
Image Recognition: Detection of nearly
duplicate images

A Thesis Presented to

The Faculty of the Computer Science Department

California State University Channel Islands

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

by

Deepa Suryawanshi

Advisor: Dr. Michael Soltys

May 2018

c� 2018
Deepa Suryawanshi
ALL RIGHTS RESERVED

Image Recognition

Deepa Suryawanshi

May 31, 2018

Abstract

Image recognition is used in many applications to detect images

with same or di↵erent image content. This paper proposes image sim-

ilarity measures. Usual method of serving photographs as evidence

has been carried out for over a century. As there is digital infor-

mation revolution, these methods are required to improve with same

pace of time. Digital images are used and recognized in law enforce-

ment as important tools in criminal investigations. The technique

that is used in this paper is designed to identify if the image found

on crime scenes is present in criminal database handled by forensic

departments. Two important features of this thesis include recovering

deleted images from any disk and detection of nearly duplicate images.

Technique used for detection of nearly duplicate images is called as

iimage fingerprinting, also known as image hashing.During criminal

investigations, fingerprint evidence plays an important role. Image

fingerprinting is defined as its literal meaning. As one’s fingerprints

are unique and they represent particular human being, similarly im-

ages have unique image fingerprints. Image fingerprints can be used

to identify particular image in case of crime. Perceptual Hash gives

the result to find image fingerprints. The techniques used in this pa-

per uses di↵erence hash for given images. Hamming distance is used

to check the images which are almost similar with slight modification.

Fingerprints of images don’t change if an image is re-sized, compressed

or expanded. Di↵erence hash is used to identify such images. But if

image is cropped or if image is taken from di↵erent angle then ham-

ming distance is required. The paper also talks about di↵erent tools

required to recover deleted images.

Contents

1 Background 1
1.1 Digital Images . 1

1.1.1 Pixel . 1
1.1.2 Categories . 2

1.2 Digital Images types . 4
1.2.1 Binary Images . 5
1.2.2 Grayscale images . 6
1.2.3 Color images . 7
1.2.4 Multispectral Images 9

1.3 Image storage in computer . 9
1.4 How computer reads images 10

2 Introduction 12
2.1 Motivation . 12

2.1.1 Content-based image retrieval 12
2.1.2 Search Engines . 14

2.2 Problem Statement . 16
2.3 My Contribution . 17

2.3.1 Detection of nearly duplicate images 17
2.3.2 Recovery of deleted images 24

3 Related Work 26

4 Algorithm 30

5 Implementations 33
5.1 Part 1: Recovery of deleted images 33
5.2 Part 2: Detection of nearly duplicate images 39

5.2.1 Approach 1 . 39
5.2.2 Approach 2 . 44

6 Applications 56
6.1 Detection of nearly duplicate images 56
6.2 Recovery of deleted images . 57

i

7 Conclusion and future work 59
7.1 Future Work . 59
7.2 Conclusion . 60

ii

List of Figures

1 Pixalated image . 1
2 Bitmap(Raster) Image . 3
3 Vector Image . 4
4 Binary Image . 5
5 Grayscale Image . 5
6 Representation of Binary Image 6
7 Examples of Grayscale Images 7
8 R,G,B layers . 8
9 Example of color image . 8
10 Spectral information from the same image[?] 9
11 Non-identical images with same name 13
12 Identical images with di↵erent name 13
13 CBIR system algorithm . 16
14 Similar images . 18
15 Hash of di↵erent images . 19
16 Di↵erent Hashing algorithms 20
17 MD5 for almost similar images 21
18 d-hash for almost similar images 22
19 General framework of Content-based image retrieval 26
20 Illustration of di↵erent query schemes with the corresponding

retrieval results . 27
21 Detection of nearly duplicate images 30
22 FTK Imager: Step 1 . 34
23 FTK Imager: Step 2 . 34
24 FTK Imager: Steps 3 and 4 35
25 FTK Imager: Steps 5 and 6 35
26 FTK Imager: Steps 7 and 8 36
27 Autopsy: Steps 1 and 2 . 36
28 Autopsy: Steps 3 and 4 . 37
29 Autopsy: Step 5 . 37
30 Autopsy: Image recovery details 38
31 Result for Approach 1 to detect similar images 43
32 Result for Approach 2 to detect similar images 48
33 Input test image . 49
34 Result images . 50

iii

35 Result images for dataset of 1000 images for query image as
Ei↵el tower. 52

36 Query image: Human face . 53
37 Results for Query image: Human face 53
38 d-hash for similar images where one image inverted.Hamming

distance is calculated to be 16. None of the bits match. 55

iv

1 Background

Images are center of attraction for this paper. Main attributes of the pa-
per, ’Recovery of deleted images’ and ’Detection of nearly duplicate images’,
works entirely around digital images. As the paper talks about digital im-
ages throughout the paper, we should know what these digital images are and
what di↵erent file formats exists. For recovery of deleted images, we should
know how they are stored in computer and how computer reads them.

1.1 Digital Images

Computer files (e.g. digital images) are stored as digital information. When
an image is stored, a computer converts this image into digital code for
storage. Images are digitized meaning they are stored in bits of 0s and 1s.
One byte of information is one pixel. Image is made up of pixels arranged
in di↵erent fashion. The arrangement of pixels gives the image color, shades
and shape.

1.1.1 Pixel

A Pixel is the smallest unit of digital image. The name is derived from
’picture element’[?]. Many pixels combined together forms a picture. For
example, pixelated image is shown in figure 1:

Figure 1: Pixalated image

1

1.1.2 Categories

Images can be divided into two broad categories: Pixel Images and Vector
Images[?]. A bitmap is a method to store images. It is a map of bits and
location of where they are stored. Most of the file formats that are used for
detection nearly duplicate images fall under bitmap images.

Pixel Images/Bitmap Images

Bitmap images are pixel-based images. They are typically used for photos
and printed design materials. Each pixel store di↵erent color. Some of the file
types are JPEG, GIF, TIFF, PNG. New formats are constantly developed to
address the growing graphic image needs. Each format uses di↵erent types
of digital data to represent, store and display the graphic image[?]. Example
of Bitmap image is shown in figure 2.

Main features for Bitmap images(also known as Raster images) are ac-
counted as follows[?]:

• Bitmap images are pixel based.

• Bitmap images are best for editing photos and creating continuous tone
images with soft color blends which Vector images can not do easily.

• Bitmap images are not scalable.

• File sizes are directly proportional to details in the Bitmap images.

• Some processes are not compatible with Bitmap images.

• Conversion to vector images takes more time compared to conversion
of vector to bitmap images.

• Bitmap images are the most common image format, including: jpg, gif,
png, tif, bmp, psd, eps and pdfs originating from raster programs.

• Common raster(bitmap) programs: photo editing / paint programs
such as Photoshop , Paint Shop, GIMP (free).

2

Figure 2: Bitmap(Raster) Image

Vector Images

Vector images are the object which are created by mathematical calcula-
tions. Unlike pixel images, after enlarging Vector images, they do not loose
quality of an image. Vector images are easily edited and re-sized. They are
not used for images. Vector images are typically used for logos, cartoons,
illustrations, icons etc[?]. Example of Vector images is shown in figure 3.

Main features for Vector images include as[?]:

• Objects are created by mathematical calculations.

• Vector images are best for creating logos, drawings and illustrations,
technical drawings and for images that will be applied to physical prod-
ucts.

• Vector images are scalable (without losing quality.

• Vector images can be printed at any resolution.

• Vector images can maintain smaller fie sizes.

3

• Colors can be added or removed easily for various purposes in Vector
images.

• Vector images can be easily converted to Raster(Bitmap).

• Common vector graphic file formats are: ai, cdr, svg, and eps , pdfs
originating from vector programs.

• Common vector programs: drawing programs such as Illustrator, Corel-
Draw, Inkscape (free).

Figure 3: Vector Image

1.2 Digital Images types

There are di↵erent types of digital images [?].They are pixel-based images.
They can be majorly divided as:

• Binary images

• Grayscale images

• Color images

• Multispectral images

4

1.2.1 Binary Images

Binary images are digital images that take two values, either 0 or 1 for each
pixel. It is 1-bit image as its taking only 1 binary digit to represent a pixel.
Binary images can be stored in memory as a bitmap. They are often pro-
duced as result of threshholding of grayscale or color images to separate the
image from background[?]. Figure 4 and figure 5 shows example of binary
image and grayscale image respectively.

Figure 4: Binary Image

Figure 5: Grayscale Image

Binary images are also called as black-white images. The White part of

5

an image is considered as foreground and the black part of the image is rest
of the image.

The representation and simple explanation of the binary images s shown
in Figure 6:

Figure 6: Representation of Binary Image

1.2.2 Grayscale images

A grayscale image is one in where the value of each pixel is a single sample
representing only an amount of light.That is, the image carries only inten-
sity information[?]. They are also called as one-color images. As the name
defines they have one color. Typically, grayscale images contain 8bits/pixel
data.

A grayscale image provides 256 di↵erent gray levels. The darkest shade
is black and the lightest shade is white. Intermediate colors are defined by
equal brightness of RGB for transmitted colors, and CMY colors for refracted
lights where RGB stands for Red, Green, Blue and CMY stands for Cyan,

6

Magenta, Yellow.[?]

Examples of the grayscale image is given in figure 7 as follows:

Figure 7: Examples of Grayscale Images

1.2.3 Color images

Color images are digital images that include color information for each pixel.
Typically, color images are represented as red, green and blue. The informa-
tion stored in digital image data is brightness information in each spectral
band. Color images have 3 values per pixel[?]. Color requires that intensities
for every pixel is specified. Figure 8 shows the three layers of the color image.

7

Figure 8: R,G,B layers

It is stored in memory as a raster map. A raster image or bitmap image
is stored as a dot matrix data structure. Color images have di↵erent file
formats[?]. One of the example of color images with the RGB channels is
shown in figure 9.

Figure 9: Example of color image

The smiley face in figure 9 is a raster image. When enlarged, individual
pixels appear as squares. Zooming in further, they can be analyzed, with

8

their colors constructed by adding the values for red, green and blue.

1.2.4 Multispectral Images

Multispectral images can be a collection of several monochrome images. It
consists of several bands of data. Each band displays a grayscale image or
combination of three bands to give color image. The spectral bands used
in multispectral images are represented with red, blue and green channel[?].
Typical example is RGB color image. The information in them is not visible
to human eyes.

Figure 10: Spectral information from the same image[?]

1.3 Image storage in computer

As mentioned in background of digital images, all the digital images are
stored as digital information. Images are digitised. One byte of information
is one pixel[?]. Number of bits represent how many colors are available for
each pixel. In black and white images only 1 bit is required.

9

0 White
1 Black

2-bits gives four colors:

00 White
01 Light grey
10 Dark grey
11 Black

For n-bits, there can be 2n colors. This relationship is defined by color
depth. Below is a listing of all of the di↵erent color depths over the history
of computers.[?]

n 2n colors Display
1 2 Monochrome Display
2 4 CGA Display
4 16 EGA Display
8 256 VGA Display
16 65539 XGA Display
24 16777216 SVGA Display

1.4 How computer reads images

Every computing device have the storage memory that is used for storing
information. Di↵erent technologies are used to store data by storage de-
vice. The technology of storage device decides how you read the image.
A controller on the storage device sends the data to the motherboard. The
motherboard send the data to operating system. The operating system stores
the data on the disk depending on the file system it is using.

Color digital images are made of pixels. Pixels are made of primary colors
represented by a series of code. Channel is grayscale made of one primary
color with same size as color image. Color image is made of thee channels of
Red, Green and Blue. Most images are stored with colors varying from 0-256
for each of Red, Green, Blue channel as data is grouped by 8 bits. 1 byte is
8 bits. 3 groups of 8 is 3 bytes where the first byte represents the amount

10

of red, the second the amount of green and the third is for the blue. Combi-
nation of these bytes gives particular color to pixel and it also composes an
image.

Example of raw image in bits where first pixel is Red:

11111111 00000000 00000000
Red Green Blue

Similarly, example of raw image in bits where first pixel is Green:

00000000 11111111 00000000
Red Green Blue

And example of raw image in bits where first pixel is Blue:

00000000 00000000 11111111
Red Green Blue

11

2 Introduction

This thesis is divided into two parts. Small portion of it focuses on recov-
ery of deleted images discussed in 2.3.2 and detection of duplicate images/
nearly duplicate images/ almost identical images discussed in 2.3.1. The idea
of detection of nearly duplicate images can be proposed by other established
techniques such as content-based image retrieval.

2.1 Motivation

2.1.1 Content-based image retrieval

Content-based image retrieval (CBIR) is the application of computer vision
techniques to the image retrieval problem. That is, CBIR is the process of
searching for digital images in large databases. Content-based means the
search carried out based on contents rather than metadata of the image.
Metadata refers to data about data. In this case, data is image. Data
about image can be keywords, tags, or descriptions associated with the im-
age. CBIR searches image based on the image content than its metadata.[?]

The problem with searching only metadata is that two images can have
the same name or keywords but they don’t have to be identical. Images are
said to be the same if they have same image details.

12

(a) Calvin and Hobbes Image (b) Calvin and Hobbes Image

Figure 11: Non-identical images with same name

In figure 11, two images are shown. Each have identical metadata but
are di↵erent. CBIR will show this as non-identical images even if metadata
is same.

(a) Calvin and Hobbes Image (b) Funny Image

Figure 12: Identical images with di↵erent name

In figure 12, two identical images are shown. With traditional text-based
searching methods, these images will be considered di↵erent images as they
don’t have same metadata. This will give false negatives which are di�cult
to avoid.

13

CBIR fits perfectly in our problem statement. Interest in CBIR increased
because metadata based systems gets limited in searching and there is huge
data demand to be retrieved. To search an image with name or tags or key-
words is easy, but if two similar images have di↵erent description then this
search will give false results. Thus, there is need of a technique where images
can be searched based on their contents.

Many CBIR systems have been developed, but the problem of retrieving
images on the basis of their pixel content remains largely unsolved.

2.1.2 Search Engines

There are many text based search engines. One popular example is Google.
Others include Bing, DuckDuckGo, Yahoo etc. It works on texts. You have
to type words and it gives you result based on those words. Image search
engines works di↵erently. You can not use texts. You have to feed image as
query. Image search engines can be of di↵erent types, but mostly they can
be of three types: Search by metadata, by example, or hybrid approach. [?]

1. Search by MetaData

Search by metadata is like normal keyword text search. It doesn’t check
the contents of the image. They rely on textual data such as annota-
tions and tagging given to image and contextual hints like texts which
are near images. It works as normal text based search. The actual
image is hardly processed, which defeats the purpose of searching by
the image.

Flickr is one such example where images can be searched with tags,
annotations, or the contextual hints. When an image is uploaded to
Flickr, tags must also be submitted to an image.

2. Search by Example

Search by Example depends on contents of the image. Images are
analysed, quantified and stored. This is also called Image search en-
gine which is based on the CBIR technique mentioned above. It works

14

on the contents of the images and not on textual data of the image.

Examples of ’Search by Example’ are discussed in Chapter 6. One of
those examples is TinEye,is a reverse image search engine. It takes
image as query input and it gives all the results of similar images. It
searches with the contents of the images. It also gives the webpage or
path of the image where the image is posted. This system is hard to
develop. But once it is built, human intervention is not required.

3. Hybrid search

Some systems can be developed not only on text-based search or only
on content-based search, where both techniques are required for some
searches. Twitter is one such example, where photos can be uploaded
along with tweets.

Common steps for any CBIR system:

Step 1: Defining your image descriptor

Step 2: Indexing your dataset

Step 3: Defining your similarity metric

Step 4: Searching

Figure 13 shows the steps used by CBIR system.

15

Figure 13: CBIR system algorithm

Figure 13 gives the algorithm for CBIR. When query image is submitted
by user. Its features are extracted by di↵erent methods, like machine learn-
ing or pattern recognition etc. Database of features is maintained seperately.
Features from query imageis compared with all the features in database of
features. If there is similarity then reults are shown. This algorithm is what
we need for the problem statement discussed in 2.2.

2.2 Problem Statement

Forensic departments believe that anything can be evidence if it is present
at a crime scene. They also believe that criminals ought to leave evidence
behind even though they try to clean the place rid of evideneces. Digital
images are very di�cult to trace. Digital images in many cases can be used
as evidence. They are already using digital image forensics to identify suspi-
cious pirated copies of digital images. There are many techniques available
too, like object recognition, panoramic image stitching, image mosaicingand
near duplicate image detection[?].

There are requirement of image detection which are found at a crime
scene. When images are recovered from crime scenes, they can be used as
evidence if they are connected to other crimes. Forensic departments main-
tain huge databases of images saved with keywords and tags. So, if this image

16

is found in the database, let’s say under keyword of kidnapping, then this
image can be connected with the crime. This will strengthen the evidence[?].

Also, first thing criminals try to do is wipe all possible evidence includ-
ing papers, documents, harddisks, thumb-drives, etc. If the hard disks are
cleaned in a hurry, any criminal will just shift + delete everything or format
the disk or pen-drive. If harddisks are not overwritten and only wiped clean,
then the files can be revived. There are many free tools for that, which will
be discussed in Chapter 6.

2.3 My Contribution

This thesis focuses on the shortcomings faced using digital images as evidence
in cases of crimes. This thesis focuses on two main attributes, ’Detection of
nearly duplicate images’ and ’Recovery of deleted files’. Recovery of deleted
files is easy with the right tools. Steps to recover deleted files are included
in chapter 5. This research shows why permanently deleted files can be re-
covered.

Main focus is on the detection of nearly duplicate images. Dataset in-
cludes 1000 images with 101 di↵erent categories. This thesis also includes the
creation of a dataset with pyhton platform for di↵erent images with random
sizes. I worked with these images to create shelve (persistent, dictionary-
like object)of hashes of images and filenames. But as the use of shelves is
deteriorated with new versions of python, it didn’t show desired results for
identical images with di↵erent file formats. This issue was resolved when I
created the array and saved hash and filename in the array.

2.3.1 Detection of nearly duplicate images

This section focuses on finding the image in criminal database using image
fingerprints. Image fingerprints are also called as hash. There are di↵erent
types of hashes. I have studied di↵erent types of hashes which are discussed
in this paper. With their unique features and by testing images with all the
techniques, I chose the techniques I have discussed later in the paper. Foren-
sic departments maintain the database of images which are already related

17

to crimes. If, at crime scene, an image is found and this image can be found
in the criminal database, this image can be entered into evidence.

The purpose of this research is to check if an image is in database. This
is simple if both the images(one image which we found on crime scene, other
image in criminal database)are identical. But two images can be the same
even if they are not identical. The human eye can tell if images have simi-
larities, but asking a computer requires more work.

Figure 14: Similar images

Figure 14 shows that these two images have similar details and are con-
nected to each other. However, finding similarity in such images is not
straightforward. Image fingerprinting is the solution for such problems. It
requires testing of di↵erent images with di↵erent types of hashing algorithms.

• Hashing

From this thesis, I would like to state that hash function is a function
that takes relatively arbitrary amount of input and produces output of
fixed size. Hash functions help to maintain the security and integrity of
input. This topic requires the properties and basic knowledge of hash
functions which will be discussed shortly.

18

My study of hashing included the definition of hashing as use of hash
functions to verify that an image is identical to the source image. Hash-
ing is like a digital fingerprint for a file(Image fingerprinting). As two
people can not have identical fingerprints, similarly, it is unlikely that
two images will have similar hash. The type of hash determines the
length of hash. It is mathematically derived. Only identical images
have same hash. Following images have similar but very varying details.
These images give di↵erent hash value. There is need to improvement
to show that these images have similar details.

Image Hash Value

0b07071193172533

3e1edf4b4f5b95a3

Figure 15: Hash of di↵erent images

Hash is a function that takes as input objects and outputs a string or

19

number. A hash function is a function that takes an input and pro-
duces a value of fixed size.

I calculated hashes of similar images which came out to be di↵erent to
check their similarity. Both the images are of comic characters, Calvin
and Hobbes, but in both the images they are doing di↵erent things
which changes the details of the images. Hash value of such two im-
ages is di↵erent as shown in Figure 15.

• Types of hashing algorithms

Some of the common cryptographic hashing algorithms for encryption
are SHA1, SHA256, MD5. These algorithms are used for encryption.
Hashing is used in many other areas of digital study such as download
confirmation and encryption. They are used for file verification, pass-
word storage.

For image hashing, most known hashing algorithms are a-hash, p-hash,
d-hash, w-hash. To apply these hashes to any image, image is converted
to grayscale. a-hash (average hash) calculates the mean and binarize
the grayscale based on the mean. This binary image is converted into
the integer. p-hash (perceptual hash) uses discrete cosine transforma-
tion on grayscale image. Similarly, d-hash uses gradients and w-hash
uses wavelet transformations.

Cryptographic hashing algorithms Image hashing algorithms
SHA1 a-hash
SHA256 p-hash
MD5 d-hash
DSA w-hash

Figure 16: Di↵erent Hashing algorithms

Choosing which type of hash depends on its inherent properties and
the results we want. We can choose between a-hash, p-hash, d-hash or

20

w-hash instead of cryptographic hashing algorithms.

• Image Hashing and Cryptographic Hashing

During digital investigation, classic hashing techniques such as MD5,
SHA1, or SHA256 are commonly used to index large quantities of im-
ages in order to detect copies in di↵erent archives. These hashing tech-
niques are di�cult to use if we want to find other duplicates. These
techniques are not suitable if an image has changed by even a bit, then
the hash value changes altogether. In case of crime scenes, there is more
probability of having two similar content images. These techniques will
give totally di↵erent hash for both images. Examples for such similar
content image is shown in figure 17 and figure 18.

Image MD5

6F6C390BD5AB87529613A58EDCB2B57A

C08D51AD4C203319B8EDDED0FDF4449C

Figure 17: MD5 for almost similar images

I calculated the Hash for two almost identical images as shown in figure

21

17. One is the colored image and the other is black and white image
which makes both images di↵erent. This lead to change the MD5 hash
for both the images as shown above. As the first bit is changed , the
whole hash value changed for above image. I tested di↵erent types
of images with di↵erent algorithms. With the observation, it can be
concluded conclude that these types of hash functions are helpful to
observe the changes in data like message exchanging securely. In such
cases, these functions are known to provide security , authenticity and
integrity of messages sent or received.

We need hash value that should not change over small detail to in-
crease the accuracy of searching similar images. Hash value for an im-
age should remain same irrespective of its format or resolution. Even if
the details of the image are changed but images are almost same then
hash value should not change much.

Image d-hash

3e1edf4b4f5b95a3

3e16df4b4b5b9183

Figure 18: d-hash for almost similar images

22

I calculated d-hash of two images as shown in figure 18. We can see
that images are identical. The di↵erence between them is that one is
colored image and other one is Black and White image. Observe the
hash value. Starting from first bit, 4th, 10th,14th, 15th bit is changed
in 16 bit hash value. Hamming distance is 4 as only 4 bits are changed.
Hamming distance is discussed shortly. Test results can verify that
these two are identical images even if one image has gray background.

The techniques that are developed are perceptual hash, di↵erence hash,
average hash, wavelet hash. They are used to:

– find duplicates very fast. Instead of searching for the whole image,
you will look for the hash of the image.

– finding similar images.

The second image is black and white version of the first image in figure
18. They are the same. MD5 gives the hash totally di↵erent for two
images whereas d-hash gives almost similar hash. This property of d-
hash makes it suitable for the research purpose of this subject. Python
has all the hashes implemented in the library.

• Hamming Distance

To compare hash values, hamming distance is used. The Hamming
Distance is a number used to denote the di↵erence between two binary
strings.

Calculation of Hamming distance

There are some steps we have to take to calculate hamming distance
of two binary strings.

1. Two strings should be of equal length

23

2. Compare the bits in each string. If they are the same, then write
’0’ and if they are di↵erent, then write ’1’.

3. Add all 0s and 1s , we got in step 2 above. This is Hamming
Distance.

Basically Hamming distance means how many bits are di↵erent in given
two strings.
Example:

string1 : 0011 1100 0001
string2 : 0110 1010 0101
Compare : 0101 0101 0100

Hamming Distance = 0+1+0+1+0+1+0+1+0+1+0+0 = 5

Hamming distance 5 means , string is di↵erent in 5 bits. This can be
used when images are similar but not identical. We can put threshold
on hamming distance (i.e. if hamming distance is less than, let’s say,
6, then images contain similar details).

2.3.2 Recovery of deleted images

This thesis also discusses recovery of deleted images. To understand how im-
ages are recovered, we have to know how they are deleted and what happens
when images are deleted.

The deleted images

Generally if files are deleted, they end up in temporary holding space i.e.
recycle bin. They can either be recovered or deleted from Recycle Bin to
reclaim the disk space it was using previously. But if they are deleted even
from Recycle Bin, they are considered to be permanently deleted. But this
doesn’t happen in reality. Images or files can be recovered even if they are
not present in Recycle Bin.

Operating systems keep track of files with the help of ’pointers’. Pointers
tell where the file is. It tells where the file starts and where it ends. Every
file on the computer has pointer. When the file is deleted, operating system

24

simply removes the pointer and marks the sector ’Available’ which contains
that file. Practically, a file is not present but it technically is still there.

The file is there until the OS overwrites it with another data. If the files
are recently deleted then they can be recovered. In order to recover a deleted
file every sector that included data for that file must be in its original con-
dition. If small part is overwritten, then file may get corrupt. But there is
chance with images. Even if they are partially overwritten, then also there
are tools that can recover them partially which still can be helpful as evi-
dence. The human eye can analyse partially recovered photo.

Restoring Images

As we discussed in previous section, we can recover these images if they
are not overwritten by the OS. There are ways that these images can remain
deleted and un-recoverable. But we will be discussing about recovery of such
images. I recovered deleted images with di↵erent scenarios such as

• When they are deleted from computer.

• When they are deleted from HDD.

• When they are deleted from pendrive.

• When they are deleted from SSD.

Deleted images can be recovered from all the above scenarios. There are
di↵erent tools which will be discussed in 5.1. Tools such as Piriform Recuva,
IOBit undelete, TestDisk and PhotoRec, Autopsy, FTK Imager etc. Yodot
Hard Drive recovery tool is easier to recover deleted data of SSD. Data from
phones can be recovered too. Some programs are with good GUI and some
have good reliability and speed. Since many of the tools are free, its easier
to recover images. Only creating image of hard disk can be time consuming.
It depends on the size of hard disk. The more the size, more time it takes to
create image.[?]

25

3 Related Work

Detection of Near duplicate images is part of image recognition. The ways
that it can be carried are varied. It can be seen as clustering problem.
There are di↵erent techniques which influenced detection of nearly duplicate
images.

1. CBIR: Content-based image retrieval

As popularity of digital devices with camera has increased, digital pho-
tos have gained importance in every field. Forensics also give impor-
tance to digital image and use it as evidence against many cases. They
use CBIR for forgery of images, duplication of images, etc. Textual
information is inconsistent when searching for images. CBIR has been
preferred over the year and is making advances.[?]

CBIR works on content based search. Key problem is measuring sim-
ilarity between images e�ciently, in this case, feature(content) extrac-
tion. In early CBIR system, global features are image content described
by color, shape, texture, structure, etc. Similarly, instead of feature or
content matching we can take some features of the image that won’t
change. Image fingerprint can be used as content of the image. We can
compare hash (image fingerprint) of the image to detect similarity.

[?] discusses about key terms of content based image retrieval. Figure
29 shows general framework of CBIR and figure 20 shows the di↵erent
query schemes with corresponding query results.

Figure 19: General framework of Content-based image retrieval

26

paper [?] talks about the query formation as query by example image
is most intuitive query formation. User has an example image at hand
and would like to retrieve more or better images about the same or
similar semantics.

Figure 20: Illustration of di↵erent query schemes with the corresponding
retrieval results

According to author of the paper[?], The above query formations, figure
20, are convenient for uses to input but may still be di�cult to express
the user’s semantic intention. This kind of query is specially suitable for
searching 1generalized objects or scenes with context when the object
recognition results are ready for the database images and the queries.
As the problem statement discussed in 2.2, We can use part of CBIR
algorithm shown in figure 20. Query formation can be carried out with
example image shown in figure 20.

Paper on ’Content based Image Retrieval (CBIR) System for Diagnosis
of Blood Related Diseases’[?] shows the working of how CBIR is used
to find similar images. They used similar algorithm given in figure
13. According to paper[?], Despite various CBIR developments, med-
ical images in di↵erent fields are very particular and require a specific
design of CBIR systems. There exists a large number of medical im-
age acquisition devices among which computed tomography scanners
(CT), magnetic resonance imagers (MRI), ultrasound probes (US) and

27

nuclear imagers are the most widely used. Imaeges are very di↵erent
in case of resolution, contrast, signal to noise ratio.

Paper on ’Similarity-Based Online Feature Selection in Content-Based
Image Retrieval’[?] discusses CBIR and feature selection. To apply the
proposed feature selection method in region-based image retrieval sys-
tems, we propose a novel region-based representation to describe images
in a uniform feature space with real-valued fuzzy features. Our system
is suitable for online relevance feedback learning in CBIR by meeting
the three requirements: learning with small size training set, the in-
trinsic asymmetry property of training samples, and the fast response
requirement. Extensive experiments, including comparisons with many
state-of-the-arts, show the e↵ectiveness of our algorithm in improving
the retrieval performance and saving the processing time.

2. Duplicate image detector

There are sites which are required to implement a duplicate image
detector to avoid importing dupes into large image store. For exam-
ple, Jetsetter[?], they have huge database of high resolution of travel
photos. For storage purpose, this algorithm helps to minimize all the
duplicates. They follow same d-hash perceptual hashing algorithm.
There are some other examples too, like IconFinder[?]. Many icons are
uploaded at iconfinder.com. It increases risk of piracy too. To avoid
it, they came up with duplicate image detection technique where they
use d-hash algorithm.

Python has image hashing library called ’ImageHash’. It supports av-
erage hashing, perception hashing, di↵erence hashing, wavelet hashing.
All the hashing algorithms are designed di↵erently for di↵erent uses.
Algorithm of di↵erence hashing helped me improve the algorithm for
better results.

3. Duplicate photo cleaner

Duplicate Photo Cleaner[?] is an advanced app to find and manage du-
plicate and similar images. The algorithm for duplicate photo cleaner
compares query images just like a human would, which means that it
finds more duplicates and similar photos. App lets the user control

28

program’s settings and can specify the level of similarity that is su�-
cient to consider photos to be duplicates. Then they can be compared
manually to keep best shots and delete the rest in a click.

Duplicate Photo Cleaner uses Content-Based Image Retrieval. CBIR
analyzes actual image content and uses the information gathered to
compare images. This way Duplicate Photo Cleaner compares images
that were re-sized, edited, cropped and converted to other formats.

29

4 Algorithm

The algorithm for image recognition is simple. The steps are divided into
three parts which is shown in figure 19. First, there will be database of im-
ages. A new database is created where hash values of these images are stored.
When we have index image, the hash value of this image is calculated and
that hash value is checked in database. If this value is present in database
then it is present in the database . But in the case of near duplicate images,
we can compare this hash value with other hash values and will present those
which are almost similar.

Figure 21: Detection of nearly duplicate images

What type of hash value we should take is an important question. There
are di↵erent perceptual hashing algorithms. d-Hash algorithm is most suit-
able for my thesis. d-Hash computes the di↵erence in brightness between
vertically adjacent pixels[?].

The algorithm includes:

30

Step 1: Grayscale the image.

Step 2: Normalization of the image.

Step 3: Comparing adjacent pixels vertically.

Step 4: Convert the di↵erence in bits.

Step 5: Compare hash by Hamming Distance.

Step 6: Show the results for those whose Hamming distance is less than 6.

Grayscale the image:

This is done to reduce each pixel value to luminous intensity value. First
three pixels give intensity value for (red, green, blue), let’s say, (255,255,255).
If the value is (255,255,255), it is white pixel as it is highest gray-scale value.
It will give highest intensity as 255. On the other hand, (0,0,0), a black pixel,
will give lowest intensity on 0. By gray-scaling, we are reducing each pixel
value to its luminous intensity.

Normalization of the image:

We can normalize the image to a standard base size to remove unneces-
sary details and high frequencies which can obstruct later in calculation of
hash value. Fastest way to remove high frequencies is shrinking the image.
An image is shrunk to 9x8 to get 72 pixels. After this re-sizing or stretching
may not a↵ect the hash value.

Comparing vertical pixels:

When we compare vertical pixels of these intensity values , we get an
array of binary values. There are 9 pixels in a column as we discussed in
Normalization of the image. As d-hash works on a di↵erence between verti-
cally adjacent pixels, 9 pixels per column gives 8 di↵erences between vertical
pixel. There are 8 columns of 8 di↵erences. This is calculated to be 64 bits.

Convert the di↵erence in bits:

31

This steps make it easy to store and use hash. The image is converted
into hexadecimal string. If the left pixel is brighter than the right pixel, it is
written as ’1’ otherwise it is ’0’. This is done for every row left to right.

Compare hash by Hamming Distance:

The above step gives the d-hash value. The database is composed of hash
values of all the images. The hamming distance is calculated for a hash value
of the query image and a hash values in database.

Show the results for those whose Hamming distance is less than
6:

If the hamming distance is 0 means there is perfect match. If the ham-
ming distance is 6 or less than 6, then they are almost similar. Hamming
distance of 6 is taken by trial and error method, which can be changed with
respect to details we are looking for in a image.

32

5 Implementations

5.1 Part 1: Recovery of deleted images

Extracting files and/or recovery of critical forensic information is key within
the process of computer forensics. There are many tools that a forensic
examiner may choose to utilize in order to do so. Although this does not
directly relate to recovery of files from a forensic stand point, it can also be
utilized for users who have lost data and want to try their hand at recovery
of information. The focus of this thesis is on Autopsy and how to use the
free tool to recover deleted files.

Before we start, we need to download a few files. These files are free and
enable you to obtain some of the basic bits of information that you will need
in order to obtain files from a forensic image. Be aware that we are also
mounting the images with other software to provide to you that the files that
were deleted are still on the disk we are performing our analysis on.

Autopsy is an easier tool to use and it is free. Before the recovery pro-
cedure starts, we need an image of the harddisk. To take an image of the
Harddisk one can use FTK imager.

Steps to create an image of th harddisk using FTK Imager along with
the images:

• In FTK Imager, select Physical drive as Source. Click Next as shown
in figure 20.

33

Figure 22: FTK Imager: Step 1

• select the drive as shown in figure 21.

Figure 23: FTK Imager: Step 2

• Add Image destination and select destination image type as Raw(dd)
as shown in figure 22.

34

Figure 24: FTK Imager: Steps 3 and 4

• Fill out general information.Select destination folder and click Next as
shown in figure 23.

Figure 25: FTK Imager: Steps 5 and 6

This will give the Image of hard disk. This image can help us recover the
deleted files from this hard disk. This is shown in figure 24.

35

Figure 26: FTK Imager: Steps 7 and 8

Steps to recover deleted files from Autopsy:

• Create new case with case name and path. Fill out the information as
examiner as shown in figure 25.

Figure 27: Autopsy: Steps 1 and 2

• Select ’Disk Image’ in type of data source and path to data source as
shown in figure 26.

36

Figure 28: Autopsy: Steps 3 and 4

• Configure Ingest modules. Click Next. It will add the source to local.
This takes some time depending on the size of hard disk as shown in
figure 27.

Figure 29: Autopsy: Step 5

After data source has been added, it will give you information about how

37

many files were deleted and how much they are recovered which is shown in
figure 28.

Figure 30: Autopsy: Image recovery details

38

5.2 Part 2: Detection of nearly duplicate images

For implementation for detection of nearly duplicate images, I created dataset
of images of di↵erent categories. The dataset I found online is of computa-
tional Vision at Caltech, called Caltech 101[?]. This dataset contains 101
categories and each category contains at least 50 images. This helped me to
work on diverse set and find the similar images.

The common python libraries that I used for the implementation of de-
tection of nearly duplicate images are:

• PIL/Pillow to facilitate reading and loading images. PIL development
is stagnated in 2009. Now, PIL works under Pillow library. Necessary
changes are made to Pillow for it to work properly.

• ImageHash, which contains our implementation of dHash. It gives the
hash of the given images. Hash for di↵erent types of images (jpg, bmp,
png etc) gives same hash for given image. If the resolution of the image
is changed then the di↵erence between two hashes comes out to be very
small.

• NumPy/SciPy, which are required by ImageHash. NumPy is the fun-
damental package for scientific computing with Python.

• Argparse module,it makes it easy to write user-friendly command-line
interfaces. The program defines what arguments it requires, and arg-
parse will figure out how to parse those out of sys.argv. The argparse
module also automatically generates help and usage messages and is-
sues errors when users give the program invalid arguments.

Working on the thesis, I followed two approaches.

5.2.1 Approach 1

In approach 1,coding is divided into three parts:

1. Collection of images and creating dataset using python.

2. Calculating image Hash

39

3. Display image as a result

collect.py

1

2

3 # This code be run with command:

4 # python collect.py --input inputimages --output dataset

5 #inputimages is the folder where I have downloaded 20 random images. dataset is folder where 97 new randomly sized images are created after running the code.

6

7 from PIL import Image

8 import os, os.path

9 import argparse

10 import random

11 import shutil

12 import glob2

13 import uuid

14 from shutil import copyfile

15

16 # construct the argument parse and parse the arguments

17 ap = argparse.ArgumentParser ()

18 ap.add_argument ("-i", "--input", required = True ,

19 help = "input directory of images ")

20 ap.add_argument ("-o", "--output", required = True ,

21 help = "output directory ")

22

23 args = vars(ap.parse_args ())

24

25 #finding image in the given folder

26 for imagePath in glob2.iglob(args[" input"] + "/**/*. jpg"):

27 filename = str(uuid.uuid4 ()) + ".jpg"

28 shutil.copy(imagePath , ’\\\\?\\ ’+os.path.abspath(args[" output "] + "/" + filename))

29 numTimes = random.randint(1, 8)

30 for i in range(0, numTimes):

31 image = Image.open(imagePath)

32 #changing the size of the image randomly

33 factor = random.uniform (0.90, 1.05)

34 width = int(image.size [0] * factor)

35 ratio = width / float(image.size [0])

36 height = int(image.size [1] * ratio)

37 image = image.resize ((width , height),1)

40

38 #saving the image with random name

39 adjFilename = str(uuid.uuid4 ()) + ".jpg"

40 image = image.save (args[" output "] + "/" + adjFilename ,’jpeg ’)

This code gave me the dataset of images with di↵erent sizes created
randomly[?]. Line 26-40 searches images in folder and changes their size
randomly and saves in the folder. This is how I created dataset for the code
given below to find the similar images. Note: all the image formats are sim-
ilar too.

hashdataset.py

1

2 # This code can be run with the command:

3 # python hashdataset.py --dataset dataset --shelve db.shelve

4 # Dataset is the folder of all random images. Shelve will store the hash value and filename in the dictionary

5

6 from PIL import Image

7 import imagehash

8 import argparse

9 import shelve

10 import glob

11

12 # construct the argument parse and parse the arguments

13 ap = argparse.ArgumentParser ()

14 ap.add_argument ("-d", "--dataset", required = True ,

15 help = "path to input dataset of images ")

16 ap.add_argument ("-s", "--shelve", required = True ,

17 help = "output shelve database ")

18 args = vars(ap.parse_args ())

19

20 # open the shelve database

21 db = shelve.open(args[" shelve"], writeback = True)

22

23 # loop over the image dataset

24 for imagePath in glob.glob(args[" dataset "] + "/*. jpg"):

25 # compute the difference hash

26 image = Image.open(imagePath)

27 h = str(imagehash.dhash(image))

28

29 #Save the hash as the key and filename

41

30 filename = imagePath[imagePath.rfind ("/") + 1:]

31 db[h] = db.get(h, []) + [filename]

32

33 # close the shelf database

34 db.close()

After running this code, I created dictionary of hashes in db.shelve. A
shelf is a persistent, dictionary-like object. Values in a shelf can be essen-
tially arbitrary Python objects. This includes most class instances, recursive
data types, and objects containing lots of shared sub-objects. The keys are
ordinary strings. Now main code is to see if given image is in our dataset. I
calculated hash of the given image and then i checked if that hash value is
in db.shelve. If it is there, then it will show the results.[?]

find.py

1

2 #To run this code use following in command prompt:

3 # python find.py --dataset images --shelve db.shelve --query 101 _ObjectCategories /18. jpg

4 #I am trying to search 18.jpg image , which is in 101 _ObjectCategories folder , in dataset

5 from PIL import Image

6 import imagehash

7 import argparse

8 import shelve

9

10

11 ap = argparse.ArgumentParser ()

12 ap.add_argument ("-d", "--dataset", required = True ,

13 help = "path to dataset of images ")

14 ap.add_argument ("-s", "--shelve", required = True ,

15 help = "output shelve database ")

16 ap.add_argument ("-q", "--query", required = True ,

17 help = "path to the query image")

18 args = vars(ap.parse_args ())

19

20 #open shelve database

21 db = shelve.open(args[" shelve "])

22

23

24 query = Image.open(args["query "])

25 h = str(imagehash.dhash(query)) #hash of input image

42

26 filenames = db[h] #check the hash in database

27 filenames = list(set(filenames)) #removes the repeated images

28 print ("Found %d images" % (len(filenames)))

29 for filename in filenames:

30 #image = Image.open(args[" dataset "] + "/" + filename)

31 image = Image.open(filename)

32 image.show()

33 db.close()

This code gives the result for the duplicate images with di↵erent sizes.
Line 25 and line 26 are significant lines of the code which compare the query
image hash and compare it with dataset image hashes which are saved using
shelves.

Figure 31: Result for Approach 1 to detect similar images

Figure 31 shows the result of all .jpg image files as the input image was

43

.jpg digital image. But my dataset had 8 similar images. Other images were
of di↵erent file formats. Only these 4 images are of .jpg format. The problem
with this code is that it doesn’t work for di↵erent types of images.

For examples, if query image is .jpg type and dataset contains of .jpg,
.bmp, .tif, .png. In this case query image of .jpg type will show results of
.jpg types. It won’t show the same image of di↵erent type. The problem
is with shelve. Because of Python semantics, a shelf cannot know when a
mutable persistent-dictionary entry is modified. By default modified objects
are written only when assigned to the shelf They discontinued practice of
shelve in python 3. Some of the features give di↵erent results with shelve.

The problem above was resolved in approach 2. This leads to approach 2.

5.2.2 Approach 2

We will be working on larger database. It’s easier to create tuple for hash
values and image path instead of shelve[?].

imagerec.py

1

2 #To run this code through command prompt:

3 # python imagerec.py --dataset dataset --query 101 _ObjectCategories /18. jpg

4 # 18.jpg image is searched through image dataset.

5

6 from PIL import Image

7 import imagehash

8 import argparse

9 import glob

10 import numpy as np

11 import matplotlib.pyplot as plt

12

13

14 # construct the argument parse and parse the arguments

15 ap = argparse.ArgumentParser ()

16 ap.add_argument ("-d", "--dataset", required = True ,

17 help = "path to input dataset of images ")

44

18 ap.add_argument ("-q", "--query", required = True ,

19 help = "path to the query image")

20 args = vars(ap.parse_args ())

21

22

23 def hamming2(s1 , s2):

24 #Calculate the Hamming distance between two bit strings

25 assert len(s1) == len(s2)

26 return sum(c1 != c2 for c1 , c2 in zip(s1 , s2))

27

28

29

30 def dhash(image , hash_size = 8):

31 # Grayscale and shrink the image in one step.

32 image = image.convert(’L’). resize ((hash_size , hash_size + 1),Image.ANTIALIAS ,)

33 pixels = list(image.getdata ())

34

35 # Compare vertically adjacent pixels.

36 difference = []

37 for col in range(hash_size):

38 for row in range(hash_size):

39 pixel_left = image.getpixel ((col , row))

40 pixel_right = image.getpixel ((col , row +1))

41 difference.append(pixel_left > pixel_right)

42

43 # Convert the binary array to a hexadecimal string.

44 decimal_value = 0

45 hex_string = []

46 for index , value in enumerate(difference):

47 if value:

48 decimal_value += 2**(index % 8)

49 if (index % 8) == 7:

50 hex_string.append(hex(decimal_value)[2:]. rjust(2, ’0’))

51 decimal_value = 0

52

53 return ’’.join(hex_string)

54

55 # loop over the image dataset

56 hashes = []

57 for imagePath in glob.glob(args[" dataset "] + "/*"):

45

58 # load the image and compute the difference hash

59 image = Image.open(imagePath)

60 k = dhash(image)

61 hashes.append ([k,imagePath])

62

63 dbhash = [x[0] for x in hashes] # gives the hash for image

64 path = [x[1] for x in hashes] # gives the path+filename for the image

65

66 #open input image and calculate difference hash

67 query = Image.open(args["query "])

68 ohash = dhash(query)

69 # print(ohash)

70 # print(dbhash)

71

72 #calculate hamming distance for image

73 for hashes ,path in zip(dbhash ,path):

74 ham = hamming2(ohash ,hashes)

75 # Hamming Distance is zero means duplicate image is detected

76 if (ham == 0):

77 image = Image.open(path)

78 image.show()

79 print (" hamming distance is ", ham)

80 print(path)

81 # hamming distance < 11 gives those images which are almost alike

82 elif (ham < 11):

83 image = Image.open(path)

84 image.show()

85 print (" hamming distance is ", ham)

86 print(path)

This code gives the results for any type of image as it focuses on the hash.
Even if image has di↵erent type(jpg, png, tif, bmp), then hash changes by
smaller factor. Hamming distance in this case will be less. I have created
dataset of thousand images. Images are of 100 di↵erent categories. The code
works for near duplicate images.

Line 15-20 creates the argument parsing. The argparse module makes
it easy to write user-friendly command-line interfaces. The program defines
what arguments it requires, and argparse will figure out how to parse those
out of sys.argv. The argparse module also automatically generates help and

46

usage messages and issues errors when users give the program invalid argu-
ments.

Line 23-26 is function to give hamming distance for two images. Line 30-
53 gives di↵erence hash. To calculate the di↵erence hash, images should be
standardized as we want similar hash for near duplicate images. To standard-
ize images, images are grayscaled and shrunk in line 32. They are converetd
to pixels in line 33. These pixels are converted vertically in line 37-41. They
are converted to string to return the hash value.

Next step is to read the images in dataset provided and calculate hash.
Line 59 and 60 reads the dataset image and calculates its d-hash in k. They
are saved in ’hashes’ in 61. Query image is read and hash is calculated in
line 67 and line 68.

Comparison of the query image hash and dataset images hashes is done
from line 76-86. If hamming distance is 0, then images are similar. If ham-
ming distance is more than 0 and less than 11, then images are near duplicate.
Hamming distance can be changed in line 82.

47

Figure 32: Result for Approach 2 to detect similar images

This code was run for same input image and same database that is used
in approach 1. Figure 32 shows 8 image results for the same input image. It
gives result irrespective of the file type which supports our purpose. Since
the background is same for all the images in figure 8, the results are accurate.
For images which are nearly duplicate figure 32 shows the result.

48

Figure 33: Input test image

Following were test results:

49

Figure 34: Result images

For input test image shown in figure 33, these all were resulting images
for hamming distance of 11 and less. As I have said earlier, we can change

50

the hamming distance according to our results. There is scope to improve
the hamming distance in searching nearly identical images. We can see that
resulting images have di↵erent details and all are of di↵erent sizes and mixed
formats, but results were satisfactory. I tested my code over many di↵erent
image types and many di↵erent detailing images. There are some false pos-
itives. For example, if both the images have blue sky, then more hamming
distance gives false positives. False positives can be removed with human
intervention.

Results in figure 32 and 34 are for smaller database of 200 images. I
tested the code for bigger dataset of 1000+ images. Results for test query
image shown in figure 33 are shown in figure 35. In figure 35, result shows
false positives. They can be removed with human intervention. To get more
result on Ei↵el tower with di↵erent contents, i increased hamming distance to
10. Hamming distance of 10 gave me result of other images with white back-
ground or black background or similar background. In case of background
pixel di↵erence i calculated to be same as the background is consistent for
whole image. In case of sky, images have similarity of sky. But that is not the
content we want to retrieve. Solution for this is dataset can be divided with
the help of contents. These results are with the objects. In case of humans,
it shows more accurate results than objects or places as shown in figure 36.

51

Figure 35: Result images for dataset of 1000 images for query image as Ei↵el

tower.

52

Figure 36: Query image: Human face

Figure 37: Results for Query image: Human face

In figure 37, we can see the results for figure 36. One of the image is
of crab which is false positive. This result because of colors in the image.
Human head images have light background and walls are of light olive green

53

shade. If i reduce hamming distance then we won’t get false positive. But in
that case we might end up with false negative.

Accuracy can be tested with inverted images. The algorithm is used for d-
hash. In d-hash di↵erence between adjacent pixel is calculated. Thus, when
image is inverted, the hash of both the images is calculated to be di↵erent.
In figure 38, we can see hashes of inverted images.

54

Image d-hash

c0c0603889386060

f9f9e32ee3f9fcfc

Figure 38: d-hash for similar images where one image inverted.Hamming

distance is calculated to be 16. None of the bits match.

55

6 Applications

It is pivotal to note that when conducting an investigation, every piece of
evidence can be used even if it is remotely related. There is demand for
detection of nearly duplicate images in not only Forensics but in other de-
partments. Same goes with recovery of deleted files. Free tools made it easier
to recover the files you accidentally deleted as well as in case of crimes.

6.1 Detection of nearly duplicate images

The applications of image recognition are wide. There are di↵erent ways
through which this can be carried out. The relatively recent simplicity
with which digital contents can be produced, processed, and distributed has
opened a new era, the all-digital world. Di↵erent techniques depending on
the application of image fingerprinting are introduced. These techniques
brought the new edge to the digital innovations. There are some sites that
uses this algorithm.

Some of them are: Google reverse image search, tineye.com,ImageWiKi,
Bing, eBay, Pixsy, Pinterest etc.

Some ’elite’ dating sites use this algorithm to keep away obscene images
to keep the accounts clean. This algorithm can be used to find the image
results in google database. tineye.com uses this algorithm for image verifica-
tion, matching, or reverse image-search solutions. They state the application
for this MatchEngine algorithm as:[?]

• Travel and booking sites use MatchEngine to verify and update listings
by finding duplicate, low-resolution, and modified images.

• Online marketplaces use MatchEngine to visually identify products,
find duplicates and derivatives, and match source images.

• Dating sites use MatchEngine to build profile verification and blacklist
search solutions.

56

• Insurance companies and resellers use MatchEngine to build fraud de-
tection and prevention tools.

• Trademark o�ces use MatchEngine to speed up the process of identify-
ing infringing trademarks and facilitating new trademark registrations.

Similarly purpose of Google’s reverse image search is to use a picture as
your search to find related images from around the web. When you search
using an image, your search results may include:

• Similar images

• Sites that include images

• other sizes of image which is searched

Basic algorithm for reverse image search follows creation of ’unique and
compact digital signature or fingerprint’ of said image and matching it with
indexed images.

Biggest application of this technique is used in law enforcement by foren-
sic department. As said earlier, forensic departments maintain the huge
database of images which are related to di↵erent crimes. If certain image
found in crime scene matches with the image in such databases then this
image can be used as evidence to support other evidences.

6.2 Recovery of deleted images

Even if the images are deleted permanently from PC, laptop or any hard
disk, then also it can be recovered. Only condition is that it is not a solid
state drive and after deleting file , the disk is not overwritten by other file.
We have discussed why these files are recoverable.

There are many free tools that can be used to recover deleted files. There
are two steps to recovery. First, we need disk image from where the file is
deleted. Second, we need the tool to recover the image or files.

57

Why do they create image of the hard disk? To maintain the authenticity
and integrity of criminal evidence, its data should not be tampered. They
don’t work on original evidence. Imaging helps evidence to be preserved
securely without data being tampered. Some of the tools that are best to
create the image of hard disk are:

For creating image of hard disk

Linux dd SafeBack SnapBack
Xplico SANS SIFT ProDiscover Basic

Volatility CAINE Oxygen Forensics Suite

Some of the free tools that are available are:

For recovering deleted files using image of hard disk

Recuva Puran File Recovery Disk Drill
Glary Undelete SoftPerfect File Recovery EaseUS Data Recovery Wizard

Wise Data Recovery Restoration FreeUndelete

58

7 Conclusion and future work

7.1 Future Work

Once we have database of all the image hashes, we can call the database with
python code.

We will need MySQL driver. The driver can be found at:

https://sourceforge.net/projects/mysql-python/files/

After installing MySQLdb, we can import this library in the code to ac-
cess the images. Here is example of how we can use database in python:

db.py

1 import MySQLdb

2

3 db = MySQLdb.connect(host=" localhost", # your host , usually localhost

4 user="john", # your username

5 passwd =" megajonhy", # your password

6 db=" jonhydb ") # name of the data base

7

8 # you must create a Cursor object. It will let

9 # you execute all the queries you need

10 cur = db.cursor ()

11

12 # Use all the SQL you like

13 cur.execute (" SELECT * FROM YOUR_TABLE_NAME ")

14

15 # print all the first cell of all the rows

16 for row in cur.fetchall ():

17 print row[0]

18

19 db.close()

Also, same concept can be extended to videos. It can follow the same
algorithm as image fingerprints.

59

7.2 Conclusion

In this paper, we have presented the study and implementation of nearly
duplicate images and recovery of deleted files. We have evaluated images
of all di↵erent types. This paper presents noval approach towards finding
nearly duplicate images and can be extended to study of audio and video
fingerprinting.

Di↵erent hash can be used for this study, e.g. a-hash, p-hash, d-hash.
a-hash takes longer time to load and scale images as averaging pixels takes
more time than taking di↵erence which is carried out in d-hash. In case of
accuracy, p-hash gives best results. But in case of performance it lags behind
d-hash. d-hash may give some false positives which can be disregarded by
human intervention.

I believe this can be used for more than thousands of images. Future
work might include some strategies which can find duplicates with minimal
similarity. There is scope to extend the study of this thesis to finding images
with their similarity content calculated in percentages.

60

References

[1] BBC: Bitesize. Encoding images. Webpage, 2018.

[2] CoderSource.net. Conversion of a color image to a binary image.
Archives, 2005.

[3] Adobe Photoshop User Guide. Color mode. Webpage, 2017.

[4] Ben Hoyt. Duplicate image detection with perceptual hashing in python.
Webpage, 2017.

[5] M.S. Rao H.R. Chennamma, Lalitha Rangarajan. Robust near duplicate
image matching for digital image forensics. International Journal of
Digital Crime and Forensics, 2009.

[6] MacUpdate: https://www.macupdate.com/app/mac/51196/duplicate-
photo cleaner. Duplicate photo cleaner. App, 2018.

[7] Deepali Kayande Jignyasa Sanghavi. Content based image retrieval
(cbir) system for diagnosis of blood related diseases. NCIPET, 2013.

[8] R. Fergus L. Fei-Fei and P. Perona. Learning generative visual models
from few training examples: an incremental bayesian approach tested
on 101 object categories,ieee,cvpr 2004. IEEE, 2004.

[9] The IconFinder Blog-Martin LeBlanc. Detecting duplicate images using
python. Webpage, 2014.

[10] Sam Lundquist. Image file formats: everything youve ever wanted to
know. Blog:https://99designs.com/blog/tips/image-file-types/, 2017.

[11] Real Python. Fingerprinting images for near-duplicate detection. Web-
page, 2014.

[12] A. Walker R. Fisher, S. Perkins and E. Wolfart. Grayscale images.
Webpage, 2003.

[13] Adrian Rosebrock. The complete guide to building an image search
engine with python and opencv. Tutorials, 2014.

[14] S.Farooq. Multispectral images. Webpage, 2018.

61

[15] Onilne tech tips. 5 photo recovery tools tested and reviewed. Webpage,
2018.

[16] Ultimate Photo Tips. What is pixel? Webpage, 2018.

[17] Wesley Tucker. How are graphics and images stored in a computer?
Techwalla Webpage, 2018.

[18] Vector-conversion.com. Raster(bitmap) vs. vector. Webpage, 2018.

[19] John Wallace. Multispectral imaging: Transverse-field-detector sensor
has 36 color channels. Webpage, 2014.

[20] Conny Wallstrom. 8-bit vs 16-bit what color depth you should use and
why it matters. Webpage, 2015.

[21] Qionghai Dai Jinwei Gu Wei Jiang, Guihua Er. Similarity-based online
feature selection in content-based image retrieval. IEEE, 2006.

[22] Houqiang Li Wengang Zhou and Qi Tian. Recent advance in content-
based image retrieval: A literature survey, ieee. IEEE, 2018.

62

