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Abstract

Indeterminate strings have received considerable attention in the
recent past; see for example, the works of Helling et al and Christo-
doulakis et al. This attention is due to their applicability in bioin-
formatics, and to the natural correspondence with undirected graphs.
One aspect of this correspondence is the fact that the minimum al-
phabet size of indeterminates representing any given undirected graph
equals the size of the minimal clique cover of this graph. This paper
first considers a related problem proposed by Helling el al: charac-
terize the size of the largest possible minimal clique cover (i.e., an
exact upper bound), and hence alphabet size of the corresponding in-
determinate, of any graph based on the vertex and edge counts. We
provide improvements to the known upper bound, and a conjecture
for the complete exact upper bound. Helling et al also present an algo-
rithm which finds clique covers in polynomial time. We build on this
result with a heuristic for vertex sorting which significantly improves
their algorithm’s results, particularly in dense graphs.
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1 Background

Given an undirected graph G = (V,E), we say that c ⊆ V is a clique if every

pair of distinct vertices (u, v) ∈ c× c comprises an edge—that is, (u, v) ∈ E.

A clique is maximal if it is not a proper subset of any other clique. A vertex u

is covered by c if u ∈ c. Similarly, edge (u, v) is covered by c if {u, v} ⊆ c; we

will often write (u, v) ∈ c instead, a convenient abuse of notation. Similarly,

instead of saying “the edges incident on v”, we will say “v’s edges”.

C = {c1, c2, · · · , ck} is a clique cover of G of size k if each ci is a clique,

and furthermore every edge and vertex in G is covered by at least one such

ci. Note that there are several variants of this definition. In some contexts, it

is only necessary to cover the edges; in others, only the vertices. We consider

the case in which both edges and vertices must be covered, and we will

call these three variations the edge cover, vertex cover, and complete cover

respectively. Whenever we say “clique cover” or “cover” without specifying

the type, it should be assumed that we are talking about a complete cover.

The neighborhood of a vertex v, denoted Nv, is the set of all vertices

adjacent to v; that is, u ∈ Nv if (u, v) ∈ E. Every u ∈ Nv is a neighbor of v.

The degree of v, denoted dv, is the cardinality of Nv; dv = |Nv|. We denote

by Rv the set of vertices which are neither v nor in Nv. We say that v is

isolated, or that v is a singleton, if dv = 0.

The clique cover problem is the problem of algorithmically finding a min-

imal clique cover, and is NP-hard. The decision version, finding a clique
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cover whose cardinality is below a given value (or determining that no such

cover exists) is NP-complete.

Remark 1 If a graph has no singletons, then any edge clique cover is also

a complete clique cover. Otherwise, any complete cover consists of an edge

cover with the addition of a clique for each singleton.

Given two integers n and m such that n > 0 and 0 ≤ m ≤
(
n
2

)
, we let

Gn,m denote the set of all simple, undirected graphs on n vertices and m

edges. Given any graph G, we denote by θ(G) the size of a smallest cover of

G ([7]). Finally, we denote by Θn(m) the largest θ(G) of all graphs G ∈ Gn,m.

For example, figure 1 shows Θ8(m) and Θ7(m) plotted together. The plot

suggests that Θn(m) is a very uniform function (parametrized by n).

We denote by iG the number of singletons in G, and by cG the number

of non-isolated vertices. Clearly, if G ∈ Gn,m then iG + cG = n. We let

IG denote the subgraph of G consisting of the all singletons, and CG the

subgraph consisting of all non-singletons and edges—that is, |IG| = iG and

|CG| = cG. Finally, we let SG (with cardinality sG) denote the set of vertices

which are adjacent to all other vertices (we call them stars). That is, v ∈ SG

if Nv = V − {v}.

We define DG to be the degree sum of G, and AG the average degree in

G. That is, DG =
∑

V dv and AG = DG/|G|. These will usually be denoted

simply with D and A if G is implied by the context.

Given a vertex or set of vertices v in graph G, we denote by G − v the

2
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Figure 1: Θ8(m) and Θ7(m)

graph which results from removing v (or every vertex in v), along with all

edges incident to v, from G. If G′ is a subgraph of G and has vertex set V ′,

G−G′ is identical to G− V ′.
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2 Literature Review

In [6, Theorem 1] an upper bound for the number of edges on n vertices

without any triangles is established:

Theorem 2 (Mantel) A graph with n vertices can have bn2/4c vertices

without triangles. Moreover, this is the maximum number of edges in a

triangle-free graph.

Proof. This is proven by induction over n. It is true when n is 3 or 4; we

show that if it is true for n vertices, then it is true for n + 2 vertices. The

induction is displayed in Figure 2.

Let G be a graph with no triangles and with at least one edge. Let (v, w)

be an edge. Let G′ be G without v, w, or their edges. G′ has no triangles, so

by the induction hypothesis it has at most n edges. Each of the n vertices in

G′ is connected to at most one of the two vertices (v, w); if one was connected

to them both, it would complete a triangle. Thus, there are at most n edges

connecting (v, w) to G′. Finally, there is the edge (v, w) itself. So, there are

at most n+ n+ 1 = n+ 2 edges in G.

In [3, Theorem 2], an exact upper bound for minimal cover size based on

the number of vertices is established:

Theorem 3 (Erdős) Given any graph G with n vertices, G can be covered

by bn2/4c cliques. Moreover, such a cover can be constructed with only edges

and triangles; i.e., no cliques with more than 3 vertices are necessary.
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Figure 2: Induction for Mantel’s and Erdős’ Theorems

Theorem 3 can be shown to be true with a proof nearly identical to that

of Theorem 2. The key insight is this: if v and w in the proof above are both

connected to a given vertex, then all of the edges from (v, w) to this vertex

can be covered by a single triangle. These two theorems are combined in

Theorem 5 in Section 4.

[3] also poses a question: for some fixed positive integer k, given graph

G on n vertices and m = bn2

4
c+ k edges, what is Θn(m) as a function of k?

In [5, Theorem 5], it is shown that Θ cannot be function of k alone, but may

be a function of the number of missing edges (
(
n
2

)
− m); an inexact upper

bound based solely on the number of missing edges is provided. This result

is given below in Theorem 4, which constructs a cover with bounded size;

this cover is displayed in Figure 3.

Theorem 4 (Lovász) Given G ∈ Gn,m, let k be the number of missing edges

(i.e. k =
(
n
2

)
−m), and let t be the largest natural number such that t2−t ≤ k.

Then θ(G) ≤ k + t. Moreover, this bound is exact if k = t2 or k = t2 − t.
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Proof. Let A1 be a maximal complete subgraph of G, and let Ai+1 be a

maximal complete subgraph of G − A1 − · · · − Ai. Ap is the last nonempty

subgraph in this sequence. Let ai denote the number of vertices in Ai. Note

that ai ≥ ai+1 for all i; the largest clique in a subgraph cannot be larger than

the largest clique in its parent. Finally, let q be the index such that aq ≥ 2

and aq+1 < 2.

Given a vertex x, we denote with Si,x the set of vertices in Ai which are

connected to x. Clearly, Si,x ∪ {x} is a clique; we will refer to it as Bi,x.

Let A be {Ai|1 ≤ i ≤ q}, and let B be {Bi,x|x ∈ Aj ∧ 1 ≤ i < j ≤ p}.

Then A ∪ B covers the edges of G; let c = |A ∪ B|.

There are at most a2 subgraphs of the form B1,x covering the edges from

A1 to A2; at most a3 subgraphs B1,x and a3 subgraphs B2,x covering the edges

from A1 and A2 to A3, respectively; and so on. With this, we can bound this

cover’s size:

c ≤ q + a2 + 2a3 + · · ·+ (p− 1)ap (1)

By the definition of Ai, if i < j and x ∈ Aj then there is at least one

vertex in Ai which is not connected to x; otherwise, Ai would not be maximal.

Thus

k ≥ a2 + 2a3 + · · ·+ (p− 1)ap (2)

Together, (1) and (2) grant:
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Figure 3: Lovasz’s cover

c ≤ q + k

Moreover, every integer a2, a3, . . . aq is at least 2, so (2) implies:

k ≥ 2 · (1 + 2 + · · ·+ q − 1) = q(q − 1)

As such, q ≤ t, because t is the largest number that meets the conditions

imposed on q.

This theorem is sharp if k = t2 or k = t2 + 1; with these specified num-

bers of missing edges, it is possible to construct complete bipartite induced

subgraphs of the specified size.

[4, Problem 11] asks for the encompassing characterization of Θn(m) for
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all n and m.

Of course, these works are motivated by application; [7] includes a survey

of problems to which edge and complete clique coverings are applicable or

equivalent. Among these problems are: keyword conflict, traffic phasing, and

multiple problems involving edge clique covers with additional properties.

More recently, as noted in [4], indeterminate strings have received consid-

erable attention due to their applicability in bioinformatics; DNA sequences

can be regarded as indeterminate strings on an alphabet of which each ele-

ment (each word) is a string of elements (letters) from the nucleotide alphabet

{a, c, g, t}. Moreover, indeterminate strings can be represented as graphs, and

one method of reverse engineering an indeterminate from its corresponding

graph is to find a complete clique cover of said graph.

[4, Algorithm 1] serves this purpose, but returns different covers for iso-

morphic graphs depending on the order in which vertices are considered. As

such, it provides motivation (of which there is already plenty) to develop

methods by which vertices can be deterministically ordered without depen-

dence on factors other than graph structure. In this particular case, the goal

is to order vertices heuristically in order to reduce the number of cliques out-

put by the algorithm, and thereby reduce the size of the alphabet on which

the indeterminate is constructed.

Vertex ordering methods have been studied extensively; they are applica-

ble to graph canonization, graph visualization, graph isomorphism, natural

language processing, and ordering of search results, to name just a few. The
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amount of study that has gone into applications of PageRank alone is mas-

sive (see [1], for instance). However, vertex ordering and ranking algorithms

tend to be application-specific, and we have been unable to find any previous

work on ordering methods for edge clique covers.
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3 Summary of Results

In this paper, we explore two topics. First, we aim to characterize Θn(m) in

Section 4. We synthesize theorems from Lovász (Theorem 4), Mantel (Theo-

rem 2) and Erdős (Theorem 3) to establish an upper bound for Θn(m) which

is exact for some values of m but not for others. We establish that Θn(m)

has recursive properties, which we use to characterize it for some values of m

and bound it in others. We improve Lovász’s bound in Theorems 14 and 19.

These improvements are likely extendible to the complete characterization

of Θn(m) (see conjecture 16). A succinct summary of these results can be

found in Section 4.3.

Next, in Section 5, we establish a heuristic to order vertices and edges.

The motivation is an algorithm developed in [4] which outputs a clique cover

in polynomial time with respect to the number of vertices; this algorithm

does not necessarily output a minimal or small cover, but it works quickly.

Moreover, it outputs covers of different sizes when presented with vertices

in a different order. We develop and explore a heuristic reminiscent of the

PageRank algorithm (we call it CliqueRank) and apply it in combination

with some näıve heuristics. The resulting covers are significantly smaller

than those from the original algorithm, particularly in dense graphs.

10



4 Characterizing Θn(m)

In [4, Problem 11] the authors pose the following problem: describe the

function Θn(m) for every n. They provide as an example a (slightly flawed)

graph for Θ7(m), where m ∈ [21] = [
(
7
2

)
] (see [4, Fig. 3]). For n > 7, the

number of graphs quickly becomes unwieldy, so it is desirable to compute

Θn(m) analytically. Our results do not necessarily apply to very small graphs;

we assume throughout that any graph worth discussing has at least 4 vertices,

as we can characterize Θn(m) for n < 4 easily by brute force. In fact, we

have found Θn by brute force for all n ≤ 8.

We know from [4] and from the results of Mantel and Erdős [6, 3] that

the global maximum of Θn(m) is reached at m = bn2/4c. The reason is

that this is the largest number of edges which can fit on n vertices without

forcing triangles. This maximum is realized in complete bipartite graphs—

such graphs have no triangles or singletons, so covers consist of all edges.

The expression ‘bn2/4c’ will be used frequently, so we abbreviate it: for any

expression exp, we let exp = bexp2/4c.

A complete bipartite graph with vertices partitioned into sets of sizes a, b

is denoted with Ka,b. Figure 4 displays the largest complete bipartite graphs

on five and six vertices respectively: K3,2 and K3,3. Note that θ(K3,2) = 6 = 5

and θ(K3,3) = 9 = 6. For any natural n, θ(Kdn/2e,bn/2c) = n.

Theorem 5 (Mantel, Erdős) Any graph on n vertices can be covered by

n cliques. Moreover, if it contains no triangle, then it contains at most n

11
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Figure 4: Complete bipartite graphs

edges.

For m ≤ n, we rely primarily on Theorem 5 which is a combination of

Theorems 2 and 3, provided by Mantel and Erdős [6, 3] respectively. For

m ≥ n, we utilize Lovász bound [5] (Theorem 4); we use them to prove our

first contribution, namely that Θn(m) has some recursive properties. These

properties provide an exact upper bound when m ≤ n; this bound is provided

in Theorem 10 in Section 4.1. Lovász provides an inexact upper bound when

m ≥ n. We propose two improvements to Lovász’s bound in Theorems 14

and 19, for which proofs can be found in Section 4.2; these improvements

comprise our most notable theoretical results in this paper. We also give

conjecture 16; if proven true, this conjecture finishes the complete exact

upper bound of for m ≥ n.

Theorem 14 If m > n then Θn(m) ≤ n− 1.

Theorem 19 If m >
(
n
2

)
− n− 2 then Θn(m) ≤ n− 2.

12



Conjecture 16 If k < p, then Θn(
(
n
2

)
− k) ≤ p.

4.1 Pre-maximum: Θn(m) for m ≤ n

We begin by introducing our results informally. We then prove a sequence

of auxiliary results which will help us characterize Θn(m). The forthcoming

material is rather technical, but the reader will find it easier to follow by

keeping the graph in figure 5 in mind.

0 0 1 1 2 2 3
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Figure 5: Left sides of Θn(m) for n ∈ [2, 8], from bottom to top

We will refer to the portion of Θn(m) where m ≤ n as the left side of

the function. As figure 5 displays, we can obtain the left side of Θn(m) for

n ≥ 3 by translating that of Θn−1(m) upward by one, and then extending it

by a new segment δbn/2c−1. Here, δk represents a series of changes (∆x,∆y),
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consisting first of (+1,+0) followed by k iterations of (+1,+1). For example,

δ3 = {(+1,+0), (+1,+1), (+1,+1), (+1,+1)}, as shown in figure 6.

•

• •

• •

• • • •
δ2 δ3

Figure 6: δ2 and δ3

We can easily determine the first seven points in Θn(m) via brute force.

Clearly, Θn(0) = n; each vertex must be covered individually by a single

clique, as there are no edges. The addition of a single edge allows two vertices

to be covered with this edge, so Θn(1) = n − 1. Figure 7 provides visual

justification for the first seven points of Θn(m) for n ≥ 5.

n+ 1 •6

n •0 •4 •5

n− 1 •1 •2 •3

• • • • • • •

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •
0 1 2 3 4 5 6

Figure 7: Θn(m) for n ≥ 5 and m ≤ 6 with corresponding graphs
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Claim 6 If n ≥ 4, then Θn(0) = Θn(4) = n and Θn(1) = Θn(2) = Θn(3) =

n− 1.

Claim 7 Θn(m+ 1) ≤ Θn(m) + 1

Claim 6 can be verified quickly by checking every possible configuration

of 0-4 edges. Claim 7 is true because any edge added to a graph can simply

be covered by a single additional clique consisting of that edge’s vertices.

Lemma 8 For any graph G, θ(G) ≤ cG + iG, where iG is the number of

singletons and cG the non-isolated vertices.

Proof. Theorem 5 guarantees that CG can be covered by cG cliques. IG can

be covered by iG cliques, each consisting of a singleton vertex. Every edge is

in CG, and every vertex is either in IG or CG, so the union of the covers of

CG and IG covers G and contains at most cG + iG cliques.

Lemma 9 If G ∈ Gn,m for some m ≤ n, then(
G contains triangles =⇒ θ(G) < Θn(m)

)
Proof. Assume that G ∈ Gn,m for some m ≤ n, and furthermore that G

has at least one triangle. Three edges can be covered with this triangle, so

θ(G) ≤ m− 2 + iG.

Case 1: m ≤ cG. We can construct a triangle-free graph C ∈ GcG,m and

singleton graph I ∈ GiG,0. Let G′ = C ∪ I. Then G′ ∈ Gn,m. Moreover,

15



it has no triangles, so every edge must be covered individually, as must the

singletons. Thus, θ(G′) = m+ iG > m+ iG − 2 ≥ θ(G), so θ(G) < Θn(m).

Case 2: m > cG. We must first note that iG 6= 0, as this would imply that

m > n, which directly contradicts the hypothesis.

Lemma 8 guarantees that θ(G) ≤ cG + iG; call this upper bound β0.

Consider a graph G1 ∈ Gn,m such that cG1 = cG + 1 and iG1 = iG − 1. Such

a graph can be constructed easily—G contains a triangle, so simply remove

an edge from this triangle and use it to connect a vertex in IG to one in CG.

Again, Lemma 8 grants θ(G1) ≤ cG1 + iG1 ; call this bound β1. Let’s compare

these two bounds.

If cG is even, then (cG + 1) − cG = cG/2. Since CG contains a triangle

and has an even vertex count, cG ≥ 4. Thus, cG1 − cG ≥ 2. Otherwise, cG is

odd, so (cG + 1) − cG = (cG + 1)/2. Again, there are at least three vertices

in CG, so cG1 − cG ≥ 2.

Whether cG is even or odd, β1 > β0. Of course, this does not prove that

θ(G1) > θ(G). The process can be repeated on G1 to gain G2 with bound

β2 > β1, and so on, until a Gα is reached such that cGα ≥ m. Since m ≤ n,

this will necessarily happen before or when we run out of singletons.

If α = 1, then (cG + 1) ≥ m, so we can construct a triangle-free graph

C ∈ G(cG+1),m and a graph I ∈ G(iG−1),0 consisting of (iG− 1) singletons. Let

G′ = C ∪ I. Clearly, G′ ∈ Gn,m. Moreover, θ(G′) = m + iG1 = m + iG − 1.

Recall that θ(G) ≤ m + iG − 2. So we have found a G′ ∈ Gn,m such that

θ(G′) > θ(G). Therefore, θ(G) < Θn(m).

16



If α > 1, then we can construct a triangle-free graph C ∈ GcGα ,m (Theo-

rem 5 guarantees that such a graph exists) and singleton graph I ∈ GiGα ,0.

Let G′ = C∪I. Then θ(G′) = m+iGα . Moreover, m ≥ cGα−1 +1 or we would

have stopped before Gα; iGα = iGα−1 − 1 by construction, so θ(G′) ≥ βα−1.

Thus, θ(G′) > θ(G), so θ(G) < Θn(m).

Regardless of α’s value, we have shown that θ(G) < Θn(m).

An immediate consequence of Lemma 9 is: if G ∈ Gn,m for some m ≤ n

and θ(G) = Θn(m) then G contains no triangles. With this, we can fully

characterize Θn(m) for m ≤ n in Theorem 10.

Theorem 10 If m ≤ n, let p be the smallest natural number such that p ≥

m. Then Θn(m) = m+ n− p.

Proof. Let m ≤ n, and let G be a graph in Gn,m such that θ(G) = Θn(m).

G has no triangles, so its minimal cover consists of a clique for each edge,

and one for each singleton vertex. That is, θ(G) = m + iG. m is constant,

so θ(G) is entirely dependent on iG. As such, G is any triangle-free graph

on n vertices and m edges which maximizes iG, or equivalently minimizes

cG. Theorem 5 grants that m edges can be placed without triangles on cG

vertices if and only if cG ≥ m, so cG must be the smallest number meeting

this condition; cG = p, where p is the smallest natural number such that

p ≥ m. As such iG = n− cG = n− p, so θ(G) = m+ n− p.
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The following conclusions can quickly be drawn from Theorem 10:

Lemma 11 If p < n, then Θn(p) = Θn(p+ 1).

Proof. Theorem 10 implies that Θn(p) = p + n − p and that Θn(p + 1) =

(p+ 1) + n− (p+ 1) = p+ n− p.

Lemma 12 If m ≤ n, then Θ(n+1)(m) = Θn(m) + 1.

Proof. Since m ≤ n < n+ 1, Theorem 10 proves that Θn(m) = m + n− p

and Θn+1(m) = m+ (n+ 1)−p = Θn(m) + 1, where p is the smallest natural

number such that p ≥ m.

While Lemma 11 is not necessary for the characterization, it does explain

the distribution of short plateaus throughout the left side of Θn.

Lemma 12 shows that Θn(m) behaves recursively on the left side; while

this fact is not needed to prove our results, it displays their structural causes.

Note that Lemma 12 is actually a direct result of Lemma 9, and could be used

to prove Theorem 10—in fact, this was the approach we used in early versions

of the proofs above. As such, Lemma 12 should be considered the recursive

version of Theorem 10. The δs described in figures 5 and 6 are necessary to

complete the recursion; after moving the left side of Θn(m) upward by 1, we

must extend it by δbn/2c to complete the left side of Θn+1(m). The shape of

these extensions can be proven accurate with Lemma 9 or 11 in conjunction

with claim 7.
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4.2 Post-maximum: Θn(m) for m ≥ n

Again, we begin by informally discussing our results before delving into

proofs. We will refer to the part of Θn(m) where m ≥ n as the right side of

the function. The left side was shown to behave recursively with respect to

n. The right side appears to do the same for small n, and we conjecture that

it does for all n.

Lovász’s Theorem (Theorem 4) provides an upper bound for Θn(m) based

on the number of missing edges. Here, we restate it:

Theorem 4 (Lovász) Given G ∈ Gn,m, let k be the number of missing edges

(i.e. k =
(
n
2

)
−m), and let t be the largest natural number such that t2−t ≤ k.

Then θ(G) ≤ k + t. Moreover, this bound is exact if k = t2 or k = t2 − t.

First, note that Theorem 4 relies solely on the number of missing edges.

It is exact at the specified values of k, but only if k ≤ n− 1. If k > n− 1,

then m < n and a better bound can be found using our characterization of

the left side of Θn.

Of course, Lovász’s bound is not exact for all m ≥ n. As shown in figure 8

and stated in Theorem 4, it is only necessarily exact if k = t2 or k = t2 − t.

Between these exact values, Lovász’s bound appears to be a smoother version

of Θ; where the right side of Θ is a jagged series of plateaus, Lovász’s bound

is nearly linear.

Lovász bound is difficult to apply as presented. We rephrase it here.

Clearly, 2t = t2 and 2t± 1 = t2 ± t. Moreover, any natural number can be
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Figure 8: Lovász’s bound vs the right side of Θ8

written as 2t or 2t− 1 for some value of t. As such, we can adopt Theorem 4

to our notation:

Theorem 4 (Lovász rewritten) Given m ≥ n and k =
(
n
2

)
−m:

• If k = t for some natural number t, then Θn(m) = t+ 1.

• Otherwise, if t is the largest natural number such that 2t− 1 ≤ k, then

θ(G) ≤ k + t.

The plateaus on the right side of Θ are identical between different n for

n ≤ 8, and we conjecture this is true for larger n. It appears that if m ≥ n,
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then Θn(m) is a function of the number of missing edges, independent of the

vertex count. This is displayed in figure 9.
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Figure 9: The right sides of Θn for 3 ≤ n ≤ 8

The differences between the left and right sides raise an immediate, fun-

damental question: why is the right side of Θ characterized by large value

changes where the left is smooth (i.e. never changing by more than one

clique per edge)? What are the structural causes behind this difference? It

seems that the answer to this question can be reduced to the behavior of

complete bipartite graphs; if such a graph is missing an edge, then its cover

size is simply one less. If it has an extra edge, however, this edge completes

several triangles, resulting in a larger drop in cover size coupled with the ca-

pability of adding some additional edges without affecting cover size. As an
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example of this phenomenon, we provide figure 10, which shows the graphs

corresponding to maximum cover size on the right side of Θ7.

• • • • •
• • • • •

• • • • •
• • • • •

• • • • •
• • • • •

• • • • •
k = 0 k = 1 k = 2 k = 3 k = 4

θ = 1 θ = 2 θ = 4 θ = 4 θ = 6

• • • • •
• • • • •

• • • • •
• • • • •

• • • • •
• • • • •

• • • • •
k = 5 k = 6 k = 7 k = 8 k = 9

θ = 6 θ = 9 θ = 9 θ = 9 θ = 12

Figure 10: Largest bipartite induced subgraphs by missing edges

We will now begin a series of proofs to show that some of the plateaus in

the right side (specifically, the first two after the global maximum) necessarily

exist for all n. These are improvements to Lovász bound.

Lemma 13 Given a graph G with clique ∆, remove all edges from ∆ to

obtain G′. Then θ(G′) ≥ θ(G)− 1.

Proof. Let C ′ be a minimal cover of G′. Let C = C ′ ∪ {∆}; that is, C is C ′

with a single additional clique, containing only the vertices in ∆. Clearly, C
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covers G, so θ(G) ≤ θ(G′) + 1.

We can now prove Theorems 14 and 19. Recall:

Theorem 14 If m > n then Θn(m) ≤ n− 1.

Proof. This can be shown quickly through enumeration of all arrangements

of edges for three or four vertices. We present a proof by strong induction

for larger graphs. That is, we assume that it is true for all n0 ≤ n, and prove

that it is true for n+ 1.

If m ≥
(
n
2

)
− n− 2, then Theorem 4 provides proof. As such, we assume

that

n < m <

(
n

2

)
− n− 2 (3)

It is necessary to split into cases for even and odd n, and then split

each into subcases based on the minimum degree among the vertices. Some

subcases will then be split into more subcases based on other factors.

Case 1: n is even and at least 4. Consider G ∈ G(n+1),m where n+ 1 <

m <
(
n+1
2

)
− n− 1. The degree sum D of G is exactly twice the number of

edges, so (3) grants that 2n+ 1 < D < 2
(
n+1
2

)
− 2n− 1 = n2+4n

2
. Clearly,

the average degree A is D/(n+ 1). Thus

A <
n2 + 4n

2(n+ 1)
<
n+ 3

2

Let v be a minimum degree vertex. The minimum degree is at most the
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average degree, so dv ≤ bAc ≤ b(n + 3)/2c. Since n is even, this means

dv ≤ n/2 + 1.

Subcase 1.1: dv = n/2 + 1.

Subcase 1.1.1: m = n+ 1 + 1. Then

D = 2n+ 1 + 2 =
(n+ 1)2 + 3

2
, so A =

D

n+ 1
=
n+ 1

2
+

3

2(n+ 1)

and since n ≥ 4 . . .

A <
n

2
+ 1

A < n/2 + 1, so dv ≤ n/2, which contradicts the conditions of this subcase.

This set of conditions cannot occur, so it need not be considered any further.

Subcase 1.1.2: m ≥ n+ 1 + 2. Let w be any vertex in Nv; clearly dw ≥

n/2+1 as well. Other than v and w, there are (n−1) vertices in G. Moreover,

v and w are each connected to at least n/2 of these (n − 1) vertices; they

have at least one neighbor u in common. (u, v, w) is a triangle.

Nv

•w
v•

•u

Figure 11: Theorem 14 Subcase 1.1.2

Remove v and all n/2+1 of its edges fromG to obtainG′. G′ has n vertices

and at least n+ 1 + 2 − (n/2 + 1) > n edges. The hypothesis grants that
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θ(G′) ≤ n− 1. Moreover, v and the two edges (v, u) and (v, w) can be covered

with the triangle (u, v, w). The remaining n/2−1 edges adjacent to v can each

be covered by their own clique. Thus, θ(G) ≤ θ(G′)+n/2 ≤ n− 1+n/2 = n.

That is, θ(G) ≤ n.

Subcase 1.2: dv ≤ n/2. Our job is much easier in this case; v and its edges

can be covered by at most n/2 cliques. The rest of G consists of n vertices

and more than n+ 1 − n/2 = n edges; the hypothesis grants that it can be

covered by at most n− 1 cliques. Thus, θ(G) ≤ n− 1 + n/2 = n.

Case 2: n is odd and at least 3. Consider G ∈ G(n+1),m such that n+ 1 <

m <
(
n+1
2

)
− n− 1.

2n+ 1 < D < 2

(
n+ 1

2

)
− 2n− 1

(n+ 1)2

2
< D <

(n+ 1)(n+ 3)

2
− 2

so, since A = D/(n+ 1)

n+ 1

2
< A <

n+ 3

2
− 2

n+ 1

Let v be a minimum degree vertex. dv ≤ bAc, so dv ≤ n+1
2

.

Subcase 2.1: dv = (n + 1)/2. We first show that there is a vertex w such

that dw = (n + 1)/2 and w is in a triangle. If v is in a triangle, then w is

v. Otherwise, Nv contains (n + 1)/2 vertices and no edges. The vertices in

Nv each have at least (n + 1)/2 neighbors themselves—but there are only
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(n + 1)/2 vertices (including v) which are not in Nv. Thus, every vertex in

Nv has a degree of exactly (n + 1)/2, and these edges connect every vertex

in Nv to every vertex in Rv. Let’s count edges: there are (n + 1)/2 edges

connecting v to Nv, none within Nv, and another (n+1)(n−1)/4 connecting

Nv to Rv. This totals n+ 1 edges; at least one edge is unaccounted for, and

the only remaining space is between vertices which are neither v nor in Nv.

This edge is in triangles with every element of Nv, each of which have degree

(n+ 1)/2; let w be any one of Nv’s vertices.

Nv Rv

•
v• w•

•

Figure 12: Theorem 14 Subcase 2.1

We have a vertex w such that dw = (n + 1)/2 and w is in a triangle. As

such, w and all of its adjacent edges can be covered with (n− 1)/2 cliques—

two of the edges are covered by this triangle. The rest of the graph consists

of n vertices and more than n+ 1− (n+ 1)/2 = n edges. By the hypothesis,

it can be covered by at most n− 1 cliques. As such, G can be covered by at

most n− 1 + (n− 1)/2 = n cliques.

Subcase 2.2: dv ≤ (n− 1)/2. Let v be a vertex with dv ≤ (n− 1)/2. Then

v and all of its incident edges can be covered by at most (n − 1)/2 cliques.

The rest of G consists of n vertices and more than n edges, so the hypothesis
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grants that it can be covered with n− 1 cliques. Thus, θ(G) ≤ n.

Theorem 14 provides the bound shown in the first “plateau” of Θn(m)

after m passes n; it is easy to construct a graph with this exact cover

size; simply create the largest complete bipartite subgraph possible with

the number of missing edges. Thus, this upper bound is exactly Θn(m) for

n < m ≤
(
n
2

)
− n− 2

Remark 15 n =
(
n
2

)
− n− 1, so Theorem 14 identically reads:

If m >
(
n
2

)
− n− 1 then Θn(m) ≤ n− 1.

The largest complete bipartite graph that can be constructed on n vertices

hasm = n edges and k = n− 1 missing edges; in fact, even for larger numbers

of vertices this is the largest such graph with less than n edges missing.

Moreover, for n ≤ 8 we have determined via brute force that, when m > n,

the largest possible complete bipartite subgraph matches the maximum cover

size. We suspect that this is true for larger n:

Conjecture 16 If k < p, then Θn(
(
n
2

)
− k) ≤ p.

We prove in Theorems 14 and 19 that conjecture 16 holds when p is n−1

or n− 2, respectively. Remarks 17 and 18, while not necessary to prove our

results, may be useful in proving conjecture 16.

Remark 17 If G ∈ Gn,m for some m > n and iG > 0, then θ(G) < Θn(m).
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Proof. Assume g contains singleton vertex z. Because m > n, G necessarily

contains a triangle ∆ = (u, v, w). Let G′ be G, without the edges in ∆.

Lemma 13 grants that θ(G′) ≥ θ(G)−1. Let G′′ be G′, with three additional

edges: (u, z), (v, z), and (w, z). z was a singleton prior, and there are no

edges between u, v, and w in G′′, so none of these three new edges is in

a triangle; they must be covered individually, but they also cover z (which

required its own clique in G). Thus, θ(G′′) ≥ θ(G′) + 2 ≥ θ(G) + 1. Clearly

G′′ ∈ Gn,m, so θ(G) < Θn(m).

The proof of Lemma 17 could be easily improved to apply whenever

m > n− 1. To see this, note that if n− 1 < m ≤ n, then a singleton guar-

antees (via Theorem 5) that the remaining (n− 1) vertices contain triangles.

Lemma 9 finishes the proof.

Remark 18 If SG is nonempty for some graph G with at least two vertices,

then let s ∈ SG and let G′ be the result of removing s and all of its edges

from G. Then θ(G′) = θ(G).

Proof. Let C ′ be a cover for G′. Define C with:

C =
⋃
c∈C′
{c ∪ {s}}

|C| = |C ′| and C covers G, so θ(G) ≤ θ(G′).

Similarly, let C be a cover for G; we can assume without loss of generality

that s is in every clique in C, because s can be part of any clique in G due
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to its adjacency with every vertex in G. Construct C ′:

C ′ =
⋃
c∈C

{c− {s}}

C ′ covers G′ and has the same cardinality as C. Thus, θ(G′) ≤ θ(G).

Finally, we extend the bound in conjecture 16 to a second plateau. The

proof of Theorem 19 is lengthy and technical with many subcases.

Theorem 19 If m >
(
n
2

)
− n− 2 then Θn(m) ≤ n− 2.

Proof. We have determined through exhaustive search that this Lemma is

true for all n ≤ 8. We present an inductive proof for n > 8. Note that(
n
2

)
− n− 2 = n+ 1 − 1, so m ≥ n+ 1 provides an identical lower bound

for m; this is version of the bound we’ll use in this proof. Much like in

Theorem 14, we can rely on Lovász’s (Theorem 4) for m ≥
(
n
2

)
− n− 3. As

such, we assume throughout that m <
(
n
2

)
− n− 3.

Much like in the proof of Theorem 14, it is necessary to split into cases

based on the parity of n, then into subcases based on minimum degree, and

finally split some of these subcases further based on other factors.

Case 1: n is even and at least 10. Let G ∈ Gn,m. We assume m ≥ n+ 1, so

the degree sum D of G is at least 2n+ 1. That is, D ≥ (n2 +2n)/2. As such,

the average degree A of G is at least n/2 + 1. Similarly, m <
(
n
2

)
− n− 3, so

D < (n2)/2 + 2n− 4. Thus, A < n/2 + 2.
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Let v be a minimum degree vertex in G; dv ≤ bAc ≤ n/2 + 1.

Subcase 1.1: dv ≤ n/2 − 1. We can cover v and all of its edges with at

most n/2 − 1 cliques. Let G′ be the rest of G; it consists of n − 1 vertices

and at least n+ 1− (n/2−1) > n edges, so by the hypothesis θ(G′) ≤ n− 3.

Therefore, θ(G) ≤ n− 3 + n/2− 1 = n− 2.

Subcase 1.2: dv = n/2. We first prove that there is a vertex w of degree

n/2 which is in a triangle. If v is in a triangle, we’re done. Otherwise, there

are no edges within Nv. There are n/2 vertices in Nv, n/2 − 1 in Rv, and

of course v itself. Notice that, if there are no edges within Nv, then each

vertex in Nv has at most n/2 edges (those leading to v or Rv). Since n/2

is the minimum degree, every vertex in Nv must be connected to v and all

of Rv. So, there are n/2 edges connecting v to Nv, no edges within Nv, and

another n
2
(n
2
− 1) between Nv and Rv. We have counted n edges; there are

at least n/2 edges unaccounted for, and these edges must be within Rv. So,

choose any edge (a, b) in Rv and any vertex w ∈ Nv; (w, a, b) is a triangle

and dw = n/2.

Nv Rv

•a
v• w•

•b

Figure 13: Theorem 19 Subcase 1.2

So there is some vertex w in a triangle, such that dw = n/2. Because w
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is in a triangle, it and its n/2 edges can be covered with at most n/2 − 1

cliques. Let G′ be the rest of G; G′ has n− 1 vertices and at least n edges,

so θ(G′) ≤ n− 3 by the hypothesis. Thus, θ(G) ≤ n− 3 + n/2− 1 = n− 2.

Subcase 1.3: dv = n/2 + 1.

Subcase 1.3.1: m = n+ 1. All n vertices have degree of at least n/2 + 1;

this alone accounts for all n+ 1 edges, so every vertex has this degree exactly.

Since m > n, there is some triangle (u, v, w) in G. u, v and w each have

n/2 + 1 edges, two of which are within this triangle. As such, they each have

n/2 − 1 edges connecting them to the other n − 3 vertices. In other words,

there are a total of 3n/2− 3 edges connecting (u, v, w) to the rest of G. Let

G′ be G without u, v, w or their edges. There are exactly n − 3 vertices in

G′; given a vertex a in G′, all edges (if any exist) from (u, v, w) to a can be

covered by a single clique. As such, the edges from (u, v, w) to G′ can be

covered by n− 3 cliques. Moreover, these cliques necessarily cover the edges

in (u, v, w) because 2(n/2− 1) = n− 2, so each pair in (u, v, w) has at least

one neighbor in G′ in common.

u•

•w

v•

Figure 14: Theorem 19 Subcase 1.3
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G′ consists of n− 3 vertices and n+ 1− 3n/2 = n− 2− 1 edges. n > 4,

so n− 2− 1 > n− 3. Theorem 14 grants that θ(G′) ≤ n− 4. Thus, θ(G) ≤

n− 4 + n− 3 = n− 2.

Subcase 1.3.2: m > n+ 1. So m = n+ 1 + d for some d > 0. v is

in a triangle (u, v, w), just like the previous subcase, but there are up to

d additional edges connecting (u, v, w) to the rest of G; any of the d extra

edges not between (u, v, w) and G′ are within G′. As such, we can use the

exact bound described in the previous case, both for the edges connecting

(u, v, w) to the rest of G, and for the rest of G. Additional edges in G′ do

not invalidate our upper bound for θ(G′), nor can the extra edges between

(u, v, w) increase the number of cliques necessary to cover these edges with

the method described in the previous subcase. Thus, we have the same

bound: θ(G) ≤ n− 2.

Case 2: n is odd and at least 9. Just as in the previous case, the average

degree A of graph G ∈ Gn,m is less than n/2 + 2. Therefore the minimum

degree dv is at most (n+ 3)/2.

Subcase 2.1: dv = (n + 3)/2. In this case, the degree sum is at least

(n2 + 3n)/2, so (n2 + 3n)/4 ≤ m <
(
n
2

)
− n− 3. In other words, m =

(n2 + 3n)/4 + d where 0 ≤ d < (n − 9)/4. By Theorem 5, any graph

G ∈ Gn,m has a triangle (u, v, w). Let G′ be G without (u, v, w). Given

a vertex a in G′, every edge between (u, v, w) and a can be covered in a

single clique, so the edges from this triangle to G′ can be covered by at most

n − 3 cliques. Moreover, the minimum degree (n + 3)/2 guarantees that
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any vertex in (u, v, w) is adjacent to at least (n − 1)/2 vertices outside of

this triangle, so any two vertices in (u, v, w) have a common neighbor not

in (u, v, w). Thus, the edges (u, v), (u,w) and (v, w) are necessarily covered

in triangles with the n − 3 cliques covering the edges from (u, v, w) to G′.

The minimum degree accounts for (n2 + 3n)/4 of the edges, so there are at

most d additional edges (other than those implied by the minimum degree

sum) between (u, v, w) and G′. There are 3 edges in (u, v, w), and at most

3(n−1)/2+d edges from (u, v, w) toG′, so there arem′ ≥ m−3−3(n−1)/2−d

edges in G′. m = (n2 + 3n)/4 + d, so m′ ≥ (n2 − 3n − 6)/4. Moreover,

since n ≥ 9, this implies that m′ ≥ (n2 − 4n + 3)/4; that is, m′ ≥ n− 2.

G′ only has n − 3 vertices, so by the hypothesis θ(G′) ≤ n− 5. As such,

θ(G) ≤ n− 5 +n− 3 < n− 2. In fact, in this case our upper bound for θ(G)

is n− 3 + 1.

Subcase 2.2: dv = (n+1)/2. For every vertex w ∈ Nv, the minimum degree

guarantees that Nv ∩Nw 6= ∅; that is, v and w have at least one neighbor in

common. This common neighbor corresponds to an edge in Nv.

Subcase 2.2.1: All of these edges within Nv share a common vertex, a.

Then every w ∈ Nv − {a} has no neighbors other than a in Nv. So, w is

connected to v and a, along with at least (n − 3)/2 other vertices, none of

which can be in Nv. There are only (n−3)/2 vertices in Rv, so every such w

must be adjacent to them all. That is, Nw = {v, a}∪Rv, and dw = (n+1)/2.

If a is connected to every element of Rv, then a ∈ SG and can be removed

without reducing the cover size (remark 18), leaving a graph on n−1 vertices
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and n+ 1− (n− 1) edges. n+ 1− (n− 1) = n− 1 + 1, so Theorem 14 shows

that θ(G) ≤ n− 2.

As such, it is safe to assume that a is adjacent to at most (n − 5)/2 of

the (n − 3)/2 vertices in Rv. There are at most (n2 − 4n + 3)/4 additional

edges between the other (n − 1)/2 vertices in Nv and those in Rv. Finally,

there are the (n+ 1)/2 edges from v to Nv and the (n− 1)/2 within Nv; we

have a total of at most (n2 + 2n − 7)/4 edges accounted for. There are at

least 2 more edges, which must be in Rv.

•w •
v•

•a •

Figure 15: Theorem 19 Subcase 2.2.1

Consider any w ∈ Nv−{a}. dw = (n+ 1)/2, and Nw = {v, a}∪Rv. Any

edge in Rv is opposite w in a triangle; since there are edges in Rv, w is in

a triangle involving itself and two elements of Rv. w is also in the triangle

(w, a, v). w meets the conditions imposed on v in the next subcase: it has

two disjoint edges in its neighborhood. Subcase 2.2.2 finishes the proof that

θ(G) ≤ n− 2.

Subcase 2.2.2: There are edges (a, b) and (c, d) on 4 unique vertices in Nv,

or there is a triangle (a, b, c) in Nv. In the prior case, the edges (v, a) and

(v, b) can be covered by triangle (v, a, b), as can (v, c) and (v, d) by (v, c, d),

so v’s (n+ 1)/2 edges can be covered by (n− 3)/2 cliques. Similarly, in the
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case of a triangle in Nv, three of v’s edges can be covered by a single 4-clique

(consisting of v and this triangle), which results in the same upper bound.

Let G′ be G without v or its edges. G′ has at least n+ 1− (n+ 1)/2 edges.

That is, G′ is on n − 1 vertices and at least n edges. By the hypothesis,

θ(G′) ≤ n− 3. As such, θ(G) ≤ n− 3 + (n− 3)/2 = n− 2.

Subcase 2.3: dv = (n− 1)/2.

Subcase 2.3.1: v is in a triangle. Let G′ be G without v or its (n − 1)/2

edges. G′ has n− 1 vertices and more than n edges, so θ(G′) ≤ n− 3 by the

hypothesis. v’s (n− 1)/2 edges can be covered by (n− 3)/2 cliques because

v is in a triangle, so θ(G) ≤ n− 3 + (n− 3)/2 = n− 2.

Subcase 2.3.2: v is not in a triangle. Then there are no edges within Nv.

As such, every vertex in Nv is connected to at least (n−3)/2 of the (n−1)/3

vertices in Rv. This accounts for (n2−4n+3)/4 edges. Adding the (n−1)/2

from v to Nv raises this total to (n2−2n+1)/4; there are least n more edges.

There is only room for (n − 1)/2 additional edges between Nv and Rv, so

there are at least (n+ 1)/2 edges in Rv.

If there are any additional edges between Nv and Rv, let w ∈ Nv be

adjacent to one of these edges. dw = (n + 1)/2, and every edge in Rv is in

Nw. There are at least (n+ 1)/2 edges on the (n− 1)/2 vertices in Rv; only

(n− 3)/2 of these edges can be adjacent to a single vertex, so there is either

a pair of edges (a, b) and (c, d) on four unique vertices in Rv or a triangle in

Rv. w meets the conditions imposed on v in subcase 2.2.2, which completes

the proof that that θ(G) ≤ n− 2.
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If there are no additional edges between Nv and Rv, then there are at

least n edges on Rv’s (n − 1)/2 vertices. Consider w ∈ Nv; it has degree

(n − 1)/2 and is connected to all but one of the (n − 1)/2 vertices in Rv.

Let a ∈ Rv be this vertex. Clearly, the n edges in Rv cannot all be adjacent

to a. The rest of Rv is in Nw, so there is an edge in Nw. We have found a

vertex of degree (n − 1)/2 which is in a triangle. Subcase 2.3.1 shows that

θ(G) ≤ n− 2.

Subcase 2.4: dv ≤ (n− 3)/2. Let G′ be G without v. G has n− 1 vertices

and at least n+ 1 − (n − 3)/2 > n edges. The hypothesis provides that

θ(G′) ≤ n− 3. Thus, θ(G) ≤ n− 3 + (n− 3)/2 = n− 2.

Note that we have bounded cover size several times using the following

method: select a vertex v and cover everything except v and its edges, and

then add cliques to cover these ommited edges. The cover of v’s edges is

equivalent to a vertex cover of Nv. For any v in graph G, we define φ(v) to

be a minimal vertex clique cover of Nv.

Remark 20 If graph G with vertex set V has no singletons, then θ(G) ≤

minv∈V {θ(G− v) + φ(v)}.

Proof. Clearly, G − v can be covered with θ(G − v) cliques. This covers

everything in G except v and its incident edges. Let C be a minimal vertex

cover of Nv, and let C ′ =
⋃
c∈C{c ∪ {v}}. C ′ consists of φ(v) cliques, which

cover v and all of its edges.
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In the proof of Theorem 19 we also bound the cover size by isolating

a clique and covering everything which is not adjacent to this clique, then

covering it and the edges connecting it to the rest of the graph.

Remark 21 If a graph G with n vertices has no singletons and contains

clique ∆ with d vertices, then θ(G) ≤ θ(G−∆) + n− d+ 1.

Proof. Clearly, G − ∆ can be covered with θ(G − ∆) cliques. All edges

between ∆ and a vertex v /∈ ∆ can be covered by a single clique; there are at

most n − d such vertices. Finally, ∆ itself may need to be covered (though

it may not, if the n− d cliques coincidentally covered ∆ as well).

4.3 The complete upper bound

We list three versions of the upper bound: one with Lovász and Mantel’s

Theorems along with Lemma 12; one with the improvements provided in

Theorems 14 and 19; and finally the hypothesized exact upper bound pending

proof of conjecture 16. In all three bounds, n is the number of vertices, m

the edges, and k the missing edges. All values are assumed to be natural

numbers.

With Lovász’s Theorem and Lemma 12, we can form an upper bound for
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Θn:

Θ(2)
n (m)


= Θn−1(m) + 1 for m ≤ n− 1 (4a)

= m for n− 1 < m ≤ n (4b)

≤ k + max{t|t2 − t ≤ k} for n < m ≤
(
n
2

)
(4c)

With Theorems 14 and 19, we can improve the previous bound:

Θ(3)
n (m)



= Θn−1(m) + 1 for m ≤ n− 1 (5a)

= m for n− 1 < m ≤ n (5b)

= n− 1 for n− 1 > k ≥ n− 2 (5c)

= n− 2 for n− 2 > k ≥ n− 3 (5d)

≤ k + max{t|t2 − t ≤ k} for n− 3 > k ≥ 0 (5e)

If conjecture 16 is proven true, the bound can be simplified and made

exact for all m:

Θ(4)
n (m) =


Θn−1(m) + 1 for m ≤ n− 1 (6a)

m for n− 1 < m ≤ n (6b)

min{t|t > k} for m > n (6c)

Note that these three formulations form a refinement of the upper bound;

Θ
(4)
n (m) ≤ Θ

(3)
n (m) ≤ Θ

(2)
n (m) for all m. Conjecture 16 is sufficient to show

that Θn = Θ
(4)
n .
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5 Finding covers

The authors of Algorithm 1 in [4] provide a process which finds a clique

cover in polynomial time (O(n4)) on the number of vertices. It works by

assigning symbols to sets of vertices; each symbol corresponds to a clique,

and each vertex is in a symbol’s clique if an only if it has been assigned that

symbol. The algorithm’s purpose is to construct an indeterminate string

from its associated graph, but this is identical to covering said graph. We

paraphrase this process in Algorithm 1. It produces different results for

isomorphic graphs based on the order in which the vertices are presented.

In [4, conjecture 12], it is proposed that there is an ordering of vertices which

results in an optimal (i.e., minimal) cover.

In this section, we present an original heuristic, which we call CliqueRank

in tribute to its inspiration, PageRank. We show that CliqueRank reduces the

size of Algorithm 1’s output covers, particularly in dense graphs. Figure 17

displays the results of applying CliqueRank to Algorithm 1 with several

different methods; the relevant methods will be explained in Section 5.2.

5.1 CliqueRank

CliqueRank assigns a value to all vertices and edges in a graph. It operates

as follows:

1. Every vertex is given an initial value of 1.
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Algorithm 1 Labelling [4, Algorithm 1]

Require: Graph G = (V,E)
1: λ← 1
2: For each v ∈ V , label(v) = {}
3: for v ∈ V do
4: if dv = 0 then
5: label(v)← {λ}
6: λ← λ+ 1
7: else
8: for w ∈ Nv do
9: if label(v) ∩ label(w) = ∅ then

10: label(v)← label(v) ∪ {λ}
11: label(w)← label(w) ∪ {λ}
12: clique← {w}
13: for q ∈ Nv − {w} do
14: if clique ⊆ Nq then
15: label(q)← label(q) ∪ {λ}
16: clique← clique ∪ {q}
17: λ← λ+ 1

2. The value of each vertex is redistributed uniformly among the edges in

its neighborhood. An edge (v, w) is in u’s neighborhood if v, w ∈ Nv.

Recall that v itself is not in Nv; this value is being redistributed among

those edges which are opposite v in triangles. So if there are m edges

in Nv, each of these edges receives (1/m) of v’s value. An edge’s value

for this iteration is the sum of such inputs from vertices.

3. Each edge then splits its value evenly between its two vertices.

For a visual demonstration of an iteration of CliqueRank, see figure 16.

Steps 2 and 3 are intended for iteration, as their descriptions imply. Note

that when an object “redistributes its value”, it loses this value; no value is
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being created other than the initial assignment of 1 to every vertex. As such,

at the end of an iteration, the edges all have 0 value. When we reference an

edge’s value after n iterations, however, we will actually be referring to its

value during the n’th iteration, after it has been given value by vertices and

before it has redistributed this value to vertices.

During the first iteration, any vertices which are not in triangles lose all of

their value; it is redistributed among 0 edges, so it ceases to exist. Moreover,

these triangle-less vertices share this property with their edges, so these edges

never gain value. Thus, all edges and vertices which are not in triangles have

value equal to 0 after the any positive number of iterations.

If a vertex or edge is in a triangle, however, then it is easy to prove

through induction that it has nonzero value after every iteration. Moreover,

it is also easy to prove that edges which are in exactly one triangle will have

value less than edges in multiple triangles. That is, edges which are “easier

to cover”, meaning they are in multiple cliques, tend toward larger values.

This falls apart when 4-cliques come into play; if an edge is in exactly one

4-clique, and no triangles other than those within this 4-clique, it will still

appear to be “in three triangles”. That is, its value will not be as low as

those edges which are in exactly one triangle, even though it is contained in

exactly one maximal clique.

This presents intuitive strategies for covering a graph. First, edges with

zero value should be covered; they are not in triangles, so they must be

covered individually (as must singleton vertices, which will also be given
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Figure 16: An iteration of CliqueRank

zero value). Then, a vertex with a low value and uncovered edges can be

selected (v in Algorithm 1), and its neighbors (w and q) can be considered

in any order. There are many ways in which neighbors can be prioritized,

and we consider a few of them in Section 5.2.

5.2 Applying CliqueRank to Algorithm 1

CliqueRank provides a method of assigning values to edges and vertices;

these values can be applied to Algorithm 1 in an assortment of ways, some

of which are effective and some of which are not. In this section, we de-
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fine and evaluate the effectiveness of some of these methods of application.

Methods will be named in correspondence with the legend in figure 17 (on

page 45). All methods can be applied after any positive number of iterations

of CliqueRank. Surprisingly, it is rare for extra iterations to improve the

resulting cover size; the best cover is usually found after a single iteration,

but occasionally better covers can be found by iterating to convergence. An

iteration of CliqueRank is O(n3), so on large graphs it is prudent to iterate

just once.

We next examine a few methods of application of CliqueRank to Algo-

rithm 1. In figure 17 and the following descriptions, we use Vscore to refer to

vertex values, Escore to refer to edge values, and ECC to refer to “edge cover

count”, i.e., a counter of the number of times each edge has been covered.

CR by Vscore: As the name implies, this method of application of

CliqueRank to Algorithm 1 works simply by sorting the vertices in ascending

order with respect to their CliqueRank values; that is, low valued vertices

are considered first in lines 3, 8, and 13 of Algorithm 1. This method is not

shown in figures, but the following method is nearly identical to it, with one

small variation.

Dynamic CR by Vscore: This method sorts vertices in non-decreasing

CR score as well, but whenever a clique is added to the cover-in-progress, this

vertex’s score is increased by 1.

CR by Escore: This method operates as follows: in Algorithm 1, line 3

is sorted by non-decreasing vertex score, and lines 8 and 13 are sorted (again,
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non-decreasing) by the edge scores of the edge connecting the new vertex to

the vertex selected in line 3. Its results are not included in figures as it is

not particularly effective; it is of note because we expected it to be a top

competitor, and as such we mention it as a possibility which we have found

to be ineffective.

CR, ECC, Removals: This method, shown in grey, operates as follows:

vertices are initially put in non-decreasing order by CR score in line 3. Vertices

in line 8 are sorted primarily by whether the corresponding edge (connecting

w to v in the pseudocode) is covered—uncovered edges come first. They

are sorted secondarily in non-decreasing order of edge score from CR. Finally,

vertices in line 13 are sorted by the number of uncovered edges connecting

them to the clique in construction, in non-increasing order. When the graph

is covered, we then review all cliques in non-decreasing order of size. If every

edge in a given clique is covered more than once by remaining cliques, then

the clique in question is superfluous and is removed from the cover. This

last step rarely finds any redundancy, but occasionally reduces cover size

minutely.
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Figure 17: Cover size vs edge density and time vs edge density
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6 Conclusion and Future Work

The function Θn(m) is the exact upper bound on the size of a minimal clique

cover for a graph with n vertices and m edges. We progress toward an exact

characterization of the shape of Θn for any n; using theorems from Erdős and

Mantel, we fully characterize Θn(m) for m ≤ n via the recursive properties

in Lemma 12. Lovász provides an upper bound for Θn(m) when m > n,

and we improve this to an exact characterization for m ≤
(
n
2

)
− n− 3 with

Theorems 14 and 19.

If conjecture 16 is true, it completes the characterization of Θn for all n.

Conjecture 16 If k < p, then Θn(
(
n
2

)
− k) ≤ p.

Remarks 20 and 21 formalize the strategies used in the proofs of Theo-

rems 14 and 19 to bound cover size; they may be useful in completing the

characterization of Θn(m). Remarks 17 and 18 may also prove useful in this

pursuit.

We then move on to application; bioinformatics provides motivation to

find small clique covers. We develop a method for ordering vertices (CliqueRank)

and apply it to a recently developed algorithm for indeterminate string con-

struction. Doing so greatly reduces the resulting cover sizes and the time

spent covering for uniformly generated random graphs.

Of course, one would be hard-pressed to find an application of clique

covering in which the graphs being covered are uniformly random; there are

many graph archetypes, and CliqueRank presumably varies in usefulness
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based on the type of graph being covered. This provides clear motivation to

test CliqueRank on different types of graphs.

For an example, we test CliqueRank for covering graphs situated in a

metric space. We generate these graphs as follows: points are randomly

distributed in the n-dimensional box [0, 1]n. These points are the vertices.

Any two vertices which are within a specified distance of eachother, under

a given metric, are connected. Figure 19 on page 49 shows the results of

Algorithm 1 on 2-dimensional graphs using the euclidean metric. In this

example, CliqueRank still greatly reduces cover size, but it significantly in-

creases the amount of time spent covering; it appears that Algorithm 1 works

very quickly on these graphs, so the time spent running CliqueRank before-

hand is significant in comparison. This provides motivation to develop and

test other vertex ranking methods.

Also, as demonstrated by Algorithm 1’s motivation in bioinformatics and

string processing, it is pertinent to generate graphs via construction of inde-

terminate strings, and to analyze and improve performance and effectiveness

on this particular class of graphs.

It may also be useful to apply CliqueRank in other contexts. For ex-

ample, one way to approach graph automorphism heuristically is to look for

differences between vertices, and partition the vertex set accordingly. As

such, any measure which depends only on graph structure is inherently use-

ful. For example, we provide in figure 18 a graph for which every vertex has

degree 3; näıve measures such as degree fail to differentiate any vertices—even
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PageRank fails to find any differences between them. CliqueRank, however,

provides the graph’s automorphism groups after a single iteration.
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Figure 18: CliqueRank and graph automorphism

Of course, while graph automorphism is NP-complete, it is usually very

easy; in application it has linear expected time. As such, it would be foolish

to use CliqueRank, which has O(n3) complexity, as a first resort, but it may

serve as a reasonable alternative in the rare, harder cases.
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Figure 19: Cover size and time vs density for 2D metric graphs
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[6] W. Mantel. Problem 28 (solution by H. Gouweniak, W. Mantel, J. Texeira

de Mattes, F. Schuh, and W.A Whythoff). Wiskundige Opgaven, 10(60–

61), 1907.

[7] Fred S. Roberts. Applications of edge coverings by cliques. Discrete

Applied Mathematics, 10:93–109, 1985.

50


