
This page is here to make the page numbers come out correctly.

Do not print this page.

1

Derivation of Consistent Pairwise Matrices

A Thesis Presented to

The Faculty of the Computer Science Program

California State University Channel Islands

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science

by

Christopher Kuske

April 5, 2018

c© 2018

Christopher Kuske

ALL RIGHTS RESERVED

Signature page for the Masters in Computer Science Thesis of Christopher

Kuske

APPROVED FOR THE COMPUTER SCIENCE PROGRAM

Dr. Michael Soltys, Thesis Advisor Date

Dr. Konrad Kulakowski, Thesis Committee Date

Dr. Pawel Pilarczyk, Thesis Committee Date

APPROVED FOR THE UNIVERSITY

Dr. Joseph Shapiro, AVP Extended University Date

Acknowledgements

To my wife Kendra and my children Evan and Emma, in gratitude for

their unending encouragement and support while developing this thesis.

Without them, I would have not been able to reach this goal that I had set

for myself. I would like to extend special thanks to Dr. Michael Soltys for

his knowledge, patience, and encouragement as my advisor.

Abstract

Derivation of Consistent Pairwise Matrices

by Christopher Kuske

A method of generating a consistent Pairwise Comparison

Matrix from an inconsistent matrix will be presented, a pro-

posal for defining “closeness” between matrices will be dis-

cussed, and finally, various methods will be examined to find

consistent matrices that are as close to the original inconsis-

tent matrix as possible using a calculated distance described

within.

This thesis will propose several algorithms, compare their

performance, and examine their respective merits.

v

Contents

List of Figures viii

1. Introduction 1

1.1. Contributions 3

1.2. Pertinent Concepts 4

1.2.1. Pairwise Matrices 4

1.2.2. Properties of Pairwise Matrices 7

1.2.3. Consistency in Pairwise Matrices 7

2. Literature Review 9

3. Methodology 10

3.1. Introduction 10

3.2. Formation of Consistent Matrices 11

3.3. Computation of “Distance” 12

3.3.1. Distance Example 13

3.4. General Algorithm Philosophy 14

3.5. Algorithm 1 16

3.5.1. Definition 18

3.5.2. Example matrices 18

3.6. Algorithm 2 21

3.6.1. Definition 21

vi

3.6.2. Example matrices 23

3.7. Algorithm 3 26

3.7.1. Definition 26

3.7.2. Example matrices using column combinations 31

3.8. Algorithm 4 35

3.8.1. Definition 35

3.8.2. Example matrices 38

3.9. Algorithmic Computational Complexity 39

3.9.1. Common Code 40

3.9.2. Algorithm 1 41

3.9.3. Algorithm 2 41

3.9.4. Algorithm 3 42

3.9.5. Algorithm 4 43

3.9.6. Algorithm Complexity Summary 44

3.10. Algorithms Summary 45

4. Algorithm Performance 47

4.1. Introduction 47

4.2. Testing Parameters 49

4.3. Parallelization of the candidate algorithms 49

4.4. Algorithm 1 51

4.4.1. Algorithm Accuracy 51

vii

4.4.2. Algorithm Computational Cost 52

4.5. Algorithm 2 54

4.5.1. Algorithm Accuracy 54

4.5.2. Algorithm Computational Cost 55

4.6. Algorithm 3 56

4.6.1. Algorithm Accuracy 56

4.6.2. Algorithm Computational Cost 57

4.6.3. Modeling of Increasing Algorithmic Complexity 58

4.7. Algorithm 4 60

4.7.1. Algorithm Accuracy 60

4.7.2. Algorithm Computational Cost 61

4.8. Unified view of Algorithm Performance 63

5. Conclusions 65

5.1. Summary 65

5.2. Future Directions 67

References 68

List of Figures

1 Algorithm 1 Accuracy 51

2 Algorithm 1 Computational Cost 52

viii

3 Algorithm 2 Accuracy 54

4 Algorithm 2 Computational Cost 55

5 Algorithm 3 Accuracy 56

6 Algorithm 3 Computational Cost 58

7 Algorithm 4 Accuracy 60

8 Algorithm 4 Computational Cost 61

ix

1. Introduction

Technology has given society a wide array of choices, whether those

choices are concerned with the selection of material goods or consideration

of different ideas and methods for solving different problems. One method

of arriving at the final decision can be made by ranking the different choices

in question. The concepts behind each of these trade-offs are called criteria.

Over the past few decades, several methodologies have been used more

and more frequently to help decision makers in the evaluation of multiple

criteria. Pairwise Comparisons (PC) and the Analytical Hierarchical Pro-

cess (AHP) have given decision makers a new set of tools that empower

them to make more informed decisions. AHP uses Pairwise Comparisons to

help rank the evaluation criteria based on importance. This type of problem

is also known as Multiple Attribute Decision Making (MADM).

The method of “Pairwise Comparisons” (PC) has a surprisingly old his-

tory for a method that is not widely known outside certain circles in society.

The beginnings of PC are attributed to Ramon Llull (see [3]) then further

popularized by the Marquis de Condorcet (see [1], written four years be-

fore the French Revolution, and nine years before losing his head to the

same [10]). Condorcet applied the PC method to analyzing voting out-

comes, where the choice was binary (win/lose situations). Almost a century

1

and a half later, Thurstone [11] refined the method and employed a psycho-

logical continuum with the scale values as the medians of the distributions

of judgments[9].

2

1.1. Contributions.

(1) Development of new algorithms that arrive to a “closer” distance

between matrices faster than generating random consistent matrices.

These new algorithms can also be adaptive with respect to the effort

(in time and computation) that the user wishes the computer to

expend on the problem. This thesis will describe the concept of each

algorithm, details regarding the implementation of each algorithm,

and how it was tested.

(2) Performed analysis of results from the algorithm that provides rec-

ommendations to a user of the algorithm concerning parameter val-

ues to use in proportion to the size of the matrix.

(3) Investigated alternate algorithms, and demonstrated how the pro-

posed algorithm is a good compromise between accuracy (smallest

distance between M and M ′) and speed.

3

1.2. Pertinent Concepts.

1.2.1. Pairwise Matrices

In pairwise matrices, the matrix is always square. Additionally, when

defining a pairwise matrix each item in the matrix has a relative rank that

is considered against another item.

Consider the following pairwise matrix:



Apple Banana Cherry

Apple 1 2 10

Banana 1/2 1 5

Cherry 1/10 1/5 1


The elements above the diagonal in the matrix are the items that are

being considered for evaluation. Using this matrix as an example, the first

line indicates that bananas are preferred two times over apples, and cherries

are preferred ten times over apples. Finally, bananas are preferred five times

over cherries.

When decision makers are trying to make their evaluation(s), they will

often bring in subject matter experts to help develop the relative rankings

of how one preference should be ranked compared to another. When these

experts define their preferences in a PC matrix, they often generate matrices

4

that do not meet the criteria for consistency for one reason or another.

Consistency will be discussed in detail in Section 1.2.3, but it is defined as

follows: ∀ijk, aij = aik ∗ akj, i.e, the ranking is internally coherent.

Pairwise Comparison matrices can sometimes be involved in situations

where the correct decision can mean life or death for someone. Consider a

Pairwise Comparison matrix that considers different criteria on whether a

doctor should operate on a patient or not. Rather than relying on a “gut”

feel, pairwise comparisons help the situation by introducing a process and

strategy for arriving at a decision. The decision may involve many factors

that need to be considered (weighted) against each other to arrive at a deci-

sion. In the situation given, there may be many factors involved that need

to be distilled down to a simple “yes”, “no”, or “maybe”.

When generating matrices, the table on the following page can help guide

on how these comparisons should be weighted:

5

Intensity of Importance Definition Explanation

1 Equal importance Two activities contribute

equally to the objective

3 Weak importance of one

over another

Experience and judgment

slightly favor one activity

over another

5 Essential or strong impor-

tance

Experience and judgment

strongly favor one activity

over another

7 Demonstrated importance An activity is strongly fa-

vored and its dominance is

demonstrated in practice.

9 Absolute importance The evidence favoring one

activity over another is of

the highest possible order of

affirmation

2, 4, 6, 8 Intermediate values be-

tween the two adjacent

judgments

When compromise is needed

This table of values was created by Saaty in his seminal 1977 work[8].

6

1.2.2. Properties of Pairwise Matrices

A pairwise comparison matrix M has the following properties that must

be present, even if the matrix does not meet the additional criteria for

consistency listed in Section 1.2.3:

(1) M is square (equal number of n rows and n columns).

(2) All elements on the diagonal of M have a value of 1.

(3) M has the property where each element aij has an element that is

the reciprocal, located at aji as shown below:

1 a12 a13 a1n

1
a21

1 a23 a2n

1
a31

1
a23

1 a3n

1
an1

1
an2

1
an3

1



1.2.3. Consistency in Pairwise Matrices

For a matrix to be considered consistent, the following condition must be

met:

For each element aij in matrix M , aij = aik ∗ akj must hold true that for

all i, j, k in order for the matrix to be considered consistent.

Throughout this thesis, W is defined as a one dimensional vector that is

comprised of a sequence of integers.

For example:

7

W = [w1, w2, ..., wn]

The matrix M = 〈W 〉 is a matrix generated by vector W .

〈W 〉 = [wi/wj], i.e., the (i,j) entry of 〈W 〉 is wi divided by wj.

Claim 1. Given W ∈ (R+)n, if M = 〈W 〉 (M = 〈W 〉 is the matrix gener-

ated by the numbers present in set W) then M is reciprocal and consistent.

Proof. For all i, j ∈ [n], aij = wi/wj

= 1/(wj/wi) = 1/aji

Also for all i, j, k ∈ [n], aij = wi/wj

= (wiwk)/(wjwk)

= (wi/wk)(wk/wj)

= aikakj.

�

8

2. Literature Review

Modern PC can be said to have started with the work of Saaty in 1977 [8],

who proposed a finite nine-point scale of measurements. Furthermore, Saaty

introduced the Analytic Hierarchy Process (AHP), which is a formal method

to derive ranking orders from numerical pairwise comparisons. AHP is

widely used around the world for decision making, in education, industry,

government, etc. Koczkodaj’s [6] proposed smaller five-point scale, which

is less fine-grained than Saaty’s nine-point scale, is less precise but easier

to use.

Note that while AHP is a respectable tool for practical applications, it is

nevertheless considered by many [2] as a less-than-perfect procedure that

yields arbitrary rankings. The belief is that the shortcomings of AHP arise

from the following two observations [5]:

(1) The final outcome is forced to be totally ordered, which might be

too strong a requirement;

(2) numbers, whose assignment is very subjective, are assigned to all

items to calculate the final outcome.

.

9

It is also important to note that AHP uses a fixed scale that makes it

a subset of Pairwise Comparisons. Pairwise Comparisons allow for a non-

numeric ranking system. In fact, it does not assume a particular scale at

all in contrast to AHP.

3. Methodology

3.1. Introduction. To investigate the properties of both consistent and

inconsistent matrices, several new algorithms were developed. The problem

we wish to solve is that of approximating a reciprocal matrix (which may or

may not be consistent) with a consistent matrix. That is, given the matrix

M is reciprocal, we want to find a consistent matrix M ′ so that the distance

between M and M ′ is minimized.

Additionally, a measure of determining the “closeness” between incon-

sistent matrix M and consistent matrix M ′ as an index of inconsistency is

proposed.

Each algorithm also takes advantage of the fact that a consistent pair-

wise matrix can be constructed from any row or column of an inconsistent

matrix. Stated more formally:

For an inconsistent matrix M , a consistent matrix M ′ can be constructed

by generating a set of sequence entries W (also called a vector of weights),

where W is comprised of the elements of any given row/column in M .

10

Given this goal, each algorithm takes a different approach to arrive at M ′

where M ′ has the smallest possible distance between M and itself. Each

approach has trade-offs concerning the computed distance between M and

M ′ and the computational cost required to arrive at M ′. This section of

the paper will describe the operation of each algorithm. For analysis of the

results for each algorithm, please see Section 4.

Of course, it is important to note that a consistent pairwise matrix that

was initially inconsistent is always more meaningful if the initial degree of

inconsistency is under a certain amount. When the largest inconsistencies

in a matrix are brought under control, the subsequent consistent matrix

can be of greater utility.

In other words, the inconsistency measure (however that measure is de-

fined) of a PC matrix is the measure of the quality of knowledge [4].

3.2. Formation of Consistent Matrices. If M is consistent, any row or

column of M may be selected such that:

[w1,w2,...,wn] = [a11, a21, a31, ..., an1] using matrix a where n is the size

of the matrix.

Using Saaty’s seminal work, the most often used definition of consistency

in pairwise matrices is as follows:

11

A pairwise comparison matrix A is consistent if and only if there exists

a vector [w1, w2, ..., wn] such that aij = wi/wj.[8]

Claim 2. Suppose that M is reciprocal and consistent. Then M = 〈W 〉,

where W is any row or any column of M .

Proof. Suppose W = [a1k, a2k, . . . , ank] where M = [aij], that is, W is the

k-th column of M . Then the i, j entry of 〈W 〉 is wi/wj = aik/ajk = aikakj =

aij, where we used reciprocity and consistency of M . Note that M is recip-

rocal and consistent if and only if MT (the transpose of M) is reciprocal

and consistent, and so the claim follows for rows as well. �

3.3. Computation of “Distance”. In this paper, distance is used as a

concept of the total difference between two matrices (M and M ′). The

distance between M and M ′ is computed by taking an element at the same

position in M and M ′, and subtracting them. The absolute value is added

to the total distance (which is initially zero). When this computation has

taken place for each position in the matrices, the total distance has been

calculated.

More formally, the computation of distance between two matrices can be

stated as follows:

12

For both the upper triangle of the matrix (i < j) and the lower triangle

(i > j):

d(M,M ′) =
∑
i<j

max{|aij − a′ij|, |aji − a′ji|},

3.3.1. Distance Example

The required work to calculate the distance between M and M ′ is shown

below (using items except those on the diagonal):


1 2 10

1
2

1 5

1
10

1
5

1




1 2 3

1
2

1 5

1
3

1
5

1


Distance of Upper Triangle = |2− 2|+ |10− 3|+ |5− 5| = 7 (7.00)

Distance of Lower Triangle = |1
5
− 1

5
|+ | 1

10
− 1

3
|+ |1

2
− 1

2
| = 7

30
(.23333)

The final calculated distance for a given matrix is the higher of the two

values (comparing the upper triangle distance to the lower triangle dis-

tance), and this maximum value is noted in bold throughout the rest of

13

this document.

In this case, the distance between M and M ′ is seven, as the distance be-

tween the upper triangle of M and M ′ is greater than the distance between

the lower triangles of M and M ′.

3.4. General Algorithm Philosophy. The algorithms that are evaluated

in the following sections of this paper are of the same general nature. They

are intended to assist in the finding of consistent matrices where the matrix

size (n) is fairly limited (n ≤ 20). With matrices that have a size greater

than 20, humans cannot accurately consider that many factors when mak-

ing a decision. Therefore, when n > 20, the risk of accumulating large

errors in the pairwise comparisons increases.

The algorithms proposed do not anticipate large variance in the pairwise

comparisons present in the PC matrix. To attempt to rectify these large

differences can have a ’ripple effect’ on the matrix under examination as

each element in the matrix has a relationship with the elements around it.

In these situations, resolving the variance with human input is the most

pragmatic approach because the variance is most likely not intentional.

14

Additionally, the proposed algorithms are trying to find approximate

solutions. There is currently no known way to reliably and determinis-

tically find the ideal solution for any given matrix where the number of

inconsistencies and size of the matrix itself is non-trivial (in other words,

the inconsistencies cannot be resolved with simple trial and error). It is

important to note that the proposed measure of distance between M and

M ′ is only one way to measure the quality of a solution, and that proposed

measure is the basis for the algorithms in this thesis. The algorithms shown

in the rest of this document make a trade-off of accuracy versus time to ar-

rive at a solution, among other things.

Consider the drawing below. It represents a scenario where there is an

ideal solution M ′ where the distance between original matrix M is as small

as is possible. It also includes matrices M ′′, M ′′′, M ′′′′, and M ′′′′′ that

represent Algorithms 1, 2, 3, and 4 in this thesis (but not representative of

actual results).

15

M ′′

M - Original Matrix

M ′ - Unobtainable ideal solution

M ′′′

M ′′′′

M ′′′′′

Ideal solution M ′ vs. approximate solutions of varying accuracy.

3.5. Algorithm 1.

16

Require: m - a PC matrix given as input to the algorithm

y ← 0

sz ← m.length

worstSolutionDistance← 0

bestSolutionDistance← sys.maxsize

bestSolution - holds the M ′ with the “best” distance

worstSolution - holds the M ′ with the “worst” distance

mPrime - PC matrix derived from M

while y < sz do

columnData = getColumn(y)

mPrime← generateConsistentMatrix(columnData)

resultsDistance← mPrime.getDistance(m)

calculatedDistance = resultsDistance

if calculatedDistance < bestSolutionDistance then

bestSolutionDistance← calculatedDistance

bestSolution← mPrime

else

worstSolutionDistance← calculatedDistance

worstSolution← mPrime

end if

y ← y + 1

end while

17

3.5.1. Definition

Algorithm 1 is defined as follows:

For a given square matrix M of size n, Algorithm 1 will use each indi-

vidual column of M and use it to generate new consistent matrix M ′.

Using the columns of M , a new consistent matrix M ′ is generated and

compared against matrix M . Then, the computed distance between M and

M ′ is stored. As each column is used, if the computed distance of the new

matrix is lower than any other previously computed distance, that lesser

distance is saved as the ”best” matrix solution. If a future iteration is better

than the last, the best solution is updated/replaced.

3.5.2. Example matrices 

1 2 6 6

1
2

1 5 4

1
6

1
5

1 2

1
6

1
4

1
2

1


W1 = [1 1

2
1
6

1
6
]

W2 = [2 1 1
5

1
4
]

W3 = [6 5 1 1
2
]

18

W4 = [6 4 2 1]

The resulting matrices generated from W1,W2,W3,W4 are below:

< W1 > =



1 2 6 6

1
2

1 3 3

1
6

1
3

1 1

1
6

1
3

1 1


Computed distance between M and < W1 >:

[2− 2] + [6− 6] + [6− 6] + [5− 3] + [4− 3] + [2− 1] = 4 (4.0)

[1
2
− 1] + [1

4
− 1

3
] + [1

6
− 1

6
] + [1

5
− 1

3
] + [1

6
− 1

6
] + [1

2
− 1

2
] = 43

60
(0.716)

< W2 > =



1 2 10 8

1
2

1 5 4

1
10

1
5

1 4
5

1
8

1
4

5
4

1


Computed distance between M and < W2 >:

[2− 2] + [6− 10] + [6− 8] + [5− 5] + [4− 4] + [2− 4
5
] = 61

5
(6.20)

19

[1
2
− 5

4
] + [1

4
− 1

4
] + [1

6
− 1

8
] + [1

5
− 1

5
] + [1

6
− 1

10
] + [1

2
− 1

2
] = 43

120
(0.358)

< W3 > =



1 6
5

6 12

5
6

1 5 10

1
6

1
5

1 2

1
12

1
10

1
2

1


Computed distance between M and < W3 >:

[2− 6
5
] + [6− 6] + [6− 12] + [5− 5] + [4− 10] + [2− 2] = 124

5
(12.8)

[1
2
− 1

2
] + [1

4
− 1

10
] + [1

6
− 1

12
] + [1

5
− 1

5
] + [1

6
− 1

6
] + [1

2
− 5

6
] = 17

30
(0.566)

< W4 > =



1 3
2

3 6

2
3

1 2 4

1
3

1
2

1 2

1
6

1
4

1
2

1


Computed distance between M and < W4 >:

[2− 3
2
] + [6− 3] + [6− 6] + [5− 2] + [4− 4] + [2− 2] = 61

2
(6.5)

[1
2
− 1

2
] + [1

4
− 1

4
] + [1

6
− 1

6
] + [1

5
− 1

2
] + [1

6
− 1

3
] + [1

2
− 2

3
] = 19

30
(0.633)

20

3.6. Algorithm 2.

3.6.1. Definition

For a given square matrix M of size n, Algorithm 2 will use a subset

(’span’) of items in (defined as an input parameter into the algorithm) each

individual column of M (moving left to right) and use it to generate a new

matrix < W >. During the execution of this algorithm, a span value of

sizeof(M)/3 was used. For example if the size of M is 12, the ’span’ used

will be 4. This heuristic was chosen because as the algorithm is applied to

larger matrices, it takes more and more columns into account for use in the

algorithm without incurring a large time penalty. The span parameter will

cause more operations to occur to generate W , which in turn generates M ′.

With this W using sizeof(M)/3 as the span heuristic, a new consistent

matrix M ′ is generated and compared against matrix M and the distance

from M is stored. As each column is used, if the computed distance of

the new matrix is lower than any other previously computed distance, that

particular M ′ with the lesser distance is saved as the “best” matrix.

21

Require: m - a PC matrix given as input to the algorithm

sz ← m.length

i, y ← 0

bestSolutionDistance← 0

span← - defaults to sizeof(M)/3

bestSolution - holds the M ′ with the “best” distance

worstSolution - holds the M ′ with the “worst” distance

mPrime - PC matrix derived from M

colsData← ∅

while y < sz do

rowData = getRow(y)

currentAnswer ← rowData[0]

while i < span do

currentAnswer ← currentAnswer ∗ rowData[i]

colsData[y]← currentAnswer

i← i + 1

end while

mPrime← generateConsistentMatrix(colsData)

resultsDistance← mPrime.getDistance(m)

calculatedDistance = resultsDistance[0]

22

if calculatedDistance < bestSolutionDistance then

bestSolutionDistance← calculatedDistance

bestSolution← mPrime

else

worstSolutionDistance← calculatedDistance

worstSolution← mPrime

end if

y ← y + 1

end while

3.6.2. Example matrices 

1 2 6 6

1
2

1 5 4

1
6

1
5

1 2

1
6

1
4

1
2

1



The calculated span for this matrix is one, so W1 = [1 1
2

1
6

1
6
]

The resulting matrix generated from W1 is:

< W1 > matrix:

23



1 2 6 6

1
2

1 3 3

1
6

1
3

1 1

1
6

1
3

1 1


[2− 2] + [6− 6] + [6− 6] + [5− 3] + [4− 3] + [2− 1] = 4 (4.0)

[1
2
− 1] + [1

4
− 1

3
] + [1

6
− 1

6
] + [1

5
− 1

3
] + [1

6
− 1

6
] + [1

2
− 1

2
] = 43

60
(.71667)

If span had been specified as two, W1 (let us now call it W2) would be as

follows:



1 2 6 6

1
2

1 5 4

1
6

1
5

1 2

1
6

1
4

1
2

1



W2 = [2 1
2

1
30

1
24

]

24

< W2 > matrix:

1 4 60 48

1
4

1 15 12

1
60

1
15

1 4
5

1
48

1
12

5
4

1


[2− 4] + [6− 60] + [6− 48] + [5− 15] + [4− 12] + [2− 4

5
] = 1171

5
(117.20)

[1
2
− 5

4
] + [1

4
− 1

12
] + [1

6
− 1

48
] + [1

5
− 1

15
] + [1

6
− 1

60
] + [1

2
− 1

4
] = 1143

240
(1.5958)

25

3.7. Algorithm 3.

3.7.1. Definition

bestSolutionDistance← 0

worstSolutionDistance← 0

calculatedDistance← 0

i, j, k ← 0

result← 1

bestSolution - holds the M ′ with the “best” distance

worstSolution - holds the M ′ with the “worst” distance

allData← ∅

w ← ∅

rowColCombos← list of combinations generated (omitted for brevity)

matrixSize← sizeofdesiredmatrix

m - original matrix M ′ is derived from

mPrime - PC matrix derived from M

26

while i < matrixSize do

sizeofThisPairing ← len(rowColCombos[i])

while j < matrixSize do

allData.append(rowColCombos[i][j])

j ← j + 1

end while

j ← 0

while j < matrixSize do

result← 1

while k < gridMultiplier do

result = result ∗ allData[k][j]

k ← k + 1

end while

w.append(result)

j ← j + 1

end while

mPrime← generateConsistentMatrix(w)

resultsDistance← mPrime.getDistance(m)

calculatedDistance = resultsDistance

27

if calculatedDistance < bestSolutionDistance then

bestSolutionDistance← calculatedDistance

bestSolution← mPrime

else

worstSolutionDistance← calculatedDistance

worstSolution← mPrime

end if

i← i + 1

end while

For a given square matrix M of size n, Algorithm 3 will use a subset

(’span’) of items in (defined as a input parameter into the algorithm) each

individual column of M and use it to populate an entry in sequence W .

The span determines the number of column combinations that are gener-

ated. The smaller the span, the more combinations that are generated.

This approach is different than Algorithm 2 in that every combination of

columns (given a specific span) will be used. This ensures that no poten-

tial “best” solutions are missed as they might possibly be using Algorithm 2.

28

The span parameter is dynamic, based on the current size of the matrix

being examined. The value of span is defined as follows:

span = sizeof(M)/n

With n set to 3, the number of matrices with respect to the span in-

creases in a roughly exponential fashion as shown in the following table.

For a graphical representation, see Section 4.6.3.

29

Matrix Size Span Matrices Evaluated Per Matrix Size

10 3 120

11 3 165

12 4 495

13 4 715

14 4 1001

15 5 3003

16 5 4368

17 5 6188

18 6 18564

19 6 27132

20 6 38760

21 7 116280

22 7 170544

23 7 245157

24 8 735471

25 8 1081575

Table 1. Algorithm 3 Matrix Relationships

30

3.7.2. Example matrices using column combinations

Span = 2

1 2 6 6

1
2

1 5 4

1
16

1
5

1 2

1
6

1
4

1
2

1





1 2 6 6

1
2

1 5 4

1
6

1
5

1 2

1
6

1
4

1
2

1





1 2 6 6

1
2

1 5 4

1
6

1
5

1 2

1
6

1
4

1
2

1





1 2 6 6

1
2

1 5 4

1
6

1
5

1 2

1
6

1
4

1
2

1





1 2 6 6

1
2

1 5 4

1
6

1
5

1 2

1
6

1
4

1
2

1





1 2 6 6

1
2

1 5 4

1
6

1
5

1 2

1
6

1
4

1
2

1



W1 = [2 1
2

1
80

1
24

]

W2 = [6 5
2

1
6

1
12

]

W3 = [6 2 3 1
3
]

W4 = [12 5 1
5

1
8
]

W5 = [12 4 2
5

1
4
]

W6 = [36 20 2 1
2
]

The resulting matrices generated from W1,W2,W3,W4,W5,W6 are below:

31

< W1 > =



1 4 160 48

1
4

1 40 12

1
160

1
40

1 3
10

1
48

1
12

10
3

1


Computed distance between M and < W1 >:

[2− 4] + [6− 160] + [6− 48] + [5− 40] + [4− 12] + [2− 3
10

] = 242 7
10

(242.7)

[1
2
− 10

3
] + [1

4
− 1

12
] + [1

6
− 1

48
] + [1

5
− 1

40
] + [1

6
− 1

160
] + [1

2
− 1

4
] = 3117

160
(3.73125)

< W2 > =



1 12
5

36 72

5
12

1 15 30

1
36

1
15

1 2

1
72

1
30

1
2

1


Computed distance between M and < W2 >:

[2− 12
5

] + [6− 36] + [6− 72] + [5− 15] + [4− 30] + [2− 2] = 1302
5

(130.4)

[1
2
− 1

2
] + [1

4
− 1

30
] + [1

6
− 1

72
] + [1

5
− 1

15
] + [1

6
− 1

36
] + [1

2
− 5

12
] = 919

1260
(.72937)

32

< W3 > =



1 3 2 18

1
3

1 2
3

6

1
2

3
2

1 9

1
18

1
6

1
9

1


Computed distance between M and < W3 >:

[2− 3] + [6− 2] + [6− 18] + [5− 2
3
] + [4− 6] + [2− 9] = 301

3
(30.33333)

[1
2
− 1

9
] + [1

4
− 1

6
] + [1

6
− 1

18
] + [1

5
− 3

2
] + [1

6
− 1

2
] + [1

2
− 1

3
] = 223

60
(2.38333)

< W4 > =



1 12
5

60 96

5
12

1 25 40

1
60

1
25

1 8
5

1
96

1
40

5
8

1


Computed distance between M and < W4 >:

[2− 12
5

] + [6− 60] + [6− 96] + [5− 25] + [4− 40] + [2− 8
5
] = 1524

5
(152.8)

[1
2
− 5

8
] + [1

4
− 1

40
] + [1

6
− 1

96
] + [1

5
− 1

25
] + [1

6
− 1

60
] + [1

2
− 5

12
] = 2159

2400
(.89958)

33

< W5 > =



1 3 30 48

1
3

1 10 16

1
30

1
10

1 8
5

1
48

1
16

5
8

1


Computed distance between M and < W5 >:

[2− 3] + [6− 30] + [6− 48] + [5− 10] + [4− 16] + [2− 8
5
] = 842

5
(84.4)

[1
2
− 5

8
]+[1

4
− 1

16
]+[1

6
− 1

48
]+[1

5
− 1

10
]+[1

6
− 1

30
]+[1

2
− 1

3
] = 105101

120
(105.84167)

< W6 > =



1 9
5

18 72

5
9

1 10 40

1
18

1
10

1 4

1
72

1
40

1
4

1


Computed distance between M and < W6 >:

[2− 9
5
] + [6− 18] + [6− 72] + [5− 10] + [4− 40] + [2− 4] = 1211

5
(121.2)

[1
2
− 1

4
] + [1

4
− 1

40
] + [1

6
− 1

72
] + [1

5
− 1

10
] + [1

6
− 1

18
] + [1

2
− 5

9
] = 161

180
(.89444)

34

3.8. Algorithm 4.

3.8.1. Definition

bestSolutionDistance← 0

worstSolutionDistance← 0

i← 0

distanceDelta← −1

listIdx← 0

calculatedDistance← 0

bestSolution - holds the M ′ with the “best” distance

worstSolution - holds the M ′ with the “worst” distance

myList← - set of all values set to 1, length is the same as the size of M

mPrime - PC matrix derived from M

origV alue - retained value as the value is modified/tested

origmPrime - M ′ using the original value at aij

amPrime - PC matrix derived from M

bmPrime - PC matrix derived from M

origDistanceResults← 0

aDistanceResults← 0

bDistanceResults← 0

35

while i < math.ceil(largestV alue/smallestV alue) do

distanceDelta← −1

while listIdx < matrixSize do

origV alue← myList[listIdx]

origmPrime← generateConsistentMatrix(myList)

origDistanceResults← origmPrime.getDistance(m)

myList[listIdx]← myList[listIdx] ∗ 2

amPrime← generateConsistentMatrix(myList)

aDistanceResults← amPrime.getDistance(m)

myList[listIdx]← myList[listIdx]/2

bmPrime← generateConsistentMatrix(myList)

bDistanceResults← bmPrime.getDistance(m)

if aDistanceResults < bDistanceResults then

distanceResults← aDistanceResults

myList[listIdx]← myList[listIdx] ∗ 2

end if

if bDistanceResults < origDistanceResults then

distanceResults← bDistanceResults

myList[listIdx]← myList[listIdx]/2

else

distanceResults← origDistanceResults

myList[listIdx]← origV alue

end if 36

if distanceDelta < 0 ‖ (distanceResults < distanceDelta) then

distanceDelta← distanceResults

end if

listIdx← listIdx + 1

end while

i← i + 1

end while

For a given random square matrix M of size n, Algorithm 4 will start

with a matrix using a list named W of size n, where each element in W is

initialized to one. With this W , a series of iterations are executed where

the iteration count is user defined.

During each iteration, each element aij in W is modified to be
aij
2

, and

then aij ∗ 2. Upon each modification to aij, the new matrix M ′ is tested

whether the distance to M is reduced. If the distance between M and

M ′ has indeed been reduced, the value of aij that resulted in the smaller

distance to M is kept and the next element is tested in the same manner.

Otherwise, the original value of aij is retained. This procedure repeats until

the last element in W is evaluated.

After the last element in W is evaluated, the procedure repeats again

until all of the defined iterations have been exhausted.

37

3.8.2. Example matrices

Random Matrix generated as M :

1 5 7 2

1
5

1 8 9

1
7

1
8

1 7

1
2

1
9

1
7

1


W1 = [1 1 1 1]

< W1 > =



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


Computed distance between M and < W1 >:

[5− 1] + [7− 1] + [2− 1] + [8− 1] + [9− 1] + [7− 1] = 32 (32.00)

[1
7
− 1] + [1

9
− 1] + [1

2
− 1] + [1

8
− 1] + [1

7
− 1] + [1

5
− 1] = 4435

559
(4.778)

W2 = [2 1 1 1]

< W2 > =



1 2 2 2

1
2

1 1 1

1
2

1 1 1

1
2

1 1 1



38

Computed distance between M and < W2 >:

[5− 2] + [7− 2] + [2− 2] + [8− 2] + [9− 1] + [7− 1] = 29(29.00)

[1
7
− 1] + [1

9
− 1] + [1

2
− 1

2
] + [1

8
− 1] + [1

7
− 1

2
] + [1

5
− 1

2
] = 3195

701
(3.278125)

W3 = [2 2 1 1]

< W3 > =



1 1 2 2

1 1 2 2

1
2

1
2

1 1

1
2

1
2

1 1


Computed distance between M and < W3 >:

[5− 1] + [7− 2] + [2− 2] + [8− 2] + [9− 2] + [7− 1] = 28 (28.00)

[1
7
− 1] + [1

9
− 1

2
] + [1

2
− 1

2
] + [1

8
− 1

2
] + [1

7
− 1

2
] + [1

5
− 1] = 2435

559
(2.778175)

3.9. Algorithmic Computational Complexity. It is often useful to use

“Big O” notation to describe the worst case computational complexity of

a particular algorithm. Big O notation describes the worst-case scenario

for the algorithm in question, and can be used to describe the execution

time required or the space used (in memory or on disk, for example). In

this case however, the thesis is most concerned with execution time. It is

important to note that the following complexity assessments are based on

39

the worst-case scenario for a given operation.

3.9.1. Common Code

generate_random_matrix is a Python function that generates a sequence

of random numbers between 1
n

and n
1

where the probability of each type

of number is 1
2
. This generated sequence is then used to generate a corre-

sponding PC matrix. Due to a nested loop within the code, this function

has a complexity of O(n2).

generate_consistent_matrix is a Python function that uses a sequence

of integers, and that sequence in then used to generate a corresponding PC

matrix. This function has a complexity of O(n2), due to a nested loop.

get_distance is a Python function that calculates the distance between

two PC matrices. This function has a complexity of O(n2) due to a nested

loop.

get_column is a Python function that gets the set of numbers represent-

ing a single column in a PC matrix. This function has a complexity of

O(n).

40

3.9.2. Algorithm 1

First, an input matrix is generated, using generate_random_matrix. So

far, the complexity is O(n2).

The main loop in this algorithm iterates through each column in the

input matrix, meaning the loop itself has a complexity of O(n). Within

the main algorithm loop, get_column, generate_consistent_matrix, and

get_distance are called. This means the main loop has a algorithmic

complexity of O(2n2 + n).

Finally, “best” matrix is generated from all the iterations of the algo-

rithm as M ′, and the distance between M and M ′ is calculated using

generate_consistent_matrix and get_distance respectively. The com-

bined complexity of these two algorithms is O(2n2).

Adding all of these portions of the algorithm process together, the total

number of steps for Algorithm 1 is 5n2 + n which leads to a complexity of

O(n2).

3.9.3. Algorithm 2

First, an input matrix is generated, using generate_random_matrix. So

far, the complexity is O(n2).

The main loop in this algorithm iterates through each row in the input

matrix, meaning the loop itself has a complexity of O(n). Within the main

41

algorithm loop, get_row is called to get the values of the PC matrix for

the row in question. Then, in a loop, the product of one or more values is

calculated for a complexity of O(n) (remembering that the normal amount

of columns to use in the product is the total size of the matrix divided

by three). Next, generate_consistent_matrix, and get_distance are

called. This means the main loop has a algorithmic complexity of O(2n2 +

2n).

Finally, “best” matrix is generated from all the iterations of the algo-

rithm as M ′, and the distance between M and M ′ is calculated using

generate_consistent_matrix and get_distance respectively. The com-

bined complexity of these two algorithms is O(2n2).

Adding all of these portions of the algorithm process together, the total

number of steps for Algorithm 2 is 5n2 + 2n which leads to a complexity of

O(n2).

3.9.4. Algorithm 3

First, an input matrix is generated, using generate_random_matrix. So

far, the complexity is O(n2).

Then, the column combinations are calculated where the number of

columns involved is bounded by the span heuristic previously defined. The

42

complexity of this operation is O(n(n/2)). Adding all of these combinations

to our internal list to utilize has a complexity of O(n).

The main loop in this algorithm iterates through the list of column com-

binations, meaning the main loop itself has a complexity of O(nn). Within

the main algorithm loop, get_column, generate_consistent_matrix, and

get_distance are called for complexity of O(2n2). This means the main

loop has a algorithmic complexity of O(n2n2
).

Finally, “best” matrix is generated from all the iterations of the algo-

rithm as M ′, and the distance between M and M ′ is calculated using

generate_consistent_matrix and get_distance respectively. The com-

bined complexity of these two algorithms is O(2n2).

Adding all of these portions of the algorithm process together, the total

number of steps for Algorithm 3 is n2n2
+ n(n/2) + 4n2 + n which leads to

a complexity of O(nn). This level of complexity makes Algorithm 3 only

feasible when n is quite small.

3.9.5. Algorithm 4

First, an input matrix is generated, using generate_random_matrix. So

far, the complexity is O(n2). Next, the matrix is scanned to determine the

number of times the outer algorithm loop should be executed (ceil of the

43

division of the largest value within M by the smallest value within M). The

complexity of this operation is also O(n2).

The outer loop in this algorithm loops through each column in the in-

put matrix, meaning the loop itself has a complexity of O(n). The in-

ner loop iterates through each element in matrix M ′. This means the

complexity of this inner loop is also O(n). Within the inner algorithm

loop, get_column, generate_consistent_matrix, and get_distance are

called. The operations within this inner loop have a algorithmic complex-

ity of O(2n2). The combined complexity of the loops and operations within

them is O(2n2 + 2n).

Finally, “best” matrix is generated from all the iterations of the algo-

rithm as M ′, and the distance between M and M ′ is calculated using

generate_consistent_matrix and get_distance respectively. The com-

bined complexity of these two algorithms is O(2n2).

Adding all of these portions of the algorithm process together, the total

number of steps for Algorithm 4 is 6n2 + 2n which leads to a complexity of

O(n2).

3.9.6. Algorithm Complexity Summary

44

Name Complexity

Algorithm 1 O(n2)

Algorithm 2 O(n2)

Algorithm 3 O(nn)

Algorithm 4 O(n2)

Table 2. Algorithm Performance Summary

3.10. Algorithms Summary. To provide the reader with an “at-a-glance”

summary of the different algorithms, the following summary is provided:

(1) Algorithm 1: For a matrix of size n, Algorithm 1 generates n matri-

ces, where each matrix is based on one individual column of matrix

values. Of the resulting matrices (collectively called M ′), the M ′

with the least distance from M is kept.

(2) Algorithm 2: Similar to Algorithm 1, except each candidate matrix

M ′ is generated by taking a number of elements (defined as ’span’

or ’s’) and multiplying them to create one element in the set W that

will be used to generate a matrix M ′.

45

(3) Algorithm 3: Similar to Algorithm 2, except every combination of

column pairings is used over successive iterations when multiplying

s column values together to form elements in W .

(4) Algorithm 4: A “brute force” algorithm that starts with a matrix

M ′ set to all ones. Each element aij in M is modified to be
aij
2

,

and then aij ∗ 2. Upon each modification to aij, the new matrix M ′

is tested whether the distance to M is reduced. If the distance is

indeed reduced, the value of aij that resulted in the smallest distance

to M is kept and the next element is tested in the same manner.

Otherwise, the original value of aij is retained. This repeats until

all elements above the diagonal have been tested in this way. This

process as a whole executes several times (depending on the matrix

data).

46

4. Algorithm Performance

4.1. Introduction. The intention of the subsequent tests is to establish the

performance of the four algorithms that were developed. In the evaluation

of performance, two main factors are taken into account: the computed

distance between M and M ′, and the time it takes to run each algorithm.

All algorithms are tested with the same set of parameters to ensure as much

fidelity as possible between each execution of the algorithms.

The tests below are meaningful because they encompass matrix sizes

that are practical to most. That is, a matrix with a size of one thousand

may be interesting from a computing point of view, but human subject

matter experts will not be able to rank that many criteria in any meaningful

way. The parameters chosen for execution of the algorithms also mirror a

practical computing platform on which to solve these matrix inconsistencies.

Each algorithm has two graphs associated with it: Algorithm Accuracy

and Algorithm Computational Cost (with respect to time).

The accuracy graph shows for each matrix size, what the average best

and worst distances that M ′ is from random matrix M . The average is

computed by tracking the best and worst results from each generation of

a consistent matrix M . For example with Algorithm 1: if a matrix size

is five, five distinct matrices are generated. The best distance and worst

47

distances from among those five matrices is kept. This is repeated for the

number of matrices specified to generate (program parameter mps). The

average of the five best results is then calculated and displayed as Avg.

Best Solution, then the process is repeated with the worst results and is

displayed as Avg. Worst Solution. It is important to record both the best

and worst distances so the reader can be aware of the range of possible

distances that an algorithm would provide. Some algorithms have best and

worst distances that are fairly close to each other, while other algorithms

have a larger distance between the best and worst, especially as the matrix

size increases.

The performance graph shows the total ’wall clock’ time it took for the

algorithm to execute with the given parameters for a certain size matrix

noted on the graph.

The algorithms will test every size matrix specified between the minimum

and maximum matrix sizes specified in the program parameters (inclusive

of the min/max parameters specified).

A Python implementation of the algorithms is freely available for down-

load at: https://bit.ly/2uQCtKL

48

4.2. Testing Parameters. The computer hardware and software configu-

ration used to generate the test results below is as follows:

(1) Apple Macbook Pro (2015 model)

(2) 2.5GHz Intel Core i7

(3) 16 GB RAM

(4) Python 2.7.10

(5) Nuitka Python compiler 0.5.26 (for better performance) - http://nuitka.net/

When running each algorithm, the program parameter specified were:

consistency.py -minr 10 -maxr 50 -mps 8 -a all

This command line specifies that for each matrix size (10 to 50), eight

matrices will be generated. A matrices-per-size setting of eight was cho-

sen as the computer used for generating the results has a CPU capable of

running eight simultaneous threads.

4.3. Parallelization of the candidate algorithms. Given the compu-

tationally intensive nature of the algorithms in this thesis, it was important

to put some effort into taking advantage of a computers’ hardware as much

as was practically possible.

The Python program available for download is designed to dedicate each

“run” of a particular algorithm to any free CPU thread. A run is defined

as the execution of a particular algorithm to generate one matrix M ′ with

49

the smallest distance between M and M ′ of size n. (Any intermediate M ′s

that do not end up having the smallest distance to M within the algorithm

as M ′ candidates are not considered here).

The Python implementation however has one shortcoming, in that is does

not attempt to parallelize the execution of a particular algorithm run. For

example, let us consider if the program is instructed to use Algorithm 1 to

generate four matrices collectively named M ′ of size fifty, and the computer

being used has eight CPU threads available for execution.

Ideally, the program would be able to use two of the available CPU

threads within the algorithm run for each matrix, and all four matrices

would be generated in parallel. This is not the case in the implementation

provided, but it would be worth the effort especially for cases where you

may want to generate one matrix of a very large size.

50

4.4. Algorithm 1.

4.4.1. Algorithm Accuracy

10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·104

Matrix Size

D
is

ta
n
ce

Algorithm 1 (Size 50 Matrix Count 8)

Avg. Best Solution Distance
Avg. Worst Solution Distance

Figure 1. Algorithm 1 Accuracy

Algorithm 1 displays a consistent and smooth increase in distance for

both the best and worst average solutions in each size of the matrices that

were tested. The best solutions have a more consistent average with less

variability between data points.

The average worst solutions (highest distance) overall increase in a linear

fashion, but there are a few outliers where in some instances the distance

51

between M and M ′ at the next larger size matrix is less than the previous

size matrix distance between M and M ′. This can more than likely be

attributed to the random nature in which M is generated each time (see

the definition of Algorithm 1 above).

4.4.2. Algorithm Computational Cost

10 15 20 25 30 35 40 45 50

0

1

2

3

4

5

6

7

Matrix Size

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d
s)

Algorithm 1 (Size 50 Matrix Count 8)

Avg. Execution Time

Figure 2. Algorithm 1 Computational Cost

Algorithm 1 performs rather well within the confines of the parameters of

this thesis. It should be noted however that each time the size is increased

52

above the size of twenty, the time for each successive matrix to complete

begins increasing exponentially.

As the size of matrices increases, this algorithm will quickly become to

inefficient to use in practical applications.

53

4.5. Algorithm 2.

4.5.1. Algorithm Accuracy

10 15 20 25 30 35 40 45 50

0

1

2

3

4

·1015

Matrix Size

D
is

ta
n
ce

Algorithm 2 (Size 50 Matrix Count 8)

Avg. Best Solution Distance
Avg. Worst Solution Distance

Figure 3. Algorithm 2 Accuracy

Algorithm 2 has a very large disparity between the best and worst average

distances as the size of the matrices grows, especially with matrices larger

than forty. Past forty, the worst distance diverges greatly from the best

solution distance for reasons that are unknown at this time.

54

10 15 20 25 30 35 40 45 50

0

1

2

3

4

5

Matrix Size

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d
s)

Algorithm 2 (Size 50 Matrix Count 8)

Avg. Execution Time

Figure 4. Algorithm 2 Computational Cost

4.5.2. Algorithm Computational Cost

Algorithm 2 performs rather well within the confines of the parameters

of this thesis, and the trend as the size of the matrices grows is more linear

in contrast to Algorithm 1.

55

4.6. Algorithm 3.

4.6.1. Algorithm Accuracy

10 12 14 16 18 20 22 24 26

0

2 · 1012

4 · 1012

6 · 1012

8 · 1012

1 · 1013

1.2 · 1013

1.4 · 1013

Matrix Size

D
is

ta
n
ce

Algorithm 3 (Size 25 Matrix Count 8)

Avg. Best Solution Distance
Avg. Worst Solution Distance

Figure 5. Algorithm 3 Accuracy

Algorithm 3 displays a consistent and smooth increase in distance for

both the best and worst average solutions in each size of the matrices that

were tested.

The best solutions have a more consistent average with less variability

between data points. The average worst solutions (highest distance) overall

increase in a linear (albeit steeper) fashion, but there are a few outliers

56

where in some instances the distance between M and M ′ at the next larger

size matrix is less than the previous size matrix distance between M and

M ′. This can more than likely be attributed to the random nature to which

M is generated each time as (see the definition of Algorithm 1 above).

If there were more matrices generated in each matrix size, this variabil-

ity would likely be greatly reduced as the number of samples to average

against is increased, but the computational cost of this algorithm makes

this prohibitive.

4.6.2. Algorithm Computational Cost

Algorithm 3 has a very high computational cost past matrix sizes near

twenty-five and higher. Past this point, the time to compute a given number

matrices of a certain size starts to increase exponentially. At a matrix size

of 25, the time to compute is no longer practical. (Almost 34,000 seconds

for eight matrices of a given size).

57

10 12 14 16 18 20 22 24 26

0

10,000

20,000

30,000

40,000

50,000

Matrix Size

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d
s)

Algorithm 3 (Size 25 Matrix Count 8)

Avg. Execution Time

Figure 6. Algorithm 3 Computational Cost

4.6.3. Modeling of Increasing Algorithmic Complexity

10 12 14 16 18 20 22 24 26

0

200,000

400,000

600,000

800,000

1,000,000

Matrix Size

M
at

ri
ce

s
to

b
e

ev
al

u
at

ed

Algorithm 3 (Size 25 Matrix Count 8)

Number of matrices to be evaluated

58

The graph directly above shows that as the size of matrix M increases,

the number of matrices to be evaluated increases dramatically past approx-

imately a matrix size of 20. This can be attributed to the fact that based

on the combination of the “span” parameter and the size of the matrix, the

number of combinations of column values increases.

The modeling of this increasing complexity can be defined with the fol-

lowing binomial:

(
n

k

)
=

n!

k!(floor(n/3)− k)!

This binomial represents OEIS Integer Sequence A051033 [7]

59

4.7. Algorithm 4.

4.7.1. Algorithm Accuracy

10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

2,500

3,000

Matrix Size

D
is

ta
n
ce

Algorithm 4 (Size 50 Matrix Count 8)

Avg. Best Solution Distance
Avg. Worst Solution Distance

Figure 7. Algorithm 4 Accuracy

Algorithm 4 displays a consistent and smooth increase in distance for

both the best and worst average solutions in each size of the matrices that

were tested. The increase in distance as the size of the matrices grow is not

quite linear, but definitely not exponential.

It is interesting to note that the distance between the best and worst so-

lutions for each size of matrices are very close to each other compared to the

60

other algorithms that were tested, and the trend for each is complimentary

to the other.

This algorithm also shows very little variability between data points -

the respective distances grow in a very orderly fashion as the size of the

matrices increases.

4.7.2. Algorithm Computational Cost

10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Matrix Size

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d
s)

Algorithm 4 (Size 50 Matrix Count 8)

Avg. Execution Time

Figure 8. Algorithm 4 Computational Cost

Algorithm 4 performs rather well within the confines of the parameters

of this thesis, although each time the size is increased above about the size

61

of thirty, the time for each successive size to complete seems to start in-

creasing exponentially. As the size of matrices increases (perhaps above

one hundred), this algorithm will quickly become too inefficient to use in

practical applications.

62

4.8. Unified view of Algorithm Performance.

10 15 20 25 30 35 40 45 50

0

1

2

3

4

5

6

7

Matrix Size

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d
s)

Algorithm Performance - Time

Algorithm 1
Algorithm 2

10 12 14 16 18 20 22 24 26

0

1

2

3

4

5
·104

Matrix Size

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d
s)

Algorithm Performance - Time

Algorithm 3

63

10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Matrix Size

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d
s)

Algorithm Performance - Time

Algorithm 4

64

5. Conclusions

5.1. Summary. When evaluating which algorithm to use for arriving at a

consistent PC matrix, there are two elements considered in this thesis: The

distance between M and M ′, and the computational cost (with respect to

time) that was incurred to arrive at that solution. In practice, two of these

algorithms were relatively well matched with respect to distance and com-

putational cost, while the other two under consideration lacked the same

performance of the two formerly mentioned algorithms in both distance and

computational cost.

Based on examination of each algorithm’s accuracy and performance,

Algorithms 1 and 4 are the clear winners. Algorithm 2 has fast execution

times that may allow very large matrices to processed, but its accuracy

is much less when compared to Algorithms 1 and 4. The performance of

Algorithm 3 with respect to accuracy rivals that of Algorithm 1 and 2 (com-

paratively), but this relative accuracy comes with a severe computing cost

penalty which makes it prohibitively expensive to run for matrices where

size > 25. Algorithm 4 had the best accuracy of all, but is more than seven

times costlier to run than Algorithm 1.

65

If the most ideal solution is desired, Algorithm 4 can be used if results are

not needed immediately. For slightly less accurate results and significantly

less computational cost, Algorithm 1 is the preferred algorithm.

Name Avg. Best Distance (Size = 50) Execution time (secs)

Algorithm 1 4556 0.211

Algorithm 2 4.76724 4.654

Algorithm 3 (size=25) 24797112 33816

Algorithm 4 3656 47.004

Table 3. Algorithm Performance Summary

66

5.2. Future Directions. Using this thesis as a jumping off point, future

investigation can take several different directions. Future work can involve:

(1) Development of new alternative algorithms for deriving a consistent

matrix from a non-consistent matrix.

(2) Refinement of the algorithms presented in this thesis with respect

to both distance between M and M ′, but especially with regards to

reducing the computing costs involved in Algorithm 3.

(3) Porting of this code to a more high performance programming lan-

guage such as C or C++ for maximum performance.

(4) Implement support for more fine-grained parallelism in the imple-

mented algorithms.

67

References

[1] Condorcet. Essai sur l’application de l’analyse ‘a la probabilité des décisions ren-

dues à la pluralité des vois. Paris, 1785.

[2] Dyer, J. S. Remarks on the analytic hierarchy process. Manage. Sci. 36, 3 (Mar.

1990), 249–258.

[3] Hagele, G., and Pukelsheim, F. Llull’s writings on electoral systems. Studia

Lulliana 41 (2001), 3–38.

[4] Holsztynski, W., and Koczkodaj, W. W. Convergence of inconsistency al-

gorithms for the pairwise comparisons. Information Processing Letters, 59 (1996),

197–202.

[5] Janicki, R. Approximations of arbitrary relations by partial orders: Classical and

rough set models. In Transactions on Rough Sets XIII, LNCS (2011), J. F. P. et al,

Ed., vol. 6499, Springer-Verlag Berlin Heidelberg.

[6] Koczkodaj, W. A new definition of consistency of pairwise comparisons. Mathe-

matical and Computer Modelling 18, 7 (1993), 79–84.

[7] Online Encyclopedia of Integer Sequences. A051033 - OEIS. http://oeis.

org/A051033, 2011. [Online; accessed 5-April-2018].

[8] Saaty, T. L. A scaling method for priorities in hierarchical structures. Journal of

Mathematical Psychology 15 (1977), 234–281.

[9] Sandrasagra, B., and Soltys, M. Complex ranking procedures. Fundamenta

Informaticae Special Issue on Pairwise Comparisons 144, 3-4 (2016), 223–240.

[10] Soltys, M. An Introduction to the Analysis of Algorithms, third ed. World Scien-

tific, 2018.

68

[11] Thurstone, L. L. A law of comparative judgement. Psychological Review 34, 278–

286 (1927).

69

