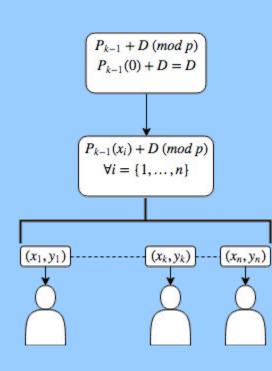
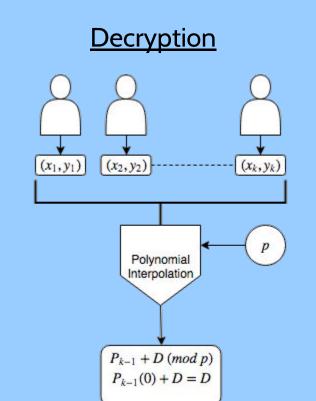
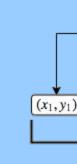

## Securing the Electorate: A Cryptographic Vote

## Introduction

- Using Adi Shamir's cryptographic scheme based off of polynomial interpolation in a finite field as a base, we sought to create a voting system.
- Our application allows for being set up for any organizational structure. e.g.
- A small group of top executives having complete power • Every single member having equal say
- A hybrid of these two structures
- Voting organizations created via the application have the functionality to vote on and sign documents.
- The signing of documents is done via DSA following the guidelines from FIPS 186-4. • Organizations can be made via a interactive designer based in terminal or by a config file.


## **Polynomial Interpolation**



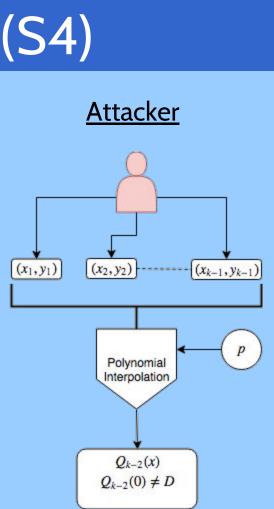




## Shamir's Secret Sharing Scheme (S4)

## **Encryption (Key-Generation)**








## Asynchronous Neville's Method $x_0 \quad y_0 = P_0$ $x_0 \quad y_0 = P_0$ $x_1 \quad y_1 = P_1 \quad P_{0,1}$

| $x_0$ | $y_0 = P_0$ |                       |                     |  |
|-------|-------------|-----------------------|---------------------|--|
| $x_1$ | $y_1 = P_1$ | $P_{0,1}$             |                     |  |
| $x_2$ | $y_2 = P_2$ | $P_{1,2}$ $P_{0,1,2}$ |                     |  |
| $x_0$ | $y_0 = P_0$ |                       |                     |  |
| $x_1$ | $y_1 = P_1$ | $P_{0,1}$             |                     |  |
| $x_2$ | $y_2 = P_2$ | $P_{1,2}$ $P_{0,1,2}$ |                     |  |
| :     |             |                       |                     |  |
| •     | _           |                       |                     |  |
| $x_k$ | $y_k = P_k$ | $P_{k-1,k}$           | $P_{0,\dots,k} = D$ |  |
|       |             |                       |                     |  |

## Ty Danet & Brandon Artner • Professor Michael Soltys • Comp 499

## Sample Run



## • A Terminal application • Voting process which results in documents being signed if a vote passes

Voting Application

| andon@brandon-HP-Notebook:~/Documents/SecretSharingProject\$ python TreeMaker.py < config.txt<br>is is where you set up your organization layout. Enter h for list of commands.<br>>>>>>>Initializing voter for 0 with data:<br>one.       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| vating new DSA pair.<br>Ltializing voter for 0:1 with data:<br>L,1lZfRZicT43"S>]Y^X:p5c{CuoRaAtoc-T@u81:oMw,e+NIM.\$ sUt\*xOGAYdX(L\$H.zu/!kHd0[zL?:hSIOPH6Gns ,S'X(8 &L)g(*I=wZe.jEDH"K]AJMGCd{>*!<br>??'uF3>-]!X-4x18@5au0u2!jA).        |
| :1 has gotten the data:<br>,%RZ%[IJp8Gkvz9VLJp:)>I@*K%AEbXnV9!qclh:#EAy[xyUl;#c?, o7DK?::k9RQGt[5wZ&V"`*#SX>RiX{]\$3A;_8IpZD5KBKMWN\$6cUh5x=`b]wLV)VZ272{!Y^Np(<br>AHHjoJ>p3t41q7;fx9h^`kD/Z).                                             |
| :2 has gotten the data:<br>.R Z>{p+d(X.XlX8sY{F(p9+]h=dW=PTDL-fuySr7;Pw8t=_8L'> TK#pQj"mSQy2%AFQ2E/[.FS1/\RcY4tz0aN.b-Ad^9/25_1%h+oZ\${'v6?(vC<:%*Fq5+Ye+<br> -S[U8_F3.\.t-%ZLJ*rl&)RX).                                                   |
| :3 has gotten the data:<br>,FB!54772C:C^8gP9/"5&Y%!8>1?:VH^l\]4ML{'Ho%toqzr^g,X8B2cH#[J0Tz;@U!CdzElADh#5]sMe8YKqxzTxdo d`^xmz-dLJyuym_wq68L0jE 57a2DH <re[w+q<br>Td%V^#3V4u.VxNTFZ?wWKn9uV).</re[w+q<br>                                   |
| : has gotten the data:<br>;,2HuvfuApi&7zh*>t@r!Oap_/YNek+WMpVj-Yg3!N4\$StR6`5XD&+VkX <o&&[,srrl3c^w)zzwe]q1 *3,!zg`9a]c[kv*thjrkh h3mxlo`'\$utwc=";^z1=+ 4[/r`*PI&lt;br">'3R,nKOr_S<a vq="ScDw([o`=).&lt;/td"></a></o&&[,srrl3c^w)zzwe]q1> |
| has gotten the data:<br>,3# K' SB,cb6+Z.{;^L.fC^m{,&vg^+CD.\${o5L,R6zIxUFSHdT!\/`,u8Xzh_E^oPcDGe0K2ZBD2(eP#LQ*FX!Bjy(]ZA+l^nq iPqOpuGV5 IFWtqD6M.hIRzmF_Zv<br>Ru:dHbpZmN[hsm4:5eM\$h,<'w).                                                 |
| Currently Voting On: None<br>0:1 - Currently Voting On: None                                                                                                                                                                               |
| 0:1:1<br>0:1:2                                                                                                                                                                                                                             |
| 0:1:3                                                                                                                                                                                                                                      |
| 0:3                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                            |
| These images are sample runs of the voting system                                                                                                                                                                                          |
|                                                                                                                                                                                                                                            |

without the gui. Left: A sample of the interactive designing of a voting organization. Right: A sample of a voting session, where one document is signed and another vote is initiated.

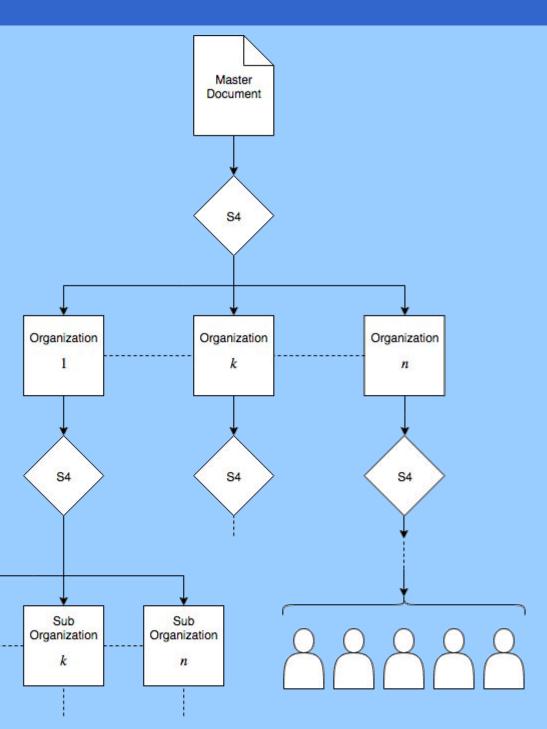
## Level of Security

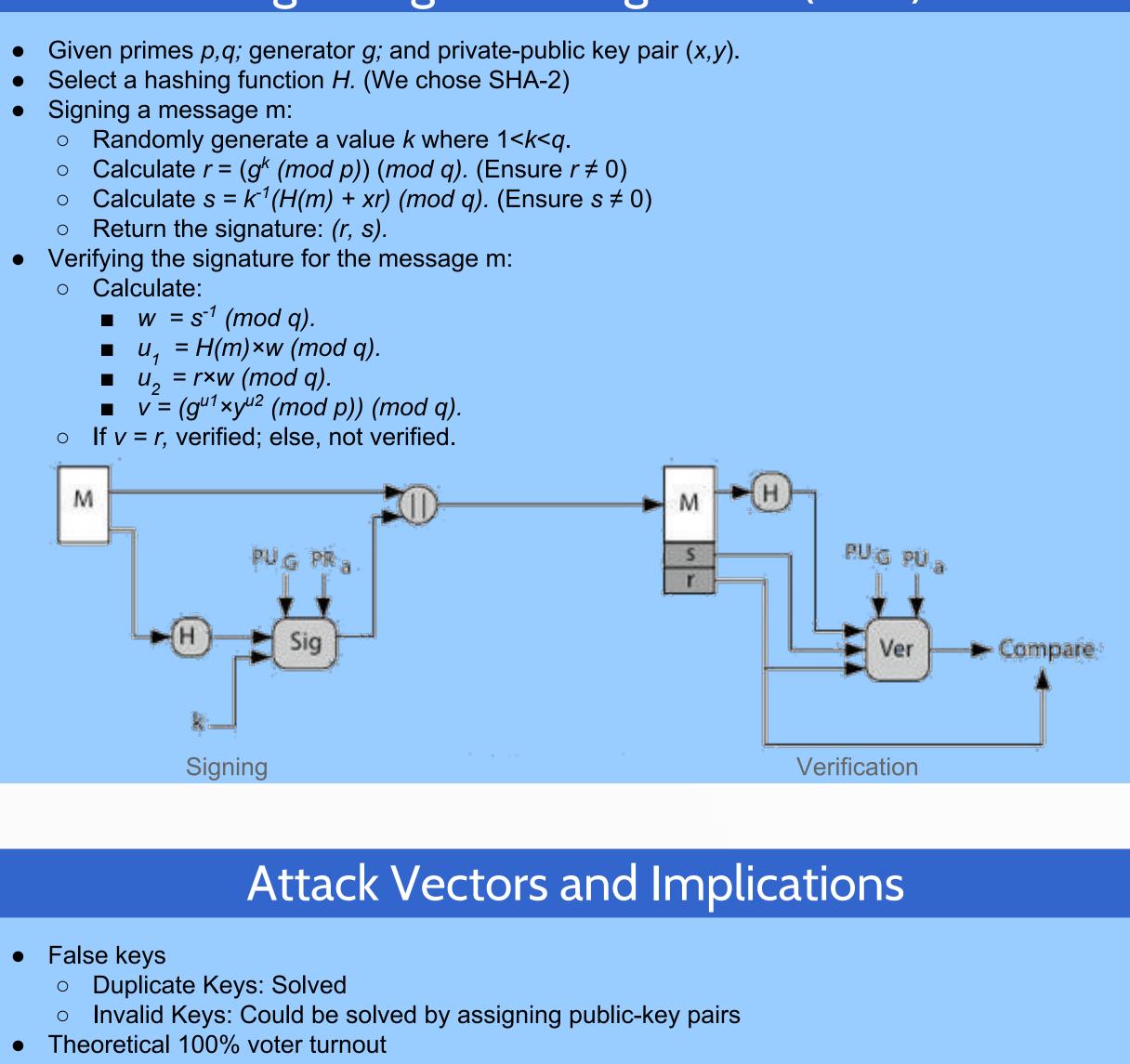
- S4 is both Information-Theoretic Secure and Perfectly Secure. Information-Theoretic Secure
  - Even with infinite computing power S4 could not be broken. • However, since we use the secret data as a private key for DSA signatures, our system loses this quality, but it is still as secure as DSA which is secure.
- Perfectly Secure • If there is ciphertext produced that uses it, no information about the plaintext is provided without
  - knowledge of the key.

## Structure of Voting System

Sub Organization

Shamir's Scheme can be extended into a hierarchical structure. We can simply compute


 $f(x, y) = D_i (mod p),$ which translates a key-pair into an integer, to use as the secret data for the lower tier of the hierarchy.


Then, when voting, to recover the data a reverse function is used,  $g(D_i) = (x, y).$ 

The digital signing for the documents sets is done with DSA as described by DSS.

# • Allows for interactive building of a voting organization or to use a predefined configuration ating a Vote. Enter h for list of commands. ## ote at the root is Non est\_doc2.txt his isn't law.

e at the root is ('test\_doc2.txt', "This isn't law.\n")





- lower in the structure. • Simply make all individual voters exist on the same level

- Further analysis of how secure the cryptography is?
- Convert into a Web App?
- inherit, like federal/state laws

- doi:10.1145/359168.359176. pp. 313-317.
- FIPS 186-4

- Dr. Soltys advisor Maria - Scrum Master
- Adi Shamir The S of RSA

## Digital Signature Algorithm (DSA)

• Since a vote passes only with enough votes, abstention is equivalent to voting no • This makes it difficult for an active minority to pass laws taking advantage of low voter turnout • Any single voter located higher in the voting structure has more power than any single voter located

## Future Work

• Move from simulations on a single machine to simulations using networking

• Have each level inherit the documents from above, and able to make additions that lower levels will

## Literature Cited

• Shamir, Adi. "How to Share a Secret." Communications of the ACM, vol. 22, no. 11, Jan. 1979, pp. 612–613.,

• Blakley, G.R. Safeguarding cryptographic keys. Proc. AFIPS 1979 NCC, Vol. 48, Arlington, Va., June 1979,

• Burden, Richard L., et al. Numerical Analysis. 10th ed., Cengage Learning, 2016.

## Acknowledgements