
SEAKER: A Tool for Fast Digital Forensic
Triage

Eric Gentry1, Ryan McIntyre1, Michael Soltys1, and Frank Lyu2

1 California Statue University Channel Islands, Camarillo CA 93012, USA,
michael.soltys@csuci.edu,

WWW home page: https://compsci.csuci.edu/
2 SoCal High Technology Task Force (SCHTTF)

Abstract. Faced with a preponderance of high capacity digital media
devices, forensic investigators must be able to review them quickly, and
establish which devices merit further attention. This early stage of an
investigation is called triage and it is a chief part of evidence assessment;
see [2, Chp 2].

In this paper we present a digital forensic device, which we named
SEAKER (Storage Evaluator and Knowledge Extraction Reader), which
enables forensic investigators to perform triage on many digital devices
very quickly. Instead of imaging the drives, which takes hours, SEAKER
does a search for files with names that conform to pre-established pat-
terns. The search is done by mounting the devices in read-only mode (to
preserve evidence) and listing the contents of the device. Unlike imag-
ing, this approach takes minutes rather than hours. Also, SEAKER’s
hardware consists principally of a Raspberry Pi (RP) and so it is very
inexpensive — this is crucial in this era of budgetary constraints; see [3].

Once SEAKER has identified media devices of interest, those can be
confiscated for further investigation in a lab. But devices that do not
have hits can be left at the scene. This has two principal benefits: forensic
examiners can concentrate on those devices that are promising in terms
of evidence for the given investigation, and devices without hits are not
confiscated from legitimate users.

Keywords: Triage, Digital Evidence Assessment, Automation, Rasp-
berry Pi, Storage Forensics, Digital Evidence and the Law, Digital Evi-
dence Preservation

1 Introduction

In this paper we are going to present a digital forensic tool (SEAKER) that was
designed and implemented as a result of a collaboration between law enforce-
ment, specifically Southern California High Technology Task Force — Ventura
DA, and academia, specifically California State University Channel Islands De-
partment of Computer Science. In the words of [3]:

2 Eric Gentry et al.

Law Enforcement investigators and forensic analysts have extensive knowl-
edge of what is required to progress an investigation and secure a convic-
tion. Academia is able to provide scientific support, recognized testing
procedures and computer science specialists.

The collaboration that we describe in this paper has been especially fruitful,
as we designed a device that is able to significantly speed up Digital Forensic
Triage (DFT).

We named our device SEAKER, which stands for Storage Evaluator and
Knowledge Extraction Reader, and its intended application is to quickly scan
storage drives in read-only mode, forwarding hits to handhelds of investigators,
according to predefined regular expression searches.

SEAKER performs what [1] calls “enhanced preview” for Law Enforcement
digital forensic investigations. Also, quoting from [3]:

Due to budgetary constraints and the high level of training required, dig-
ital forensic analysts are in short supply in police forces the world over.
This inevitably leads to a prolonged time taken between an investiga-
tor sending the digital evidence for analysis and receiving the analytical
report back. In an attempt to expedite this procedure, various process
models have been created to place the forensic analyst in the field con-
ducting a triage of the digital evidence.

SEAKER is an example of such a process model, designed to help with the triage
of digital evidence.

2 Digital Triage

[3] covers the initial phase of an investigation, from issuing a search warrant
to acquisition of evidence. As there are more Detectives and Investigators than
Computer Forensic Examiners (CFEs), CFEs will always have a long queue of
cases. A solution might be to create a tiered system for forensic examiners,
consisting of examiners who attend search warrants and use approved tools to
conduct triage, and in-lab examiners who will analyze the results of the triage.
In this model SEAKER’s role will be that of a well understood and trusted tool
to be used by the triage personnel. SEAKER would fill this role as it is:

1. Simple to use: in the fluid and chaotic environment of a search warrant, the
examiners operate a simple triage system.

2. Tested: can be operated with confidence at the scene with assurance that
evidence thus obtained will stand in court.

3. Fast: many devices can be examined, and actionable intelligence can be pro-
vided to the investigators at the scene.

SEAKER also acts as a distributed system, as many media devices can be
connected to the Raspberry Pi (RP) simultaneously, and all those devices can
be examined by many investigators working concurrently. For each connected

SEAKER 3

device, SEAKER creates a unique file containing the complete listing of files on
that device. This file can be then searched by several investigators simultane-
ously, each for a different (if needed) set of patterns.

3 SEAKER

3.1 SEAKER functionality

It was a conscious design decision to make SEAKER very easy to use. After
collecting all the media devices at the scene, the investigator will triage them
with SEAKER. Here are the steps:

1. Connect the RP to the power, and after waiting for about a minute to let it
start, connect to the RP’s hotspot (WiFi network). Depending on the setup,
the WiFi’s SSID will be “SEAKER01” or “SEAKER02” etc. (if there were
to be more than one SEAKER at the scene). See Figure 1. Note that the
hotspot is password protected; again, the password may be configured.

Fig. 1. Investigator’s handheld view: connecting to the RP’s WiFI (hotspot).

2. At the same time the investigator may connect all the media devices to the
RP. This may be done concurrently with the previous step.

3. Once connected to the hotspot, the investigator will open any web browser on
their handheld, and direct it to go to http://seaker01.local . We decided
to allow access through a web browser as this is the most universal way to
connect; any device (iPhone, iPad, Android, laptop, etc.) can connect to a
hotspot and open a browser. Once the browser establishes the connection,
the user will see Figure 2. Note that the keywords (or regular expression
patterns) present in the “Type in Search Terms:” can be pre-loaded before
arriving at the scene, or changed/updated at the scene.

4 Eric Gentry et al.

Fig. 2. Investigator’s handheld view: using a browser, connect to
http://seaker01.local

The regular expression can be given using the syntax of the grep utility.
For example, if we want to find occurrences of either ‘two’ or ‘too’, we use
t[wo]o; if we want to find every word that start with capital letters, we use
^[A-Z]; if we want to find words where number 9 is the last character of the
line, we use 9$. There are a vast number of possibilities; we can also replace
grep with egrep that has an even richer syntax. Check the grep and egrep

man pages for all the details.
4. Once any storage devices that are found at a search warrant scene are con-

nected to the RP, the investigator will typically wait for a few minutes (we
have seen times up to 10min for 1Tb disks with millions of files) for the file
list to be built. The search will then be carried out very quickly: essentially,
grep browses the file list, line by line, outputting those lines that conform to
at least one pattern specified in the “Type in Search Terms:” window. Once
this finishes, the investigator will have the results presented as in Figure 3.

The filenames themselves can be incriminating evidence, such as in Child
Pornography (CP) cases, where the material has a commonly used naming con-
vention, e.g., “lolita” which can be found with the grep pattern .*lolita.* (‘.*’

SEAKER 5

Fig. 3. Investigator’s handheld view: the results of the search of a partiular device.

means the following: ‘.’ (period) matches any single character of any value, ex-
cept a newline, and ‘*’ (asterisk) matches zero or more of the preceding character
or expression) or simply lolita. This can be used by the investigators to ques-
tion the suspects. The questioning usually takes place at the same time as the
forensic examiners triage the evidence, and one of the requirements of SEAKER
was to be fast so that investigators can start getting intelligence quickly from
the initial processing of the scene. This can be seen in the User Process Flow
shown in Figure ??.

3.2 SEAKER design

SEAKER has been custom designed to meet a particular need of forensic exam-
iners; quoting [3]:

One of the benefits of a custom built tool is that changes are able to be
made from a grass roots level.

SEAKER consists of standard, inexpensive and easy to obtain components.
The heart of the device is a Raspberry Pi (RP) together with ancillary com-
ponents such as SATA, USB and power cables. All these components can be

6 Eric Gentry et al.

Fig. 4. The functionality of SEAKER from the user perspective.

purchased for under $150. The RP has to be set up for usage; this is accom-
plished with a single long bash script that installs all the necessary software
components.

The design principles, indeed the requirements of the solution were the fol-
lowing:

1. Fast: Digital forensic examiners already have at their disposal methods for
reviewing hard disks (hds), thumb-drives and other devices in a way that
prevents tampering with evidence. The problem is the proliferation of hds
with terabytes of data. Imaging such hds takes hours, and when there are
many hds this is infeasible. SEAKER provides a way to triage devices quickly
at the scene, and aids in selecting devices that warrant in-depth examination.

2. Robust: the device will be used in the field, in chaotic settings, where the
examiners cannot be spending time tinkering with the device, and following
complicated instructions; it has to be simple and reliable.

3. Inexpensive: given the budget cuts facing the public sector all over the world,
the aim was to create a working prototype with off-the-shelf components that
can be purchased under $200 per unit.

SEAKER 7

4. Compact: the system must be brought to the scene, so portability is key. The
small nature of the RP and accompanying plugs and cables makes SEAKER
ideal for transport.

5. Easy to use: once configured in the lab, the system is ready to work at the
scene. In fact, it can be deployed by investigators with little knowledge of
IT.

The process flow of SEAKER (Figure 5) is very simple. After powering the
RP, two processes happen simultaneously. Immediately when the drive(s) are
connected to the RP, the file names and their paths are copied to a text file.
Meanwhile, the user must connect to the RP via WiFi (usually on a handheld
device, but any device with a browser works). So in fact, the RP becomes a hot
spot. The user must then open the SEAKER web page. As shown in Figure 5,
the web page will refresh every 5 seconds, checking each time if new drives have
been connected (and their file system recognized) by the RP.

All selected drives will then go through the search process as shown in the
lower section of Figure 5. Each drive will be processed sequentially. For example,
the list of files for the drive will be scanned for any matches to the first keyword
in the list. The search is done using the UNIX grep utility. All files that are
found to match that keyword will be added to a text file. Once the whole list
of files has been searched for that keyword, the process will begin with the next
keyword in the list. This process will continue until there are no more keywords
to be searched. If multiple drives have been selected to be searched, this process
will continue for each drive. Finally, the text file is used to create the response
page and is sent back to the user’s mobile device.

While the listing of all the files on the drive can be accomplished with stan-
dard UNIX utilities such as find or ls -R, we opted for a simple C program
that does so faster as it does not implement all the additional functionality
of those standard utilities. Our C code is contained in collect_files.c and
it implements a recursive depth-first search of a given directory tree structure
(outputting only file names):

1 #inc lude <uni s td . h>
2 #inc lude <sys / types . h>
3 #inc lude <d i r e n t . h>
4 #inc lude <s t d i o . h>
5

6 void l i s t d i r (const char ∗name) {
7 DIR ∗ d i r ;
8 s t r u c t d i r e n t ∗ entry ;
9 i f (! (d i r = opendir (name))) {

10 re turn ; }
11 whi le ((entry = readd i r (d i r)) != NULL) {
12 i f (entry−>d type == DT DIR) {
13 char path [1 0 2 4] ;
14 i f (strcmp (entry−>d name , ” . ”) == 0 | |
15 strcmp (entry−>d name , ” . . ”) == 0) {
16 cont inue ; }

8 Eric Gentry et al.

Fig. 5. SEAKER flowchart. Note the left-most “No” arrow indicated with two dashes:
the page refreshes every 3 seconds, and the first drive connected is selected automati-
cally; other drives must be selected manually.

SEAKER 9

17 s n p r i n t f (path , s i z e o f (path) , ”%s/%s ” , name ,
18 entry−>d name) ;
19 l i s t d i r (path) ; }
20 e l s e {
21 p r i n t f (”%s/%s \n” , name , entry−>d name) ; } }
22 c l o s e d i r (d i r) ; }
23

24 i n t main (void) {
25 l i s t d i r (” . ”) ;
26 re turn 0 ; }

4 SEAKER technical specifications

4.1 Hardware requirements

The setup of a SEAKER requires the following hardware:

1. Raspberry Pi (RP) 3 Model B: Inexpensive, compact computer hardware
that runs a version of Linux. It comes with built-in WIFI, 4 USB ports, and
other typical computer connections. This also doubles as the WIFI router for
connecting the handheld phone or tablet. External power must be supplied
to the RP.

2. MicroSD card: This is the hard drive for the RP that will hold the operating
system, web server, WIFI router software, and the searched contents of the
suspect hard drives.

3. USB hard drive adapter: Plugs into the RP’s USB port and enables hard
drives to be read. External power must be supplied to the USB hard drive
adapter.

4. Handheld phone or tablet with WIFI: This could be anything from an Apple
iPad to a smart phone to a laptop computer. Several devices are able to
connect at the same time to the RP via the WIFI hot spot capability.

5. Ethernet internet connection: Required for initial setup only. The connection
is necessary to download the initial prep script, obtain software updates
during the setup phase, and allow for the wireless NIC to be setup for WIFI.

4.2 RP Preparation script

SEAKER is designed for portability and ease of use, given the chaos and com-
plexity of a crime scene digital forensic triage analysis. The initial setup and
configuration is also designed with similar simplicity in mind, but may require
a person with IT knowledge.

The prep script is a simple bash script written for the September 2017 release
of Raspbian Jessie Lite operating system, but is very likely to continue to work
with newer versions. The first step for setting up the initial state of the RP is
to load the standard “Lite” version of this image onto the microSD card.

The following steps are to customize and finish setting up the RP. Editing
the top few lines of the script will enable a customized setup for the particular
instance of SEAKER. Here are the editable lines:

10 Eric Gentry et al.

1 PI PASSWORD=” raspber ry ”
2 WIFI NAME=”SEAKER01”
3 WIFI PASSWORD=” raspber ry ”
4 WIFI ROUTER IP=” 1 9 2 . 1 6 8 . 1 0 1 . 1 ”
5 WIFI ROUTER DHCP RANGE=” 192 . 168 . 101 . 50 192 . 168 . 101 . 100 ”

After editing the script, it must be copied to the RP and run. Using the pi
account and home path is best for this. The script will automatically reboot
when it is finished and the RP is then setup for use as a SEAKER. The script
is also designed to clear itself out and clear out the history to ensure that the
passwords are not able to be recovered from the script file or the history.

Once the setup is complete and the RP is powered on, a new WIFI access
point will be available using the broadcast name that was set in the WIFI NAME
setting from the script. Using the handheld phone or tablet to connect to this
WIFI access point enables a web-page to be called up using the same web ad-
dress as the name of the access point. This web-page is the main mechanism for
searching for specific information from the connected suspect hard drives.

4.3 Mount rules

When a drive is connected, SEAKER automatically detects and mounts it, then
calls the collect and search procedures. This is done with a .rules file in the

/lib/udev/rules.d/

directory; these files can be used to automatically perform actions when certain
events occur (in this case, mounting and listing the contents of storage devices
upon connection). In SEAKER’s mounting rules, below, each line begins with
conditions, characterized by “==” and “!=.” If all conditions are met, then the
actions described in the rest of the line is taken. Indented lines are actually
continuations.

1 KERNEL!=”sd [a−z] [0 −9] ” ,
2 GOTO=” auto mount usb s to rage by labe l end ”
3

4 # Import FS i n f o s
5 IMPORT{program}=”/ sb in / b lk id −o udev −p %N”
6

7 # Spec i f y a l a b e l
8 ENV{dir name}=”usbhd−%k”
9

10 # Global mount opt ions
11 ACTION==”add” , ENV{mount options}=” ro ”
12

13 # Filesystem−s p e c i f i c mount opt ions
14 ACTION==”add” , ENV{ID FS TYPE}==” n t f s | e x f a t ” ,
15 ENV{mount options}=”$env{mount options } ,
16 u s e r i d =1000 , group id =1000 , nt f s−3g”
17 ACTION==”add” , ENV{ID FS TYPE}!=” n t f s | e x f a t ” ,

SEAKER 11

18 ENV{mount options}=”$env{mount options } ,
19 uid =1000 , g id =1000”
20 ACTION==”add” , ENV{ID FS TYPE}==” ext3 | ext4 | n t f s ” ,
21 ENV{mount options}=”$env{mount options } , noload ”
22

23 # Mount
24 ACTION==”add” , ENV{ID FS TYPE}!=” n t f s | e x f a t ” ,
25 RUN+=”/ bin /mkdir −p /mnt/%E{dir name}” ,
26 RUN+=”/ bin /mount −o $env{mount options }
27 /dev/%k /mnt/%E{dir name}” ,
28 RUN+=”/home/ pi / s e a k e r c o l l e c t . sh %E{dir name}
29 | at now”
30 ACTION==”add” , ENV{ID FS TYPE}==” n t f s | e x f a t ” ,
31 RUN+=”/ bin /mkdir −p /mnt/%E{dir name}” ,
32 RUN+=”/home/ pi / mount ntfs . sh %k %E{dir name}”
33

34 # Clean up a f t e r removal
35 ACTION==”remove” , ENV{dir name }!=”” ,
36 RUN+=”/ bin /umount − l /mnt/%E{dir name}” ,
37 RUN+=”/ bin / rmdir /mnt/%E{dir name}”
38

39 # Exit
40 LABEL=” auto mount usb s to rage by labe l end ”

Note that NTFS and EXFAT are mounted using different rules. Some file sys-
tems have issues (well known among Linux users) with being mounted by custom
rules, and require said rules to mount them indirectly through an external script.
Details like this provide the primary barrier to filesystem support.

It is important that drive contents are not changed when SEAKER searches
them; the drive contents may be evidence in an investigation, after all. SEAKER
utilizes two mounting options to avoid tampering: read only and noload. read only

is straightforward: SEAKER can only read the contents of the drive—that is, it
cannot write or execute. noload is applicable to journaling filesystems. A journal
serves as a change-log for the drive. If it is accessed, it will change, which will
result in a change in the drive’s hash. Though such a change would not affect the
stored contents, the change in hash value could cast doubt on the integrity of the
evidence. noload prevents journaling from occurring, allowing for access without
any change to the hash and thereby making it possible to quickly demonstrate
that SEAKER leaves the drive contents unchanged.

5 Future Work

SEAKER is currently a prototype; there are many improvements to be made,
and we will discuss some of them in this section. These improvements may
be implemented by future students, or by digital forensics professionals. We
encourage anyone who implements them to share their work3.

3 The main bash script for SEAKER is availble on GitHub at
https://github.com/michaelsoltys/seaker .

12 Eric Gentry et al.

First, SEAKER supports a select few filesystems. Namely, NTFS and FAT

(exfat, FAT32, FAT16. . .). There are likely bugs to be worked out in the sup-
ported filesystems, and there is certainly work to be done in expanding the list
of supported systems.

If an unsupported filesystem is in use, it may simply fail to mount, and
not show up on the SEAKER site at all. Similarly, drives from which files are
currently being collected do not appear; the site displays them only when files
have been collected. Here there is opportunity for improvement; as opposed to
displaying drives for which collection is complete, SEAKER could display all
drives, and a status next to each. This status only requires three states: failed
search (for unsupported systems), collection in progress, and collection complete.

It can be difficult to match a hard drive to its corresponding search results.
Partitions are uniquely identified by a UUID, and some properties (capacity,
for example) are displayed with the search results, but these properties do not
provide a perfect way to determine which physical device corresponds to which
mounted partition or device. Storage devices generally have a serial number of
sorts, but this serial number is not visible to SEAKER. This is a problem which
requires some creativity to solve well. SEAKER could take a picture when a drive
is plugged in, and associate that picture with the search results, for instance,
but this solution requires that investigators position each storage device in front
of a camera; this approach requires a camera, and moreover it is tedious and
error-prone.

When a search finds a hit (i.e., a matched expression or file extension), inves-
tigators may want to view the corresponding file. Currently, this would require
them to manually find and open the file. Speed and ease of use are priorities, so
it would be best if investigators could select a file in the search results and have
SEAKER fetch a copy of it for them. This function inevitably requires that the
storage device being queried is still connected—assuming that this condition is
met, copying and viewing a file should not be too complex.

Similarly, it would be useful if investigators could view thumbnails of im-
ages and videos in the search results. One example of the motivation here is
child pornography cases; incriminating images may have innocuous names, but
thumbnails would indicated the true content.

This leads to another issue: as incriminating files may be named innocuously,
investigators will often want to search simply for all images, videos, etc. SEAKER
could minimize the work necessary by allowing for preset groups of search terms,
which can be created and edited by administrators. For example, an admin could
create an “images” group which causes SEAKER to include jpg, pdf, png. . .

We are very interested in a “Data Carving” option. Data carving is the iden-
tification and extraction of files from unallocated clusters using file signatures.
A file signature, also commonly referred to as a magic number, is a constant
numerical or text value used to identify a file format. The object of carving
is to identify and extract (carve) the file based on this signature information
alone. We are interested in hidden files (which are sometimes easy to locate, as
for example in UNIX with ‘ls -a’ command) and deleted files, which is more

SEAKER 13

tricky as the files can partially overwritten. A partially overwritten file may still
constitute valuable evidence: for example, a portion of an image can be taken
as solid evidence that the entire image was on the disk at some point. How can
one establish whether a portion of an image comes from a particular image? It
seems that the only way to accomplish that is by visual inspection, and having
an investigator recognize the original image. In order to automate this process
one could attempt one of two things: build a massive database of frequently cir-
culating (say, CP) images, and hashing different formats of these images (.pdf,
.jpg, .giff, .tiff, etc.), as well as different resolutions, and chunks of standard
sizes (say, 64Kb). This still seems like a shot in the dark. The second approach
is to define something akin to fuzzy hashes, the type of hashes that are used to
recognize variants of the same malware. This new type of fuzzy hashing would
be invariant under different formats, or standard resolutions, and chunks of an
image could be identified by close proximity to the original hash. Hits would
be still confirmed visually to avoid false positives; a bigger issue would be false
negatives.

Finally, documentation is important in any investigation. When triage reveals
media which motivates investigators to confiscate the corresponding storage de-
vice, they should document this motivation. As such, it would aid investigators
if SEAKER could generate a search report for a selected drive from the search
results screen. This report could be downloaded to the investigator’s device or
saved on the SEAKER unit for later access by an administrator. It should con-
tain the search results along with some circumstantial information, such as the
date, the name(s) of investigator(s) requesting the report, and their reason for
confiscating the device.

6 Development tools

An important component of this project was the learning experience for the
students. While we all worked toward a working prototype for the digital foren-
sics lab, for the majority of the students this was the first time working on a
project for which the outcome would be more than the satisfaction of a course
requirement. To work in a large team (18 students) different talents, abilities,
personalities and work habits had to come together in order to produce a work-
ing device. The students used a large set of tools that enabled the development
of SEAKER. Here is a list of the principal tools, with short descriptions of their
features. It should be mentioned that most these tools are Open Source and free
to use.4

4 Technically, free for the students. Some services required nominal payments; for
example, the fourth author has a GitHub subscription which allows for development
with private repositories — anyone can open a GitHub account, but a free plan only
allows public repositories. Similarly, the fourth author has an AWS subscription; we
used Amazon Web Services (AWS) S3 buckets to have a staging repository for ready
to use software, our beta versions.

14 Eric Gentry et al.

1. BASH: shell scripting was at the heart of the project. While some creative
work went into the hardware arrangements (discussed in Section 4.1), most
of the work consisted in developing a long BASH script. The goal of the script
was to set up a RP as SEAKER (the script, called prep.sh is discussed in
Section 4.2). Learning to code in BASH was a big part of the project for
many of the students.

2. Slack: this is a fantastic collaboration tool that was introduced to the team by
the third author of this paper. It allows for an easy and convenient exchange
of ideas and brainstorming while developing a product. One of the best
features is the ability to divide the conversation into different channels; there
were channels for discussion of hardware, software development, testing and
documentation.

3. Dropbox Paper: this became a de facto Wiki for maintaining the project
documentation. It is simple to use; it requires little beyond familiarity with
a standard Markdown language. It facilities a distributed documentation
development effort. Some participants had “edit rights” while all participants
could read and post comments. Eventually, two documents emerged: a set
up installation guide, and usage documentation.

4. GitHub: a fundamental tool, known to all software developers. About one
third of the students requested GitHub collaborative access to help in the
development of prep.sh. While there are many tools for collaborative soft-
ware development, it is hard to find something better than GitHub5. Anyone
can preview the history of the development, and read the annotations.

5. AWS: We used an Amazon Web Services (AWS) S3 bucket to have a place
with beta versions of the software. The prep.sh script, in its most recent
version, as well as the most recent version of the documentation, are main-
tained in the bucket. We learned to mount the bucket onto an AWS EC2
instance, so we can update the staging folder with the latest version with
git.

6. C: While relatively little has been done with the C programming language, a
core functionality of the project has been developed in C. (See collect_files.c
described on page 7.) A good reminder that when one wants system perfor-
mance one has to work with C (the find and ls -R functions were too slow,
due to all their features, to list the entire disk).

7. grep: This tool is applied in the final stage of the capture, when all the
files downloaded by collect_files.c are examined for the pre-assigned
patterns.

8. Raspbian Linux: A free OS, based on Debian Linux, and optimized for run-
ning on Raspberry Pi (RP) hardware. We used the “Lite” version, as we just
needed the basic functionality, without the 35K+ packages that are present
in the full version. It is indeed a revolution in controllers technology to be
able to have a hardware controller furnished with a complete Linux OS. For
more on the hardware, see Section 4.1.

5 We used GitHub to collaborate on this paper — which allows us to work together
while hardly meeting in person.

SEAKER 15

It is important to remember that the principal contribution of this project
rests in the performance of the device. Obviously digital forensics had methods
to examine data in a sound manner; the augmentation offered by this device is
the speed at which triage can be performed in the field. The advantage of our
system is so obvious (minutes to list and search all the file names, rather than
the hours it takes to image a disk) that we did not need to justify the benefits
of our solution. Still, as the device will be used in the field by practitioners, we
plan to collect data to keep track of the performance as bigger disks and new
filesystems are being added.

7 Conclusion

The SEAKER project was a successful collaboration between two different in-
stitutions in the public sector: law enforcement and academia. The former has
many interesting problems to offer, but as they are overwhelmed with cases they
typically do not have the man power to do research and development. The latter
is happy to do R&D, as it enhances the educational experience of the students to
be learning in the context of applications to real life problems. It is a fortuitous
and symbiotic relationship, and we plan to embark on other such projects in the
future.

SEAKER is also the testament to the fact that supremely useful devices,
meeting the needs of practitioners, can be constructed from relatively simple
components; what is required is expertise and enthusiasm, which in the best
cases academia possesses in ample measure. RPs are a revolution in embedded
controllers, and we are just scratching the surface of their applicability. They
are inexpensive, but wield the power of the Linux OS.

For the students, the experience was invaluable. Perhaps the most impor-
tant aspect was non-technical: how to work well in a large team. There were
eighteen students in the group; a composition of different backgrounds, talents
and strengths. We divided the task into five different but interconnected teams:
Task #1 was connecting the external devices to the RP; Task #2 was searching
the contents of the devices; Task #3 was responsible for sending the query and
retrieving the results of the search to the handheld; Task #4 was responsible for
the documentation of the project (both a user set up and guide, as well as the
technical documentation of the solution); Task #5 was responsible for testing.

Digital forensics and academia would both benefit greatly from increased
collaboration; students can offer relatively inexpensive development in exchange
for real-world experience and the opportunity to create something which will be
used. As a side effect more students would consider digital forensics as a career,
resulting in some level of alleviation of the problems mentioned in the second
quote in the introduction[3]. Everyone wins.

16 Eric Gentry et al.

8 Acknowledgements

This work arose from a fruitful collaboration between SoCal HTTF (Southern
California High Technology Task Force, Ventura County) and CSUCI (California
State University at Channel Islands). We are very grateful for the opportunity to
work on such an interesting and eminently applicable problem. We are especially
grateful to Senior Investigator Adam Wittkins who facilitated this collaboration.
The SEAKER development work was undertaken as a final project for a graduate
course in Cybersecurity at CSUCI (COMP524: “Cybersecurity”). The first and
third authors were students in this course, and they emerged as leaders of the
project, but we are very grateful for the contribution of the rest of the class
(in alphabetical order): Geetanjali Agarwal, Nick Avina, Jesus Bamford, Jack
Bension, Apurva Gopal Bharaswadkar, Amanda Campbell, Christopher Devlin,
Nicholas Dolan-Stern, Manjunath Narendra Hampole, Mei Chun Lo, Christopher
Long, Clifton Porter, Deepa Suryawanshi, Mason U’Ren and Zhe Zhang. (See
http://soltys.cs.csuci.edu/blog/?p=2713)

9 Instructions for setting up SEAKER

This section contains step by step instructions to build a SEAKER:

1. Prepare the MicroSD card
(a) Download latest version of Raspbian Lite Image to a local computer

(https://goo.gl/eNvdMu)
(b) Download Etcher software for writing the image to the MicroSD card

(https://goo.gl/f6LHBU)
(c) Download PuTTY if using a Windows based local computer

(https://goo.gl/Tvifot)
(d) Write the image to the MicroSD card (at least 8GB) using Etcher

(https://goo.gl/FTvTVx)
(e) Before removing the MicroSD card from the computer, add a file named

‘ssh’ (no quotes, no extension, no contents) to the root of the MicroSD
card
(https://goo.gl/tTs2vd)

2. Plug in and boot the Raspberry Pi (RP)
(a) Connect the RP to your network using the Ethernet port (Do not connect

using WiFi)
(b) Plug in power to the RP and wait 10-20 seconds for the Raspbian Lite

operating system to boot
3. Find the RP’s IP address and connect to it

(a) Find and make a note of the IP Address and substitute it in the rest of
setup when RASPBERRYPI IP is used; this can be done by tools like
“Advanced IP Scanner” or by accessing your router administration page

(b) Use ssh (or PuTTY for Windows) to start a secure shell for example:
ssh -l pi RASPBERRYPI_IP

SEAKER 17

(c) When logging in, the default login is
username: ‘pi’, password: ‘raspberry’

4. Get the prep script and run it
(a) At the RP prompt, download the prep.sh script:

wget -O prep.sh https://goo.gl/5RU1Yv

(b) Modify the first few lines to prevent collisions with other SEAKERs:
PI_PASSWORD (line 18) - Sets the RP’s password
WIFI_NAME (line 19) - Sets the WiFi access point name
WIFI_PASSWORD (line 20) - Sets the WiFi WPA2 password
WIFI_ROUTER_IP (line 21) - Sets the WiFi access point IP address (must
always end in .1)
WIFI_ROUTER_DHCP_RANGE (line 22) - Sets the DHCP address range (must
have the same prefix)

(c) Set the permissions of prep.sh to 744:
chmod 744 ~/prep.sh

(d) Run the prep script:
./prep.sh

(e) The script will automatically reboot when finished
5. Verify that SEAKER is working

(a) After the reboot, use a separate WiFi enabled handheld phone or tablet
(look for a new WIFI access point named using the WIFI_NAME setting
in the prep.h script)

(b) Type in the WiFi password (from the WIFI_PASSWORD setting)
(c) Use a web browser from the handheld phone or tablet and type in the

WIFI NAME or new SEAKER IP address after ”http://”; for example:
http://SEAKER03.local

References

1. James, J. I.: A survey of digital forensic investigator decision process and measure-
ment of decision based on enhanced preview. Digital Investigation, vol 10, pp148–157
(2013).

2. Hart, S. V.: Forensic Examination of Digital Evidence: A guide for Law Enforcement
U.S. Department of Justice (2004).

3. Hitchcock, B., Le-Khac, N., Scanlon, M.: Tiered forensic methodology model for
Digital Field Triage by non-digital evidence specialists Digital Investigation, vol 16,
ppS75–S85 (2016).

