CSUCI: Mechatronics Engineering Update

JASON ISAACS

NOVEMBER 29, 2018

Introduction and Agenda

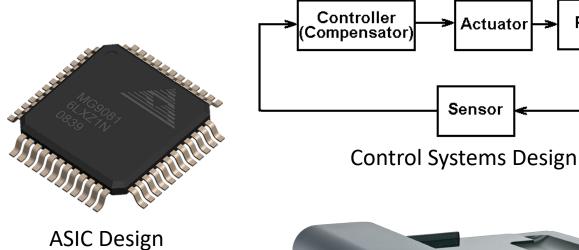
Introduction

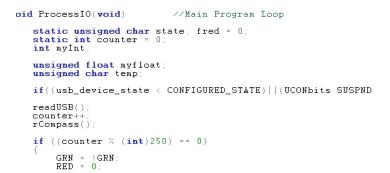
What is Mechatronics Engineering?

Why Mechatronics Engineering?

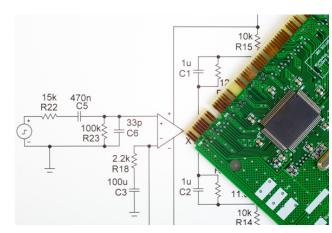
Overview of Program

Current Curriculum


4 – Year Roadmap


Student Projects

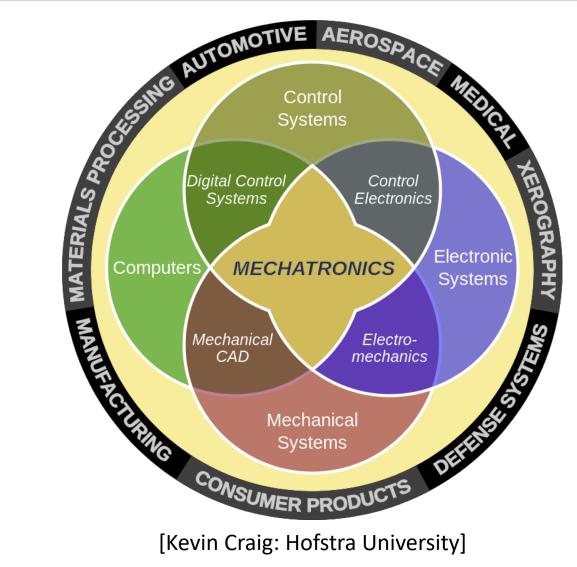
Ways to Get Involved



My Experience as a Mechatronics Engineer

Firmware Design

Electronics Design



Actuator

Plant

Mechanical Design

What is Mechatronics Engineering?

Mechatronics is multidisciplinary systems engineering for the 21st century.

Mechatronics integrates at the **beginning** of the conceptual design stage different technologies

- Mechanical Systems
- Electrical Systems
- Control Systems
- Computer Systems

[Kevin Craig: Hofstra University]

Why Mechatronics Engineering?

Jobs are available and high paying.

Mechatronics technologies are driving economy.

- Self Driving Cars
- Unmanned Aerial Vehicles
- Industrial and Agricultural Automation

Program Overview

First year of study is common with other fields of Engineering

Calculus, Computer Science, Chemistry, and Physics

Hiring 2 new Mechatronics Engineering faculty

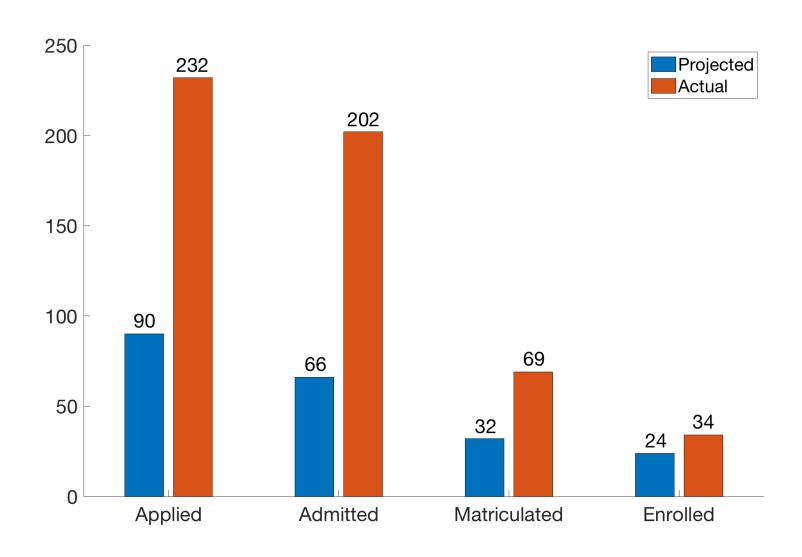
In addition to engineering faculty already in CS Department

Focus on small robotics

Collaboration with local businesses and government installations

Southern California Edison Mechatronics Engineering Scholarship

Congratulations Antonio Moreno and Hugo Quintero


Growth Plan

Admit 24 Students Per Year

Student Faculty Ratio at around 20:1

	Year 1	Year 2	Year 3	Year 4	Year 5		Year 1 native:
	24	24	24	24	24	native	24
Fresh	0	0	0	0	0	transfers	Attrition:
Comb	0	20	20	20	20	natives	15%
Soph	0	0	0	0	0	transfers	
Junior	0	0	17	17	17	natives	
Junior	0	0	7	7	7	transfers	
Canian	0	0	0	14	14	natives	
Senior	0	0	0	6	6	transfers	
Total							
students	24	44	68	88	88		
Total							
graduates	0	0	0	20	20		

Admissions Reality: Fall 2018

Impacted Program

Applications only accepted for first time freshman

Transfer Students and 2nd Bachelor Degree not accepted

First Time Freshman will be required to select an alternate major

Freshman applicants will be be rank ordered based on eligibility index

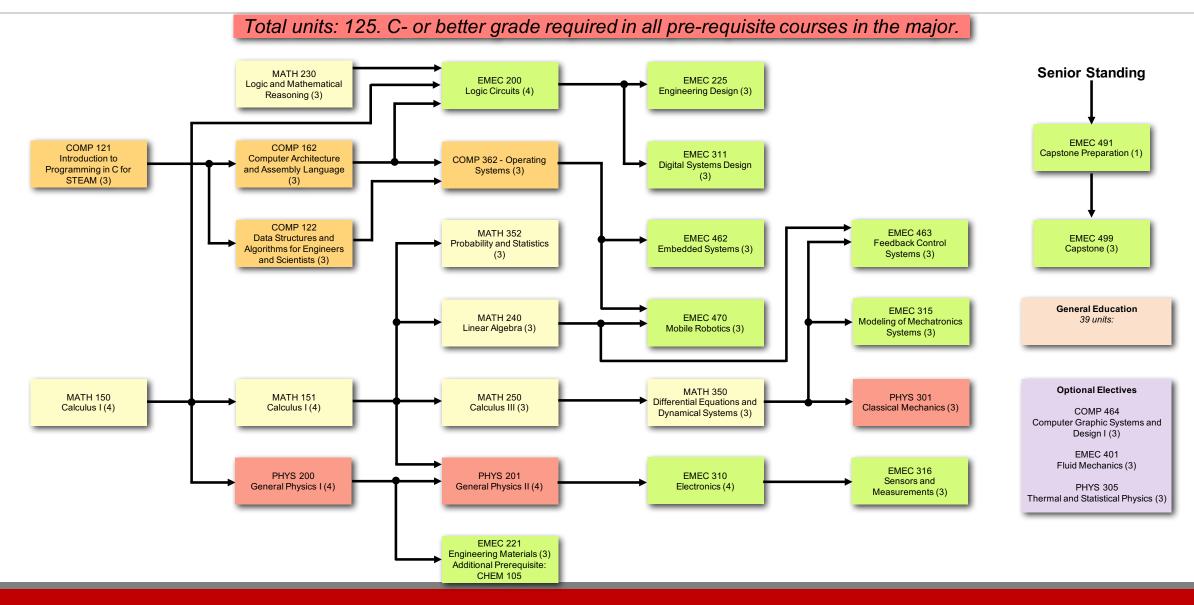
- o (GPA* x 800) + SAT 1 Total
- o (GPA* x 200) + (10 x ACT COMP)

Additional GPA points will be awarded for following criteria:

- +0.05 for Participation in Verified Engineering Academy
- +0.10 for Math College Level Ready

Impacted Program Transfer Plan

Apply for Impaction for Transfer Students in 2020


Fill any empty spots due to attrition up to 24 students

Upper Division Only (Goal to graduate in 2 years)

Will seek input when deciding criteria

- o GPA
- Pre-Engineering or AA degrees
- Local Preference

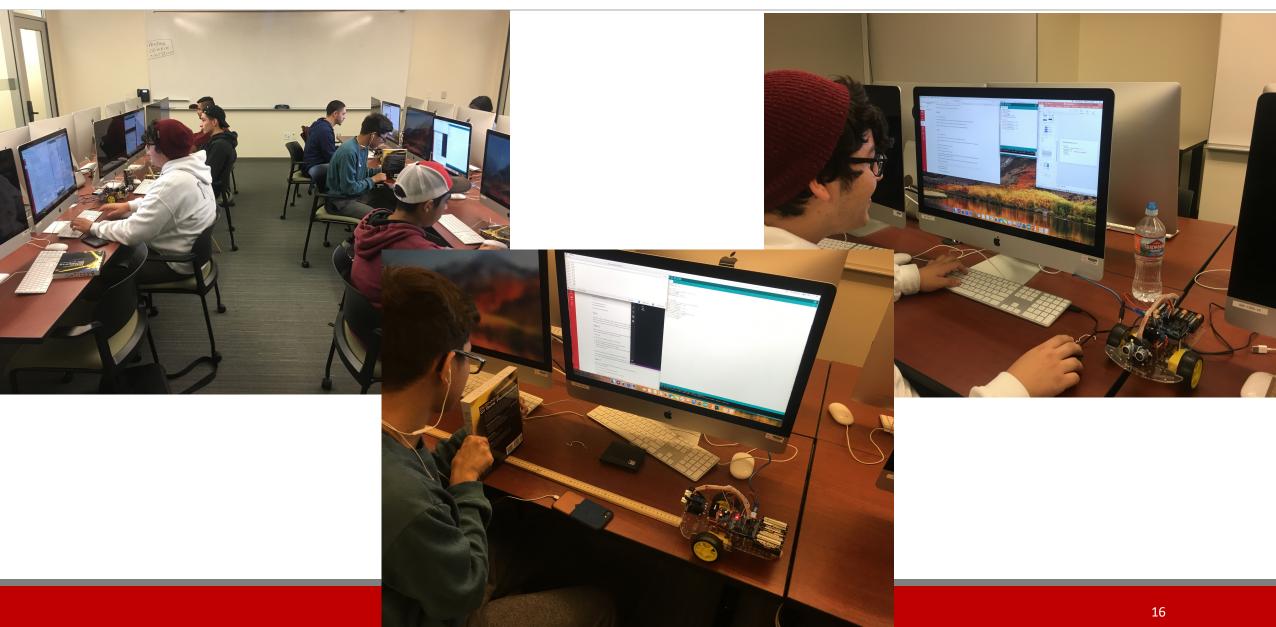
MECHATRONICS ENGINEERING B.S. DEGREE CHART

Year 1 Roadmap

Course Code	Name	Units	Prerequisites	GE
Fall	Year 1			
CHEM 105	Introduction to Chemistry	3	Entry Level Mathematics Exam (ELM)	B1
COMP 121	Introduction to Programming in C for STEAM	3	None	B4 and E
MATH 150	Calculus I	4	Calculus Placement Exam or MATH 105	В3
ENGL 105	Composition and Rhetoric	3	None	A2
MATH 230	Logic and Mathematical Reasoning	3	None	A3 and B3
	Units	16		
Spring	Year 1			
COMP 122	Data Structures and Algorithms for Engineers and	3	COMP 121	
COMP 162	Computer Architecture and Assembly Language	3	COMP 121 or COMP 150 or IT 151	
MATH 151	Calculus II	4	MATH 150	
GE	G.E.: Category C, D, or E (3)	3		C or D or E
PHYS 200	General Physics I	4	MATH 150	B1
	Units	17		

Year 2 Roadmap

Course Code	Name	Units	Prerequisites	GE
Fall	Year 2			
EMEC 200	Logic Circuits	4	MATH 150 and MATH 230 and COMP 162	
MATH 250	Calculus III	3	MATH 151	
PHYS 201	General Physics II	4	PHYS 200	B1
GE	GE: Categorty A, B, C, D, or E	3		A or B or C or D or E
	Units	14		
Spring	Year 2			
EMEC 221	Engineering Materials	3	CHEM 105 and PHYS 200	
EMEC 225	Engineering Design	3	EMEC 200	
MATH 240	Linear Algebra	3	MATH 151	
MATH 350	Differential Equations and Dynamical Systems	3	MATH 250	
GE	G.E.: Category C, D, or E (3)	3		
	Units	15		


Year 3 Roadmap

Course Code	Name	Units	Prerequisites	GE
Fall	Year 3			
COMP 362	Operating Systems	4	COMP 122 and COMP 162	
PHYS 301	Classical Mechanics	3	PHYS 200 and MAT 350	
PHYS 310	Electronics	4	PHYS 201	
GE	G.E.: Category C, D, or E (3)	3		C or D or E
GE	G.E.: Category C, D, or E (3)	3		C or D or E
	Units	17		
Spring	Year 3			
EMEC 315	Modeling of Mechatronics Systems	3	MATH 350	
EMEC 316	Sensors and Measurements	3	PHYS 310 and COMP 151	
MATH 352	Probability and Statistics	3	MATH 151	
GE	G.E.: Category C, D, or E (3)	3		C or D or E
GE	G.E.: Category C, D, or E (3)	3		C or D or E
	Units	15		

Year 4 Roadmap

Course Code	Name	Units	Prerequisites	GE
Fall	Year 4			
COMM 101	Public Speaking	3		A1
COMP 462	Embedded Systems	3	COMP 362	
EMEC 311	Digital Systems Design	3	EMEC 200	
EMEC 491	Capstone Prep	1	Senior Standing	
GE	G.E.: Category C, D, or E (3)	3		C or D or E
GE	G.E.: Category C, D, or E (3)	3		C or D or E
	Units	16		
Spring	Year 4			
COMP 470	Mobile Robotics	3	COMP 362 and MATH 240	
EMEC 463	Feedback Control Systems	3	MATH 240 and MATH 350	
EMEC 499	Capstone Project	3	Senior Standing	
GE	G.E.: Category C, D, or E (3)	3		C or D or E
GE	G.E.: Category C, D, or E (3)	3		C or D or E
	Units	15		

EMEC Students: Intro to C Programming


Swarm Robotics at NASA

NASA Wants To Use Swarms of Mars Rovers for

In Situ Resource Utilization

Goals:

- Explore For Resources
- Collect The Resources
- Deliver Them To Base
- Convert Resources To Fuel
- Return To Earth

How NASA Will Use Robots to Create Rocket Fuel From Martian Soil

Engineers are building a prototype of a robotic factory that will create water, oxygen, and fuel on the surface of Mars

By Kurt W. Leucht

Illustration: Marek Denko/NoEmotion

The Martians: This artist's rendering shows excavating robots that may one day operate on Mars, long before humans ever set foot on the planet.

NASA Swarmathon Competition

Crowd Sourcing For Good Ideas

Held each year at NASA Kennedy Space Center

- NASA Swampworks Group (Kurt Leucht)
- UNM Melanie Moses Lab

Sponsored By MUREP (Minority University Research and Education Program)

2016: 12 Physical Teams and 12 Virtual Teams

2017: 19 Physical Teams and 15 Virtual Teams

2018: 22 Physical Teams and 6 Virtual Teams

Awards

2017
3rd Place Physical Competition
1st Place Technical Report

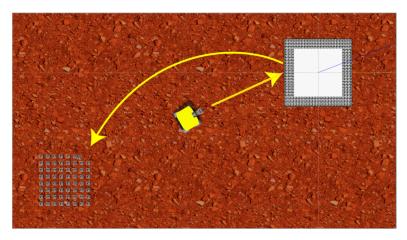
2018 1st Place Technical Report

SURF 2018

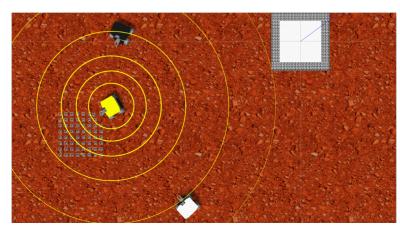
Summer Undergraduate Research Fellows

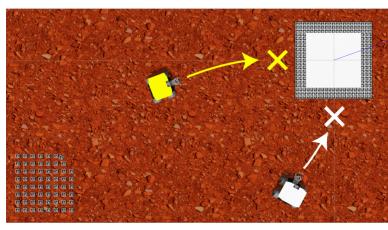
- Alberto Venegas
- Adan Sanchez
- Mark Getzinger
- Ethan Warner

10 Week Summer Research Fellowship

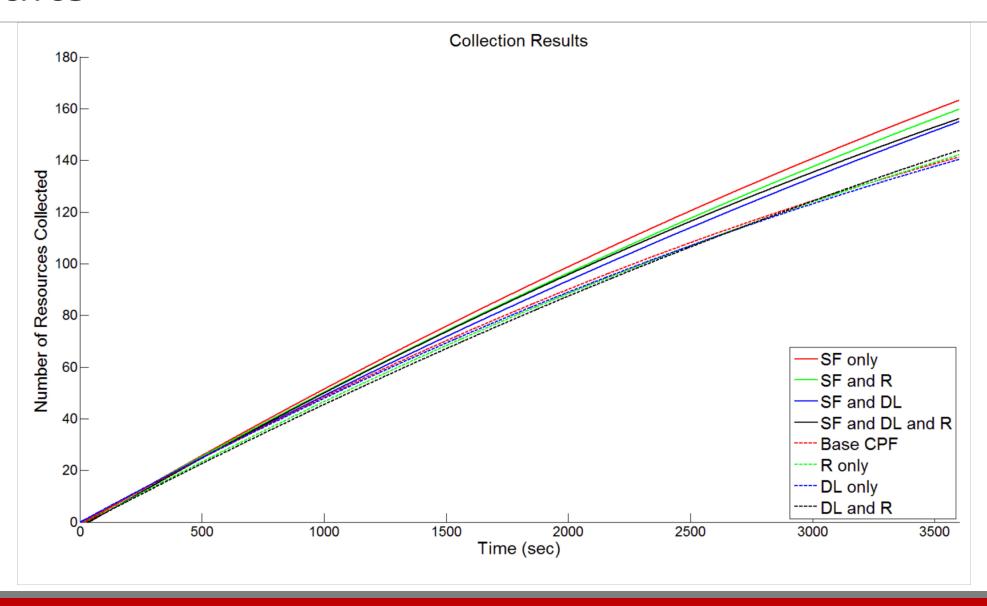

Developed Algorithms in C++

High Fidelity Simulator (ROS)


Evaluated Three Swarm Behaviors


Experiments Comparing Three Behaviors

Site Fidelity



Recruitment

Spatial Negotiation

Results

Ways To Get Involved with Students

Capstone Projects (EMEC 2021)

Guest Lecture in Class

Give a Seminar (Tuesday Evenings at 6 pm)

Mentor for Student Competition Teams

Internships

Scholarships