σ0,0)
(7)

Now to prove (7) we have to show that:

S0 ` ∃j ≤ i(j + j = i)↔ ¬∃j ≤ i(j + j = i+ 1)

15

Then, using B19 and B20 we can show (7).
In the next section we are going to show the interplay between proofs and

computations. In particular, we are going to show how to extract efficient
algorithms from S-proofs.

3. Witnessing theorem for S

Recall that we defined S1 to be a fragment of our theory where the in-
duction is restricted to ΣB

1 formulas. For convenience, we sometimes use the
notation #»v , to denote several string variables, i.e., #»v = v1,v2, . . . ,v`.

If we prove a formula ∃u ≤ Iα(u,v), then the function f which on input
v outputs u, that is f(v) = u, is called the witnessing function. Armed
with this informal definition, we now prove the main theorem of the paper,
showing that if we manage to prove in S1 the existence of a string #»u with
some given properties, then in fact we can construct such a string with a
polytime algorithm.

Theorem 13 (Witnessing). If S1 ` ∃ #»u ≤ Iα(u, #»v), then it is possible to
compute #»u in polynomial time in the total length of all the string variables
in #»v and the value of all the free index variables in α.

Proof. In order to simplify the proof we show it for S1 ` ∃u ≤ Iα(u, #»v),
i.e., u is a single string variable rather than a set, i.e., rather than a block of
bounded existential string quantifiers. The general proof is very similar.

We argue by induction on the number of lines in the proof of ∃u ≤
Iα(u, #»v) that u can be witnessed by a polytime algorithm. Each line in the
proof is either an axiom (see Section 2.5), or follows from previous lines by
the application of a rule (see Section 2.6). By Theorem 12 we know that all
the formulas in the S1 proof of ∃u ≤ Iα(u, #»v) can be restricted to be ΣB

1 .
It is this fundamental application of Cut-Elimination that allows us to prove
our Witnessing theorem.

The Basis Case is simple as the axioms have no string quantifiers. In the
induction step the two cases are ∃-right and the induction rule. In the former
case we have:

∃-right:
|T | ≤ I,Γ→ ∆, α(T, #»v , #»ı)

Γ→ ∆, ∃u ≤ Iα(u, #»v , #»ı)

which is the ∃-right rule adapted to the case of bounded string quantification,
where T is a string term and I is an index term. We use #»v to denote all the

16

free string variables, and #»ı to denote explicitly all the free index variables.
Then u is witnessed by the function f(#»v , #»ı) and when f is evaluated at

#»

A

and
#»

b we get u, that is:

f(
#»

A,
#»

b) := T S[τ(
#»

A/ #»v)(
#»

b / #»ı)].

#»

A and
#»

b are terms replacing variables. By Lemma 10 we know that we
can evaluate any LS-term in S in polytime in the length of the free string
variables and the values of the index variables. Therefore, f is polytime as
evaluating T under S and any object assignment can be done in polytime.

For the induction case we restate the rule as follows in order to make all
the free variables more explicit:

u ≤ I, α(u, #»v , i, #»)→ ∃u ≤ Iα(u, #»v , i+ 1, #»)

u ≤ I, α(u, #»v , 0, #»)→ ∃u ≤ Iα(u, #»v , I ′, #»)

where #» denotes all the free variables and I ′ is an index term. We ignore
Γ,∆ for clarity, and we ignore existential quantifiers on the left side, as it
is quantifiers on the right side that we are interested in witnessing. The
algorithm is clear: suppose we have a u such that α(u, #»v , 0, #»v) is satisfied.
Use top of rule to compute u’s for i = 1, 2, . . . , IS[τ].

4. Application of S to Stringology

In this section we state standard properties of strings, and we outline
proofs of those properties in bounded fragments of S.

4.1. Prefix, Suffix and Substring

The prefix, suffix, and substring are basic constructs of a given string v.
The LS-term for a prefix of length i is given by λk〈i, e(v, k)〉, and the LS-
term for a suffix of length i is given by λk〈i, e(v, |v| − i+ k)〉, and since any
substring of length i is a prefix (of the same length) of some suffix of length
j, the LS-term for a substring is given by λl〈i, e(λk〈j, e(v, |v| − j + k)〉, l)〉.

We can state that u is a prefix of v with the following ΣB
0 predicate:

pre(u,v) := ∃i ≤ |v|(u = λk〈i, e(v, k)〉),

The predicate for suffix suf(u,v) is defined similarly and is given by:

suf(u,v) := ∃i ≤ |v|(u = λk〈i, e(v, |v| − i+ k)〉),

17

Finally, the predicate for substring sub(u,v) is given by:

sub(u,v) := ∃i, j ≤ |v|(u = λl〈i, e(λk〈j, e(v, |v| − j + k)〉, l)〉).

Note that we could also do sub′(u,v) := ∃i ≤ |v|(u = λj〈|u|, e(v, i + j)〉),
where of course sub(u,v) ⇐⇒ sub′(u,v). It would be an instructive
exercise for the reader to prove that S0 ` ∀u∀v[sub(u,v)↔ sub′(u,v)].

4.2. Counting symbols

Suppose that we want to count the number of occurrences of a particular
symbol σi in a given string u; this can be defined with the notation (u)σi , but
we need to define this function with a new axiom (it seems that the language
given thus far is not suitable for defining (u)σi with a term). First, define
the projection of a string u according to σi as follows:

u|σi := λk〈|u|, cond(e(u, k) = σi, σ1, σ0)〉.

That is, u|σi is effectively a binary string with 1s where u had σi, and 0s
everywhere else, and of the same length as u. Thus, counting σi’s in u is
the same as counting 1’s in u|σi . Given a binary string v, we define (v)σ1 as
follows:

C1. |v| = 0→ (v)σ1 = 0

C2. |v| ≥ 1, e(v, 0) = σ0 → (v)σ1 = (λi〈|v| − 1, e(v, i+ 1)〉)σ1
C3. |v| ≥ 1, e(v, 0) = σ1 → (v)σ1 = 1 + (λi〈|v| − 1, e(v, i+ 1)〉)σ1

Having defined (u)σ1 with axioms C1-3, and u|σi as a term in LS, we can
now define (u)σi as follows: (u|σi)σ1 . Note that C1-3 are ΣB

0 sequents. It
would be an instructive exercise for the reader to prove that S′0, which is S

together with C1-3 and the new function symbol (·)σ, is in fact conservative
over S0. That is, if S′1 ` α where α does not contain (·)σ, then S0 ` α as well.

4.3. Borders and border arrays

Suppose that we want to define a border array. We first define the border
predicate which asserts that the string v has a border of size i; note that by
definition a border is a (proper) prefix equal to a (proper) suffix. So let:

Brd(v, i) := λk〈i, e(v, k)〉 = λk〈i, e(v, |v| − i+ k)〉 ∧ i < |v|,

18

We now want to state that i is the largest possible border size:

MaxBrd(v, i) := Brd(v, i) ∧ (j > i ⊃ ¬Brd(v, j)).

Thus, if we want to define the function BA(v, i), which is the border array
for v indexed by i, we can define it by adding the following as an axiom:

MaxBrd(λk〈i, e(v, k)〉,BA(v, i)).

We also have the conservativity property as stated previously, which can be
checked by the reader. This is important as it allows us to extend our theory
S0 with convenient function definitions without increasing the power of the
theory — and thus preserving the Witnessing theorem for the underlying
complexity class.

4.4. Periodicity

See [Smy03, pg. 10] for the definition of a period of a string, but for our
purpose let us define p = |u| to be a period of v if v = uru′ where u′ is some
prefix, possibly empty, of u. The Periodicity Lemma states the following:
Suppose that p and q are two periods of v, |v| = n, and d = gcd(p, q). Then,
if p+ q ≤ n+ d, then d is also a period of v.

Let Prd(v, p) be true if p is a period of the string v. Note that u is a
border of a string v if and only if p = |v| − |u| is a period of v. Using this
observation we can define the predicate for a period as a ΣB

0 formula:

Prd(v, p) := ∃i < |v|(p = |v| − i ∧ Brd(v, i)).

We can state with a ΣB
0 formula that d = gcd(i, j): rem(d, i) = rem(d, j) = 0,

and rem(d′, i) = rem(d′, j) = 0 ⊃ d′ ≤ d. We can now state the Periodicity
Lemma as the sequent PL(v, p, q) where all formulas are ΣB

0 :

Prd(v, p),Prd(v, q),∃d ≤ p(d = gcd(p, q) ∧ p+ q ≤ |v|+ d)→ Prd(v, d).

lemma 14. S0 ` PL(v, p, q).

The proof of Lemma 14 relies on a formalization of the observation stated
above linking periods and borders. The details are left to the reader.

19

4.5. Regular and context-free strings

We are now going to show that regular languages can be defined with a ΣB
1

formula. This means that given any regular language, described by a regular
expression R, there exists a ΣB

1 formula ΨR such that ΨR(u) ⇐⇒ u ∈ L(R).

lemma 15. Regular languages can be defined with a ΣB
1 formula.

Proof. We have already defined concatenation of two strings in (4), but we
still need to define the operation of union and Kleene’s star. All together
this can be stated as:

Ψ·(u,v,w) := w = u · v
Ψ∪(u,v,w) := (w = u ∨w = v)

Ψ∗(u,w) := ∃i ≤ |w|(w = λi〈i · |u|, e(u, rem(i, |u|))〉)

Now we show that R can be represented with a ΣB
1 formula by structural

induction on the definition of R. The basis case is simple as the possibilities
for R are as follows: a, ε, σ, and they can be represented with w = a, |w| =
0, 0 = 1, respectively.

For the induction step, consider R defined from R1 · R2, R1 ∪ R2 and
(R1)

∗:

R = R1 ·R2 ∃u1 ≤ |w|∃u2 ≤ |w|(ΨR1(u1) ∧ΨR2(u2) ∧Ψ·(u1,u2,w))

R = R1 ∪R2 ∃u1 ≤ |w|∃u2 ≤ |w|(ΨR1(u1) ∨ΨR2(u2) ∧Ψ∪(u1,u2,w))

R = (R1)
∗ ∃u1 ≤ |w|Ψ∗(u1,w)

Thus, we obtain a ΣB
1 formula ΨR(w) which is true iff w ∈ L(R).

Note that in the proof of Lemma 15, when we put ΨR(w) in prenex form
all the string quantifiers are bounded by |w|, and they can be viewed as
“witnessing” intermediate strings in the construction of w.

lemma 16. Context-free languages can be defined with a ΣB
1 formula.

We leave the proof of Lemma 16 as an exercise to the reader.

20

5. Conclusion and future work

We have just touched the surface of the beautiful interplay between
Stringology and Proof Complexity. Lemma 10 can likely be strengthened
to say that evaluating LS-terms can be done in AC0 rather than polytime.
As was mentioned in the paper, the richness of the field of Stringology arises
from the fact that a string u is a map I −→ Σ, where I can be arbitrarily
large, while Σ is small. This produces repetitions and patterns that are the
object of study for Stringology. On the other hand, Proof Complexity has
studied in depth the varied versions of the Pigeonhole Principle that is re-
sponsible for these repetitions. Thus the two may enrich each other. Finally,
Regular languages can be decided in NC1; how can this be reflected in the
proof of Lemma 15?

A nice application of the Witnessing Theorem can be found in the Lyndon
decomposition of a string (see [Smy03, pg. 29]). Recall that our alphabet is
ordered — this was precisely so these types of arguments could be carried
out naturally in our theory. Since σ0 < σ1 < σ2 . . ., we can easily define a
lexicographic ordering of strings; define a predicate u <lex v. We can define
a Lyndon word with a ΣB

0 formula as follows: ∀i < |v|(v <lex λk〈i, e(v, |v| −
i+ k)〉).

Let v be a string; then v = v1 · v2 · . . . · vk is a Lyndon decomposition if
each vi is a Lyndon word, and vk <lex vk−1 <lex · · · <lex v1. The existence
of a Lyndon decomposition can be proven as in [Smy03, Theorem 1.4.9], and
we assert that the proof itself can be formalized in S1. We can therefore
conclude that the actual decomposition can be computed in polytime. As
one can see, this approach provides a deep insight into the nature of strings.

References

[BS13] Samuel R. Buss and Michael Soltys. Unshuffling a square is NP-
hard. Journal of Computer and System Sciences, 80(4):766–776,
2013.

[Bus98] Samuel R. Buss. An introduction to proof theory. In Samuel R.
Buss, editor, Handbook of Proof Theory, pages 1–78. North Hol-
land, 1998.

[CN10] Stephen A. Cook and Phuong Nguyen. Logical Foundations of
Proof Complexity. Cambridge Univeristy Press, 2010.

21

[HRSS17] Joel Helling, P. J. Ryan, W. F. Smyth, and Michael Soltys. Con-
structing an indeterminate string from its associated graph. Ac-
cepted for publication in the Journal of Theoretical Computer Sci-
ence, 2017.

[SC04] Michael Soltys and Stephen Cook. The proof complexity of linear
algebra. Annals of Pure and Applied Logic, 130(1–3):207–275,
December 2004.

[Smy03] Bill Smyth. Computing Patterns in Strings. Pearson Education,
2003.

[Sol99] Michael Soltys. A model-theoretic proof of the completeness of LK
proofs. Technical Report CAS-06-05-MS, McMaster University,
1999.

22

