
Algorithms on Strings

Michael Soltys

CSU Channel Islands
Computer Science

April 9, 2018

Strings - Soltys Math/CS Seminar Title - 1/36

Basics

An alphabet is a finite, non-empty set of distinct symbols, denoted
usually by Σ.

e.g., Σ = {0, 1} (binary alphabet)
Σ = {a, b, c , . . . , z} (lower-case letters alphabet)

A string, also called word, is a finite ordered sequence of symbols
chosen from some alphabet.

e.g., 010011101011

|w | denotes the length of the string w .

e.g., |010011101011| = 12

The empty string, ε, |ε| = 0, is in any Σ by default.

Strings - Soltys Math/CS Seminar Introduction - 2/36

In this talk we discuss three papers and related open problems:

• Ryan McIntyre and Michael Soltys
An improved upper bound and algorithm for clique covers
Journal of Discrete Algorithms, 2018
https://doi.org/10.1016/j.jda.2018.03.002

https://authors.elsevier.com/a/1Wo5K5bB7ekzdT

• Michael Soltys and Neerja Mhaskar
A formal framework for stringology
Journal of Discrete Applied Mathematics, 2018
https://doi.org/10.1016/j.dam.2018.03.010

• Sam Buss and Michael Soltys
Unshuffling a square is NP-hard
Journal of Computer and System Sciences, 2014
https://doi.org/10.1016/j.jcss.2013.11.002

Strings - Soltys Math/CS Seminar Introduction - 3/36

https://doi.org/10.1016/j.jda.2018.03.002
https://authors.elsevier.com/a/1Wo5K5bB7ekzdT
https://doi.org/10.1016/j.dam.2018.03.010
https://doi.org/10.1016/j.jcss.2013.11.002

History of clique covers

http://soltys.cs.csuci.edu/blog/?p=1963

https://doi.org/10.1016/j.tcs.2017.02.016

Strings - Soltys Math/CS Seminar Clique covers - 4/36

http://soltys.cs.csuci.edu/blog/?p=1963
https://doi.org/10.1016/j.tcs.2017.02.016

Strings - Soltys Math/CS Seminar Clique covers - 5/36

Strings - Soltys Math/CS Seminar Clique covers - 6/36

Strings - Soltys Math/CS Seminar Clique covers - 7/36

Strings - Soltys Math/CS Seminar Clique covers - 8/36

Strings - Soltys Math/CS Seminar Clique covers - 9/36

Definitions

Given an undirected graph G = (V ,E), we say that c ⊆ V is a
clique if every pair of distinct vertices (u, v) ∈ c × c comprises an
edge—that is, (u, v) ∈ E .

A vertex u is covered by c if u ∈ c. Similarly, edge (u, v) is
covered by c if {u, v} ⊆ c ; we will often write (u, v) ∈ c instead.

C = {c1, c2, · · · , ck} is a clique cover of G if size k if each ci is a
clique, and furthermore every edge and vertex in G is covered by at
least one such ci .

Strings - Soltys Math/CS Seminar Clique covers - 10/36

Given two integers n and m such that n > 0 and 0 ≤ m ≤
(n
2

)
, we

let Gn,m denote the set of all simple, undirected graphs on n
vertices and m edges.

Given any graph G , we denote by θ(G) the size of a smallest cover
of G .

Finally, we denote by Θn(m) the largest θ(G) of all graphs
G ∈ Gn,m.

Strings - Soltys Math/CS Seminar Clique covers - 11/36

0 2 4 6 8 10 12 14 16 18 20 22 24 26
edge count

0

2

4

6

8

10

12

14

16
cli

qu
e

co
ve

r s
ize

8

7

Figure: Θ8(m) and Θ7(m)

Strings - Soltys Math/CS Seminar Clique covers - 12/36

Why are we interested in this?

https://ghr.nlm.nih.gov/gene/MT-ATP6

CA{C,A,T}{G,A}TG{A,C}C{T,G,A}AACT

Strings - Soltys Math/CS Seminar Clique covers - 13/36

https://ghr.nlm.nih.gov/gene/MT-ATP6

Erdősz, Lóvasz, Mantel

Paul Erdősz
1913–1996

László Lovász
1948–

“Keyser Sőze”
1907–?

Strings - Soltys Math/CS Seminar Clique covers - 14/36

We know from Helling et al, and from the results of Mantel and
Erdős, that the global maximum of Θn(m) is reached at
m = bn2/4c.

The reason is that this is the largest number of edges which can fit
on n vertices without forcing triangles.

This maximum is realized in complete bipartite graphs—such
graphs have no triangles or singletons, so covers consist of all
edges.

The expression ‘bn2/4c’ will be used frequently, so we abbreviate
it: for any expression exp, we let exp = bexp2/4c.

Strings - Soltys Math/CS Seminar Clique covers - 15/36

Next figure displays the largest complete bipartite graphs on five
and six vertices respectively: K3,2 and K3,3.

Note that θ(K3,2) = 6 = 5 and θ(K3,3) = 9 = 6.

For any natural n, θ(Kdn/2e,bn/2c) = n.

• • •

•

• • •

•

• • •

K3,2 K3,3

Strings - Soltys Math/CS Seminar Clique covers - 16/36

Results we build on

Theorem (Mantel, Erdős; Thm 2 in paper)

If a graph on n vertices contains no triangle, then it contains at
most n edges.

Theorem (Lovász; Thm 3 in paper)

Given G ∈ Gn,m, let k be the number of missing edges (i.e.
k =

(n
2

)
−m), and let t be the largest natural number such that

t2 − t ≤ k . Then θ(G) ≤ k + t. Moreover, this bound is exact if
k = t2 or k = t2 − t.

Strings - Soltys Math/CS Seminar Clique covers - 17/36

For m ≤ n, we rely primarily on the theorems above, provided by
Mantel and Erdős; we use them to prove our first contribution,
namely that Θn(m) has some recursive properties.

These properties provide an exact upper bound when m ≤ n.

Lovász provides an inexact upper bound when m ≥ n.

Strings - Soltys Math/CS Seminar Clique covers - 18/36

We have two improvements to Lovász’s bound stated as Theorems
below; these improvements comprise our most notable theoretical
results in this paper.

We also give a conjecture; if proven true, this conjecture finishes
the complete exact upper bound of for m ≥ n.

Theorem (Thm 12 in paper)

If m > n then Θn(m) ≤ n − 1.

Theorem (Thm 17 in paper)

If m >
(n
2

)
− n − 2 then Θn(m) ≤ n − 2.

Conjecture (Conjecture 14 in paper)

If k < p, then Θn(
(n
2

)
− k) ≤ p.

Strings - Soltys Math/CS Seminar Clique covers - 19/36

Θn(m) for m ≤ n

0 0 1 1 2 2 3
edges

cli
qu

e c
ov

er
 si

ze
n = 2
n = 3
n = 4

n = 5
n = 6

n = 7
n = 8

Strings - Soltys Math/CS Seminar Clique covers - 20/36

Visual justification for the first seven points of Θn(m) for n ≥ 5.

n + 1 •6

n •0 •4 •5

n − 1 •1 •2 •3

• • • • • • •

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •
0 1 2 3 4 5 6

Strings - Soltys Math/CS Seminar Clique covers - 21/36

Θn(m) for m > n

01246912
missing edges (right to left)

0
1
2

4

6

9

12

16
cli

qu
e

co
ve

r s
ize

exact bound
Lovasz

Lovász’s bound vs the right side of Θ8

Strings - Soltys Math/CS Seminar Clique covers - 22/36

With Lovász’s Theorem and a lemma, we can form an upper
bound for Θn:

Θ
(2)
n (m)

= Θn−1(m) + 1 for m ≤ n − 1 (1a)

= m for n − 1 < m ≤ n(1b)

≤ k + max{t|t2 − t ≤ k} for n < m ≤
(n
2

)
(1c)

With our Theorems, we can improve the previous bound:

Θ
(3)
n (m)

= Θn−1(m) + 1 for m ≤ n − 1 (2a)

= m for n − 1 < m ≤ n (2b)

= n − 1 for n − 1 > k ≥ n − 2(2c)

= n − 2 for n − 2 > k ≥ n − 3(2d)

≤ k + max{t|t2 − t ≤ k} for n − 3 > k ≥ 0 (2e)

Strings - Soltys Math/CS Seminar Clique covers - 23/36

Open Problem

If conjecture is proven true, the bound can be simplified and made
exact for all m:

Θ
(4)
n (m) =

Θn−1(m) + 1 for m ≤ n − 1 (3a)

m for n − 1 < m ≤ n (3b)

min{t|t > k} for m > n (3c)

Note that these three formulations form a refinement of the upper

bound; Θ
(4)
n (m) ≤ Θ

(3)
n (m) ≤ Θ

(2)
n (m) for all m. Conjecture is

sufficient to show that Θn = Θ
(4)
n .

Strings - Soltys Math/CS Seminar Clique covers - 24/36

Ryan McIntyre will give a detailed talk about this result tomorrow:

7:30pm
April 10, 2018
Bell Tower 1462

This is the usual COMP/MATH 554 (Graduate Algorithms), but I
am away attending an ABET accreditation workshop.

Strings - Soltys Math/CS Seminar Clique covers - 25/36

Proof Complexity

http://repository.cmu.edu/cgi/viewcontent.cgi?

article=1923&context=compsci

“On the Unusual Effectiveness of Logic in Computer Science”

Strings - Soltys Math/CS Seminar Proof Complexity - 26/36

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1923&context=compsci
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1923&context=compsci

• A new formal framework for Stringology is proposed, which
consists of a three-sorted logical theory S designed to capture
the combinatorial reasoning about finite words.

• A witnessing theorem is proven which demonstrates how to
extract algorithms for constructing strings from their proofs of
existence.

• Various other applications of the theory are shown.

• The long term goal of this line of research is to introduce the
tools of Proof Complexity to the analysis of strings.

Strings - Soltys Math/CS Seminar Proof Complexity - 27/36

Language

Formal Informal Intended Meaning
Index

0index 0 the integer zero
1index 1 the integer one
+index + integer addition
−index − bounded integer subtraction
·index · integer multiplication (we also just use juxtaposition)
divindex div integer division
remindex rem remainder of integer division
<index < less-than for integers
=index = equality for integers

Alphabet symbol
0symbol 0 default symbol in every alphabet
σsymbol σ unary function for generating more symbols
<symbol < ordering of alphabet symbols
condsymbol cond a conditional function
=symbol = equality for alphabet symbols

String
||string || unary function for string length
estring e binary fn. for extracting the i-th symbol from a string
=string = string equality

Strings - Soltys Math/CS Seminar Proof Complexity - 28/36

λ string constructors

The string 000 can be represented by:

λi〈1 + 1 + 1, 0〉.

Given an integer n, let n̂ abbreviate the term 1 + 1 + · · ·+ 1
consisting of n many 1s. Using this convenient notation, a string
of length 8 of alternating 1s and 0s can be represented by:

λi〈8̂, cond(∃j ≤ i(j + j = i), 0, σ0)〉.

Let U be a binary string, and suppose that we want to define Ū,
which is U with every 0 (denoted 0) flipped to 1 (denote σ0), and
every 1 flipped to 0. We can define Ū as follows:

Ū := λi〈|U|, cond(e(U, i) = 0, σ0, 0〉.

Strings - Soltys Math/CS Seminar Proof Complexity - 29/36

Index Axioms

Index Axioms
B1. i + 1 6= 0 B9. i ≤ j , j ≤ i → i = j
B2. i + 1 = j + 1→ i = j B10. i ≤ i + j
B3. i + 0 = i B11. 0 ≤ i
B4. i + (j + 1) = (i + j) + 1 B12. i ≤ j ∨ j ≤ i
B5. i · 0 = 0 B13. i ≤ j ↔ i < j + 1
B6. i · (j + 1) = (i · j) + i B14. i 6= 0→ ∃j ≤ i(j + 1 = i)
B7. i ≤ j , i + k = j → j − i = k B15. i 6≤ j → j − i = 0
B8. j 6= 0→ rem(i , j) < j B16. j 6= 0→ i = j · div(i , j) + rem(i , j)

Strings - Soltys Math/CS Seminar Proof Complexity - 30/36

Symbol and String Axioms

Alphabet Axioms
B17. u � σu
B18. u < v , v < w → u < w
B19. α→ cond(α, u, v) = u
B20. ¬α→ cond(α, u, v) = v

String Axioms
B21. |λi〈t, s〉| = t
B22. j < t → e(λi〈t, s〉, j) = s(j/i)
B23. |U| ≤ j → e(U, j) = 0
B24. |U| = |V |,∀i < |U|e(U, i) = e(V , i)→ U = V

Strings - Soltys Math/CS Seminar Proof Complexity - 31/36

Conclusion

• If we can prove ∀X∃Yα(X ,Y), then we can compute the Y in
polynomial time. (Witnessing Theorem.) So we can extract
algorithms from proofs!

• Utilize the sophisticated tools of Proof Complexity for a
combinatorial analysis of strings.

the richness of the field of Stringology arises from the fact
that a string U is a map I −→ Σ, where I can be arbi-
trarily large, while Σ is “small.” This produces repetitions
and patterns that are the object of study for Stringology.
On the other hand, Proof Complexity has studied in depth
the varied versions of the Pigeonhole Principle that is re-
sponsible for these repetitions.

Strings - Soltys Math/CS Seminar Proof Complexity - 32/36

Conclusion Cont’d

• The formalization allows us to see explicitly what is the engine
of reasoning behind combinatorics on words.
The Alphabet and String Axioms are definitional; they state the
definitions of the objects.
However, the Axioms for Indices provide the reasoning power.
They show that combinatorics on words uses number theory on
indices in order to prove its results.

Strings - Soltys Math/CS Seminar Proof Complexity - 33/36

Shuffle

w is the shuffle of u, v : w = u � v

w = 0110110011101000

u = 01101110

v = 10101000

w = 0110110011101000

w is a shuffle of u and v provided:

u = x1x2 · · · xk

v = y1y2 · · · yk

and w obtained by “interleaving” w = x1y1x2y2 · · · xkyk .

Strings - Soltys Math/CS Seminar Shuffle - 34/36

Shuffle

w is the shuffle of u, v : w = u � v

w = 0110110011101000

u = 01101110

v = 10101000

w = 0110110011101000

w is a shuffle of u and v provided:

u = x1x2 · · · xk

v = y1y2 · · · yk

and w obtained by “interleaving” w = x1y1x2y2 · · · xkyk .

Strings - Soltys Math/CS Seminar Shuffle - 34/36

Square Shuffle

w is a square provided it is equal to a shuffle of a u with itself, i.e.,
∃u s.t. w = u � u

The string w = 0110110011101000 is a square:

w = 0110110011101000

and
u = 01101100 = 01101100

Strings - Soltys Math/CS Seminar Shuffle - 35/36

Result and Open Problems

given an alphabet Σ, |Σ| ≥ 7,

Square = {w : ∃u(w = u � u)}

is NP-complete.

Problem 1:

• What about |Σ| = 2 (for |Σ| = 1, Square is just the set of
even length strings). More generally, what is the threshold?

• What about if |Σ| =∞ but each symbol cannot occur more
often than, say, 6 times (if each symbol occurs at most 4 times,
Square can be reduced to 2-Sat – see P. Austrin Stack
Exchange post http://bit.ly/WATco3)

Strings - Soltys Math/CS Seminar Shuffle - 36/36

http://bit.ly/WATco3

	Title
	Introduction
	Clique covers
	Proof Complexity
	Shuffle

