
Aneka- Detecting various forms of the same

Wavelet Image Hashing Algorithm

A Thesis Presented to

The Faculty of the Computer Science Department

California State University Channel Islands

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

by

Geetanjali Agarwal

Advisor: Dr. Michael Soltys

December 2018

c© Year

Student Name

ALL RIGHTS RESERVED

APPROVED FOR MS IN COMPUTER SCIENCE

Advisor: Dr. Michael Soltys Date

Dr. Brian Thoms Date

Dr. Houman Dallali Date

APPROVED FOR THE UNIVERITY

Dr. Osman Ozturgut Date

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to
the following terms is necessary. The author(s) retain any copyright currently on the item as well as
the ability to submit the item to publishers or other repositories.

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission
(including the abstract) worldwide in print and electronic format and in any medium, including but not
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of
security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the
rights contained in this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
submission contains no libelous or other unlawful matter and makes no improper invasion of the
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain permission to use any
material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of
the submission, and will not make any alteration, other than as allowed by this license, to your
submission.

Title of Item

3 to 5 keywords or phrases to describe the item

Author(s) Name (Print)

Author(s) Signature Date

This is a permitted, modified version of the Non-exclusive Distribution
License from MIT Libraries and the University of Kansas.

Aneka – Detecting various forms of the same

Wavelet Image Hashing Algorithm

Geetanjali Agarwal

December 3, 2018

Abstract

Digital imaging has experienced tremendous growth in recent decades,

and have been used in a growing number of applications. With such

increasing popularity and the availability of low-cost image editing

software, the integrity of digital image content can no longer be taken

for granted. This thesis introduces a new methodology for the forensic

analysis of digital images. It proposes a novel hashing method using

scale-invariant feature transform (SIFT) features points and Discrete

Wavelet Transform (DWT) approximation coefficients for image au-

thentication. Experimental results show that the proposed method is

robust to various content-preserving operations. In addition, the per-

formance of the proposed method is compared to existing methods.

The comparison results show that the proposed method performs bet-

ter than the existing methods. This thesis also mentions about the

Amazon Web Services that are being used in detail. Also, the name of

this thesis — Aneka means that which have many variations. This the-

sis also talks about recognizing nearly duplicate/similar images or de-

tecting differents variations of an image present in a database. Aneka

is also one of the names of Lord Vishnu.

Contents

1 Introduction 1

1.1 Motivation . 4

2 Background 7

2.1 Amazon Web Services(AWS) 7

2.2 Database shelve . 14

2.3 phpMyAdmin . 15

2.4 Image Preprocessing . 16

2.5 Image Processing . 23

2.6 Image Recognition . 25

2.6.1 Working of image recognition 27

2.7 Image Hashing . 32

2.8 Crypographic Hash functions 33

2.9 Hamming distance . 34

2.10 Error correcting codes . 35

2.11 Image Hashing Algorithms (Previously implemented) 37

2.12 Proposed algorithm . 43

2.12.1 Colour vector angle . 43

2.12.2 Scale-invariant feature transform(SIFT) 44

2.12.3 Preprocessing: . 47

2.12.4 Colour vector angle calculation: 47

2.12.5 Feature extraction . 48

i

2.12.6 DWT: . 49

2.12.7 Generation of Intermediate hash 51

2.12.8 Hamming distance . 52

3 Algorithm: 53

4 Implementation 55

4.1 Working with Amazon web services- EC2 instance, S3 bucket

and DynamoDB . 55

4.1.1 Setting up EC2 instance 55

4.1.2 Creating phpmyadmin page to access the database . . 56

4.1.3 Connect and Populate the database 57

4.1.4 Database shelve- alternative approach for reading im-

ages as input . 62

4.2 Python script to create dataset 64

4.3 Python script for aHash, pHash, dHash and wHash algorithms 66

5 Experimental results 75

5.1 Result obtained for wHash algorithm 75

5.2 Result obtained for dHash algorithm 75

5.3 Result obtained for pHash algorithm 75

5.4 Result obtained for aHash algorithm 77

5.5 Comparison . 79

6 Experimental Analysis 81

ii

6.1 Key-dependent hash . 82

7 Conclusion and future work 83

iii

List of Figures

1 Fig. Scheme of Segmentation process 21

2 Fig. L*a*b* color space converted image 23

3 Fig. Steps involved in Image processing 26

4 Brain images . 29

5 Error Correcting Codes . 36

6 Flow diagram for Average Hash algorithm 38

7 Flowdiagram for Perceptual Hashing algorithm 40

8 Flowdiagram of Difference Hash algorithm 42

9 Two colour pairs having perceptual difference with the same

Euclidean distance . 48

10 SIFT feature points: (a) n distinct feature points selected on

Lena and (b) Extracrtion of overlapped blocks using n feature

points . 49

11 Framework of wHash algorithm 52

12 Flow-diagram for Approach 1 55

13 EC2 instance (AWS) . 56

14 SSH using Private key . 56

15 Databse ’imagerec’ . 57

16 Output for connect and populate database 61

17 Flow-diagram for Approach 2 62

18 Output of wHash algorithm- Hamming distance 76

iv

19 Output of wHash algorithm-Images Retrieved 76

20 Output of dHash algorithm-Hamming distance 77

21 Output of pHash algorithm-Hamming distance 77

22 Output of aHash algorithm-Hamming distance 78

23 Output of aHash algorithm-Images retrieved 78

24 Comparison graph between proposed algorithm(wHash) and

other hashing algorithms . 81

v

1 Introduction

Due to the ever-increasing digitalization, the authentication of multimedia

content is becoming more and more important. Authentication in general

means deciding whether an object is authentic or not. That is, if it matches

a given original object. The authentication depends heavily on the type of

the object. When authenticating an executable file, it is important that ev-

ery single bit exactly matches the original executable. Cryptographic hash

functions are adequate for such tasks. To check the authenticity of multi-

media content, other methods are better suited. A multimedia object, e.g.

an image, can have different digital representations that all look the same

to the human perception. Powerful multimedia tools make digital images,

manipulate it easily and therefore bring a series of problems, such as image

authentication, image copy detection and image forensics.

In 1996, Schneider and Chang[20] introduced the pioneer work of image

hashing. From then on, many researchers have devoted themselves to devel-

oping image hashing. In terms of the used techniques, the existing algorithms

can be roughly classified into the following categories.

1. Discrete wavelet transform (DWT): Statistics of DWT coefficients

are firstly exploited to generate hashes. This method is sensitive to con-

trast adjustment and gamma correction. Researchers used the end-stopped

wavelet transform to detect visually significant points for hash construction.

1

Their scheme is robust against JPEG compression and small-angle rotation.

Ahmed et al. [15] presented a hash scheme based on DWT and SHA-1. It

is fragile to brightness adjustment, contrast adjustment and rotation. The

MH-based hashing is robust against rotation.

2. Discrete cosine transform (DCT): DCT coefficients can indicate visual

content and used it to build robust hashes for digital watermarking. This

scheme is also sensitive to rotation. later, a method was designed based on

invariant relation between DCT coefficients at the same position in separate

blocks. This method can distinguish JPEG compression from malicious at-

tacks, but it is vulnerable to some perceptually insignificant modifications.

3. Radon transform (RT): Motivated by RT, Roover et al.[9] designed

a scheme called RASH method which extracts robust features from a set of

radial projections of pixels. This method is also resilient to rotation, but

its discrimination needs to be improved. Ou et al. exploited the RT and

DCT to construct robust hashes. The RT-DCT hashing is resistant to JPEG

compression and filtering, but its discrimination is not desirable either.

4. Fourier transform: Swaminathan et al. [5] exploited Fourier coef-

ficients to generate image hashes. This method is resistant to moderate

geometric transforms and filtering. He also designed a method combining

RT, DWT and Fourier transform. This hashing is robust against print-scan

2

attack.

5. Matrix factorisation: Kozat et al. [5] viewed images and attacks as

a sequence of linear operators, and calculated hashes using Singular Value

Decompositions (SVDs). The SVD- SVD hashing is robust against rotation

at the cost of significantly increasing misclassification. He first used non-

negative matrix factorisation (NMF) to derive hashing. Their hashing is

resilient to geometric attacks, but sensitive to watermark embedding. He

found invariant relation in NMF coefficient matrix and used it to construct

hashes. The method is robust against normal digital operations, but fragile

to rotation.

Besides the above techniques, other strategies have also been reported.

For example, Khelifi and Jiang [6] proposed a hashing with the theory of

watermark detection. Lu and Wu [10] designed a hashing based on visual

words. Zhao and Wei [19] exploited Zernike moments to generate hashes.

Tang et al. [9] used structural features to design hashing. A common weak-

ness of is sensitive to rotation. Recently, Liu et al. [5] calculated hashes

by wave atom transform and grey code. Lv and Wang [9] introduced an

algorithm based on scale invariant feature transform and Harris detector. Li

et al. [9] calculated hashes using random Gabor filtering (GF) and dithered

lattice vector quantisation (LVQ). The GFLVQ hashing is resistant to JPEG

compression and rotation, but its discrimination is not good enough. Qin

3

et al. extracted hashes with Fourier transform and non-uniform sampling.

Zhao et al. [10] used Zernike moments and statistics of salient region to

construct hashes. The algorithms [9] only tolerate small-angle rotation. Al-

though many algorithms have been designed, there are still some practical

problems. For example, some algorithms can resist normal digital operations,

but their discriminations are not desirable. This means that when they are

applied to copy detection, the retrieved images will include some unexpected

different images, leading to a low retrieval efficiency. This paper discusses

about the use of colour vector angle in image hashing, and then proposes a

robust hashing with colour vector angles. Since vector angle is effective in

evaluating colour differences, the proposed algorithm can effectively extract

colour features and then make generated hash discriminative. Many exper-

iments are conducted and the results show that this algorithm can reach a

good balance between robustness and discrimination and outperforms some

well-known algorithm.

1.1 Motivation

In the last decade, an emerging multimedia technology called image hash-

ing attracts many researchers attentions. It uses a short string called hash

to represent an input image and finds applications in image retrieval, image

authentication, digital watermarking, copy detection and so on. In practice,

digital images often undergo normal digital operations, such as JPEG com-

pression, brightness adjustment, contrast adjustment, geometric transform,

4

watermark embedding, image filtering and gamma correction. These opera-

tions change digital representations of images, but keep their visual appear-

ances unchanged. Each of these image processing steps changes the binary

representation of the image. This means that image hash should be a visual

content-based representation. Therefore, although classical cryptographic

hash functions, for example, MD5 and SHA-1,[9] can map any message into

a fixed-size string, they are not suitable for image hashing because of their

sensitivity to bit-level change. In general, image hashing must satisfy two

basic properties,

(1) Perceptual robustness: visually identical images have the same or

very similar hashes no matter what their digital representations are. In other

words, image hashing should be robust against normal digital operations.

(2) Discriminative capability: different images have different hashes.

It means that hash distance between different images should be big enough.

In addition, image hashing should satisfy additional properties when it

is applied to some applications. For example, it should be key-dependent

for image forensics. Note that the two basic properties conflict with each

other. Perceptual robustness amounts to robustness under small perturba-

tions whereas the discriminative capability needs minimization of collision for

different images. High performance algorithms should keep a good balance

5

between them.

Forensic departments believe that anything can be treated as an evidence

if it was found at a crime scene. They also believe that criminals ought to

leave at least some evidence behind even though they try to clean the place

rid of evidences. Digital images in many cases can be used as evidence.

They are already using digital image forensics to identify suspicious pirated

copies of digital images. There are many techniques available too, like object

recognition, panoramic image stitching, image mosaic and near duplicate

image detection. There are requirement of image detection which are found

at a crime scene. When images are recovered from crime scenes, they can be

used as evidence if they are connected to other crimes. Forensic departments

maintain huge databases of images saved with keywords and tags. So, if

this image is found in the database, lets say under keyword of kidnapping,

then this image can be connected with the crime. This will strengthen the

evidence. This paper concentrates on fulfiling these tasks.

This paper focuses on designing an algorithm that will be useful in image

authentication and forensics. It is divided into two parts. First part of it

focuses on detection of duplicate images/ nearly duplicate images through

Wavelet Image Hashing Algorithm. This algorithm for detection of nearly du-

plicate images was tested through other previously implemented algorithms-

Perceptual Hashing, Average Hashing, Difference Hashing.

6

2 Background

This chapter briefly discusses the theoretical and practical aspects of the tech-

nologies used for creation of the solution proposed in this paper. This chapter

also explains basics of Image processing and the previously implemented al-

gorithms for Image hashing. Starting with Amazon Web Services(AWS),

the software calculates the hash of the image and then compares it with the

hashes already present in the database to check for similar hashes. If it finds

one, its a hit!

2.1 Amazon Web Services(AWS)

1. EC2 instance:

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that pro-

vides secure, resizable compute capacity in the cloud. It is designed to make

web-scale cloud computing easier for developers. Amazon EC2s simple web

service interface allows user to obtain and configure capacity up or down

according to conditions you define. It provides user with complete control of

user computing resources and lets user run on Amazons proven computing

environment. Amazon EC2 reduces the time required to obtain and boot

new server instances to minutes, allowing user to quickly scale capacity, both

up and down, as user computing requirements change. Amazon EC2 changes

the economics of computing by allowing user to pay only for capacity that

7

user actually use. Amazon EC2 provides developers the tools to build failure

resilient applications and isolate them from common failure scenarios.

Benefits of EC2:

a. Elastic web-scale computing:

Amazon EC2 enables user to increase or decrease capacity within minutes,

not hours or days. User can commission one, hundreds, or even thousands

of server instances simultaneously. User can also use amazon EC2 auto scal-

ing to maintain availability of EC2 fleet and automatically scale fleet up and

down depending on its needs in order to maximize performance and minimize

cost. To scale multiple services, user can use aws auto scaling.

b. Completely controlled:

User have complete control of the instances including root access and

the ability to interact with them as user would any machine. User can stop

any instance while retaining the data on the boot partition, and then sub-

sequently restart the same instance using web service apis. Instances can

be rebooted remotely using web service application interface’, and user also

have access to their console output.

c. Flexible cloud hosting services:

User have the choice of multiple instance types, operating systems, and

8

software packages. Amazon ec2 allows user to select a configuration of mem-

ory, cpu, instance storage, and the boot partition size that is optimal for users

choice of operating system and application. For example, choice of operating

systems includes numerous linux distributions and microsoft windows server.

d. Integrated:

Amazon EC2 is integrated with most aws services such as amazon simple

storage service (amazon S3), Amazon Relational database service (Amazon

RDS), and Amazon Virtual Private cloud (Amazon VPC) to provide a com-

plete, secure solution for computing, query processing, and cloud storage

across a wide range of applications.

e. Reliable:

Amazon EC2 offers a highly reliable environment where replacement in-

stances can be rapidly and predictably commissioned. The service runs

within amazons proven network infrastructure and data centers. The ama-

zon EC2 service level agreement commitment is 99.99% availability for each

amazon EC2 region.

f. Secure:

Cloud security at aws is the highest priority. As an aws customer, user

will benefit from a data center and network architecture built to meet the

requirements of the most security-sensitive organizations. Amazon ec2 works

9

in conjunction with amazon vpc to provide security and robust networking

functionality to compute resources.

g. Inexpensive:

Amazon ec2 passes on to user the financial benefits of amazons scale.

User pay a very low rate for the compute capacity user actually consume.

See amazon ec2 instance purchasing options for more details.

h.Easy to start:

There are several ways to get started with amazon ec2. User can use

the aws management console, the aws command line tools (cli), or aws sdks.

Aws is free to get started. To learn more, please visit our tutorials.

2. S3 bucket:

Industries today need the ability to simply and securely collect, store,

and analyze their data at a massive scale. Amazon S3 is object storage

built to store and retrieve any amount of data from anywhere web sites

and mobile apps, corporate applications, and data from IoT sensors or de-

vices. It is designed to deliver 99.99% durability, and stores data for millions

of applications used in every industry. S3 provides comprehensive security

and compliance capabilities that meet even the most stringent regulatory

requirements. It gives customers flexibility in the way they manage data for

10

cost optimization, access control, and compliance. S3 provides query-in-place

functionality, allowing you to run powerful analytics directly on your data

at rest in S3. And Amazon S3 is the most supported cloud storage service

available, with integration from the largest community of third-party solu-

tions, systems integrator partners, and other AWS services.

Benefits of S3 bucket:

a. Flexible management:

Amazon S3 offers the most flexible set of storage management and ad-

ministration capabilities. Storage administrators can classify, report, and

visualize data usage trends to reduce costs and improve service levels. Ob-

jects can be tagged with unique, customizable metadata so customers can

see and control storage consumption, cost, and security separately for each

workload. The s3 inventory feature delivers scheduled reports about objects

and their metadata for maintenance, compliance, or analytics operations.

Since amazon S3 works with AWS Lambda, customers can log activities,

define alerts, and invoke workflows, all without managing any additional in-

frastructure.

b. Query in place:

Amazon S3 allows you to run sophisticated big data analytics on your data

without moving the data into a separate analytics system. Amazon Athena

11

gives anyone who knows sql on-demand query access to vast amounts of un-

structured data. Amazon RedShift spectrum lets you run queries spanning

both your data warehouse and S3. And only AWS offers Amazon S3 select,

a way to retrieve only the subset of data you need from an S3 object, which

can improve the performance of most applications that frequently access data

from S3 by up to 400%.

c. Unmatched durability, availability and scalability:

Amazon S3 runs on the worlds largest global cloud infrastructure and is

designed from the ground up to deliver 99.99% of durability. Data in amazon

S3 Standard, S3 Standard-IA, and Amazon Glacier Storage classes is auto-

matically distributed across a minimum of three physical Availability Zones

(AZs) that are typically miles apart within an AWS region. The amazon S3

one zone-IA storage class stores data in a single AZ, and is ideal for cus-

tomers who want a lower cost option for infrequently accessed data and do

not require the availability and resilience of S3 standard storage. Amazon

S3 can also automatically replicate data to any other AWS region.

3. Amazon DynamoDB:

Amazon DynamoDB is a nonrelational database that delivers reliable

performance at any scale. It’s a fully managed, multi-region, multi-master

database that provides consistent single-digit millisecond latency, and offers

12

built-in security, backup and restore, and in-memory caching.

Benefits of Amazon DynamoDB:

a. Performance at scale:

DynamoDB delivers consistent, single-digit millisecond responsiveness at

any scale. Build apps with virtually unlimited throughput and storage. Add

an in-memory cache that reduces response times from milliseconds to mi-

croseconds, without any app changes.

b. Fully managed

Dynamodb is a serverless database that automatically scales throughput

up or down, and continuously backs up your data for protection. Dynamodb

gives your globally distributed applications fast access to local data by repli-

cating tables across multiple aws regions.

c. Enterprise-ready

Built for mission-critical workloads. Your data is secured with encryption

and guaranteed reliability with a service level agreement. You have full over-

sight of your tables with fine-grained access control, integrated monitoring

tools, and support for private connections over VPN.

13

2.2 Database shelve

A shelf is a persistent, dictionary-like object. The difference with dbm

databases is that the values (not the keys!) in a shelf can be essentially

arbitrary Python objects. This includes most class instances, recursive data

types, and objects containing lots of shared sub-objects. The keys are or-

dinary strings. Because of Python semantics, a shelf cannot know when a

mutable persistent-dictionary entry is modified. By default modified objects

are written only when assigned to the shelf (see Example). If the optional

writeback parameter is set to True, all entries accessed are also cached in

memory, and written back on sync() and close(); this can make it handier

to mutate mutable entries in the persistent dictionary, but, if many entries

are accessed, it can consume vast amounts of memory for the cache, and it

can make the close operation very slow since all accessed entries are written

back (there is no way to determine which accessed entries are mutable, nor

which ones were actually mutated).

Shelf objects support all methods supported by dictionaries. This eases

the transition from dictionary based scripts to those requiring persistent stor-

age.

The two important terms that are important to be understand are pickle

and shelve-

1. pickle is for serializing some object (or objects) as a single byte stream

14

in a file.

2. shelve builds on top of pickle and implements a serialization dictio-

nary where objects are pickled, but associated with a key (some string), so

we can load the shelved data file and access the pickled objects via keys.

This could be more convenient were you to be serializing many objects.

2.3 phpMyAdmin

phpMyAdmin is a free software tool written in PHP that is intended to han-

dle the administration of a MySQL or MariaDB database server. You can

use phpMyAdmin to perform most administration tasks, including creating

a database, running queries, and adding user accounts.

Supported features:

Currently phpMyAdmin can:

1. create, browse, edit, and drop databases, tables, views, columns, and

indexes

2. display multiple results sets through stored procedures or queries

3. create, copy, drop, rename and alter databases, tables, columns and

indexes

15

4. maintenance server, databases and tables, with proposals on server

configuration

5. execute, edit and bookmark any SQL-statement, even batch-queries

6. load text files into tables

7. create and read dumps of tables

8. export data to various formats: CSV, XML, PDF, ISO/IEC 26300 -

OpenDocument Text and Spreadsheet, Microsoft Word

9. 2000, and LATEX formats

10. import data and MySQL structures from OpenDocument spreadsheets,

as well as XML, CSV, and SQL files

11. administer multiple servers

12. add, edit, and remove MySQL user accounts and privileges

13. check referential integrity in MyISAM tables

14. using Query-by-example (QBE), create complex queries automatically

connecting required tables

2.4 Image Preprocessing

Image preprocessing is form of signal processing for which the input is an im-

age, such as a picture; the output of image pre-processing may be either an

16

image or, a set of characteristics or parameters related to the image. Most im-

age pre-processing techniques involve treating the image as a two-dimensional

signal and applying standard signal-processing techniques to it. segmentation

refers to the process of partitioning a digital image into multiple segments

(sets of pixels, also known as super pixels). The goal of segmentation is to

simplify and/or change the representation of an image into something that

is more meaningful and easier to analyze. Image segmentation is typically

used to locate objects and boundaries in images.

Preprocessing consists of those operations that prepare data for subse-

quent analysis that attempts to correct for systematic errors. The digital

images are subjected to several corrections. After the pre-processing is com-

plete, the original images are pre-processed to make the dimensionality more

adaptable to processing which also helps to make the processing faster.

1. Lab Colour Space

A Lab colour space is a colour opponent space with dimension L for

lightness and a and b for the colour opponent dimensions, based on nonlin-

early compressed CIE XYZ colour space coordinates. ”Lab” colour spaces

is to create a space which can be computed via simple formulas from the

XYZ space,but is more perceptually uniform than XYZ. Perceptually uni-

form means that a change of the same amount in a colour value should pro-

duce a change of about the same visual importance. When storing colours

17

in limited precision values, this can improve the reproduction of tones. Both

Lab spaces are relative to the white point of the XYZ data they were con-

verted from. Lab values do not define absolute colours unless the white point

is also specified.[3]The goal is to identify different colours in image by an-

alyzing the L*a*b* colour space. The image was acquired using the Image

Acquisition Toolbox.

Step 1: Acquire Image Read the image, which is an colourful image

instead of using gray image.

Step 2:Calculate Sample Colours in L*a*b* Colour Space for each

region. The L*a*b* colour space is derived from the CIE XY tristimulus

values. The L*a*b* space consists of a luminosity ’L*’ layer, chromaticity

layer ’a*’ indicating where colour falls along the red-green axis, and chro-

maticity layer ’b*’ indicating where the colour falls along the blue-yellow

axis. [18]Your approach is to choose a small sample region for each colour

and to calculate each sample region’s average colour in ’a*b*’ space.

Step 3: Classify Each Pixel Using the Nearest Neighbour rule

each colour marker now has an ’a*’ and a ’b*’ value. The smallest

distance will tell you that the pixel most closely matches that colour marker.

Step 4: Display Results of Nearest Neighbour Classification The

label matrix contains a colour label for each pixel in the fabric image. Use

18

the label matrix to separate objects in the original fabric image by colour.

Step 5: Display ’a*’ and ’b*’ Values of the Labelled Colours. The

nearest neighbour classification separated the different colour populations by

plotting the ’a*’ and ’b*’ values of pixels that were classified into separate

colours. For display purposes, label each point with its colour label.

The three coordinates of LAB represent the lightness of the color (L* =

0 yields black and L* = 100 indicates diffuse white; specular white may be

higher), its position between red/magenta and green (a*, negative values in-

dicate green while positive values indicate magenta) and its position between

yellow and blue (b*, negative values indicate blue and positive values indicate

yellow) coordinate ranges from 0 to 100.

The possible range of a* and b* coordinates is independent of the colour

space that one is converting from, since the conversion uses X and Y which

come from RGB the red/green and yellow/blue opponent channels are com-

puted as differences of lightness transformations of cone responses, CIELAB

is a chromatic value colour space The nonlinear relations for L*, a*, and b*

are intended to mimic the nonlinear response of the eye. [4]Furthermore,

uniform changes of components in the L*a*b* colour space aim to correspond

to uniform changes in perceived colour, so the relative perceptual differences

between any two colours in L*a*b* can be approximated by treating each

19

colour as a point in a three dimensional space. The L*a*b* colour space in-

cludes all perceivable colours which means that its gamut exceeds those of the

RGB and CMYK colour models.[12] One of the most important attributes

of the L*a*b*-model is the device independency. This means that the colours

are defined independent of their nature of creation or the device they are

displayed on. The L*a*b* color space is used e.g. in Adobe Photoshop when

graphics for print have to be converted from RGB to CMYK, Your goal is

to identify different colours in image by analyzing the L*a*b* colour space.

20

Figure 1: Fig. Scheme of Segmentation process

The difference between the two points in the L*a*b* colour space is same

with the human visual system. Since the L*a*b* model is a three-dimensional

model, it can only be represented properly in a three-dimensional space.[13]

The solution to convert digital images from the RGB space to the L*a*b*

colour space is given by the following formula:

L* = 116f (Y /Y n)− 16

21

a* = 500
[
f (X/Xn)− f (Y /Y n)

]

b* = 200
[
f (Y /Y n)− f (Z/Zn)

]

X, Y, Z, Xn, Yn, and Zn are the coordinates of CIEXYZ colour space.

The solution to convert digital images from the RGB space to the CIEXYZ

colour space is as the following formula.


X

Y

Z

 =


0.608 0.174 0.201

0.299 0.587 0.114

0.000 0.066 1.117

×

R

G

B


Xn, Yn, and Zn are respectively corresponding to the white value of the

parameter.

[
f (x)

]
=

 X1/3 x〉0.008856

7.787x+ 16/116 x ≥ 0.008856


Colour space conversion is the translation of the representation of a colour

from one basis to another. This typically occurs in the context of converting

an image that is represented in one colour space to another colour space.

22

Figure 2: Fig. L*a*b* color space converted image

2.5 Image Processing

Image processing is a method to convert an image into digital form and per-

form some operations on it, in order to get an enhanced image or to extract

some useful information from it. It is a type of signal dispensation in which

input is image, like video frame or photograph and output may be image or

characteristics associated with that image. Usually Image Processing system

includes treating images as two dimensional signals while applying already

set signal processing methods to them. It is among rapidly growing tech-

nologies today, with its applications in various aspects of a business. Image

Processing forms core research area within engineering and computer science

23

disciplines too.

Image processing basically includes the following three steps.

Step 1: Importing the image with optical scanner or by digital photogra-

phy.

Step 2: Analyzing and manipulating the image which includes data com-

pression and image enhancement and spotting patterns that are not to human

eyes like satellite photographs.

Step 3: Output is the last stage in which result can be altered image or

report that is based on image analysis.

Purpose of Image processing:

The purpose of image processing is divided into 5 groups. They are:

1. Visualization - Observe the objects that are not visible.

2. Image sharpening and restoration - To create a better image.

3. Image retrieval - Seek for the image of interest.

4. Measurement of pattern Measures various objects in an image.

5. Image Recognition Distinguish the objects in an image.

24

Types:

The two types of methods used for Image Processing are Analog and Digital

Image Processing. Analog or visual techniques of image processing can be

used for the hard copies like printouts and photographs. Image analysts use

various fundamentals of interpretation while using these visual techniques.[2]

The image processing is not just confined to area that has to be studied but

on knowledge of analyst. Association is another important tool in image

processing through visual techniques. So analysts apply a combination of

personal knowledge and collateral data to image processing.

Digital Processing techniques help in manipulation of the digital images

by using computers. As raw data from imaging sensors from satellite plat-

form contains deficiencies. To get over such flaws and to get originality of

information, it has to undergo various phases of processing. The three general

phases that all types of data have to undergo while using digital technique

are Pre- processing, enhancement and display, information extraction.[14]

The diagram below depicts the steps involved in Image processing-

2.6 Image Recognition

Image recognition, in the context of machine vision, is the ability of soft-

ware to identify objects, places, people, writing and actions in images. Com-

25

Figure 3: Fig. Steps involved in Image processing

puters can use machine vision technologies in combination with a camera and

artificial intelligence software to achieve image recognition.[1] Image recog-

nition is used to perform a large number of machine-based visual tasks, such

as labeling the content of images with meta-tags, performing image content

search and guiding autonomous robots, self-driving cars and accident avoid-

ance systems.

26

2.6.1 Working of image recognition

1. Gather and Organize Data

The human eye perceives an image as a set of signals which are processed

by the visual cortex in the brain. This results in a vivid experience of a scene,

associated with concepts and objects recorded in ones memory. Image recog-

nition tries to mimic this process. Computer perceives an image as either a

raster or a vector image. Raster images are a sequence of pixels with discrete

numerical values for colors while vector images are a set of color-annotated

polygons.

To analyze images the geometric encoding is transformed into constructs

depicting physical features and objects. These constructs can then be logi-

cally analyzed by the computer. Organizing data involves classification and

feature extraction. The first step in image classification is to simplify the

27

image by extracting important information and leaving out the rest. For

example, while extracting main figure from the background you will notice a

significant variation in RGB pixel values.[16]

However, it can be simplified by running an edge detector on the image. It

is easy to discern the circular shape of the face and eyes in these edge images

and so it can be concluded that edge detection retains the essential informa-

tion while throwing away non-essential information. Some well-known feature

descriptor techniques are Haar-like features introduced by Viola and Jones,

Histogram of Oriented Gradients (HOG), Scale-Invariant Feature Transform

(SIFT), Speeded Up Robust Feature (SURF) etc.

2. Build a Predictive Model

This section mentions about how a classification algorithm takes this fea-

ture vector as input and outputs a class label (e.g. brain/no brain). Before

a classification algorithm can do its magic, we need to train it by showing

thousands of brain images. The general principle in machine learning algo-

rithms is to treat feature vectors as points in higher dimensional space. Then

it tries to find planes or surfaces (contours) that separate higher dimensional

space in a way that all examples from a particular class are on one side of

the plane or surface.

28

Figure 4: Brain images

3. Recognize Images

While the above two steps take up most of the effort, this step to rec-

ognize image is pretty easy. The image data, both training, and test are

organized. Training data is different from test data, which also means we

remove duplicates (or near duplicates) between them. This data is fed into

the model to recognize images. We have to find the image of a cat in our

database of known images which has the closest measurements to our test

image. All we need to do is train a classifier that can take the measurements

29

from a new test image and tells us about the closest match with a cat. Run-

ning this classifier takes milliseconds. The result of the classifier is all the

brain images that look similar to the test image.

The major challenges in building an image recognition model are hard-

ware processing power and cleansing of input data. It can be possible that

most of the images might be high definition. While dealing with large im-

ages of size more than 500 pixels, it becomes 250,000 pixels (500 X 500) per

image.[7] A training data of mere 1000 images will amount to 0.25 billion

values for the machine learning model. Moreover, the calculations are not

easy addition or multiplication, but complex derivatives involving floating

point weights and matrices.

There are some quick hacks to overcome the above challenges:

1. Image compression tools to reduce image size without losing clarity

2. Use grayscale and gradient version of colored images

3. Graphic processor units (GPU) To train the neural networks containing

large data sets in less time and with less computing infrastructure.

Image recognition is used in many applications like systems for factory

automation, toll booth monitoring, and security surveillance.

30

This paper concentrates on detecting similar images that have been re-

sized, cropped or adulterated with filters. This can be done through a tech-

nique called Image Hashing.

31

2.7 Image Hashing

While normally hashing a file hashes the individual bits of data of the file,

image hashing works on a slightly higher level. The difference is that with

image hashing, if two pictures look practically identical but are in a different

format, or resolution (or there is minor corruption, perhaps due to compres-

sion) they should hash to the same number. Despite the actual bits of their

data being totally different, if they look parctically identical to a human,

they hash to the the same thing.

Hashing is a function that applies to an arbitrary data and produces the

data of a fixed size (mostly a very small size). There are many different types

of hashes, but talking about image hashing, it is used either to:

a. find duplicates very fast. Instead of searching for the whole image,

look for the hash of the image.

b. finding similar images

Images that look identical to us, can be very different if you will just

compare the raw bytes. This can be due to:

1. resizing,

32

2. rotation,

3. slightly different color gamma,

4. different format,

5. some minor noise, watermarks and artifacts.

2.8 Crypographic Hash functions

A cryptographic hash function is a special class of hash function that has

certain properties which make it suitable for use in cryptography. It is a

mathematical algorithm that maps data of arbitrary size to a bit string of

a fixed size (a hash) and is designed to be a one-way function, that is, a

function which is infeasible to invert. The only way to recreate the input

data from an ideal cryptographic hash function’s output is to attempt a

brute-force search of possible inputs to see if they produce a match, or use

a rainbow table of matched hashes. Bruce Schneier[11] has called one-way

hash functions ”the workhorses of modern cryptography”. The input data

is often called the message, and the output (the hash value or hash) is often

called the message digest or simply the digest.

The ideal cryptographic hash function has five main properties:

1. it is deterministic so the same message always results in the same hash.

2. it is quick to compute the hash value for any given message.

33

3. it is infeasible to generate a message from its hash value except by

trying all possible messages.

4. a small change to a message should change the hash value so extensively

that the new hash value appears uncorrelated with the old hash value.

5. it is infeasible to find two different messages with the same hash value.

Cryptographic hash functions have many information-security applica-

tions, notably in digital signatures, message authentication codes (MACs),

and other forms of authentication. They can also be used as ordinary hash

functions, to index data in hash tables, for fingerprinting, to detect duplicate

data or uniquely identify files, and as checksums to detect accidental data cor-

ruption. Indeed, in information-security contexts, cryptographic hash values

are sometimes called (digital) fingerprints, checksums, or just hash values,

even though all these terms stand for more general functions with rather

different properties and purposes.

So, there is a need a hash function which will create a similar (or even

identical) hash for similar images. The most well known algorithms are

mentioned in Section 2.6

2.9 Hamming distance

Given two vectors u, v ∈ Fn, we define the hamming distance between u and

v, d (u, v) to be the number of places where u and v differ.

34

Thus the Hamming distance between two vectors is the number of bits

we must change to change one into the other.

Example Find the distance between the vectors 01101010 and 11011011.

01101010

11011011

They differ in four places, so the Hamming distance

d (01101010, 11011011) = 4

2.10 Error correcting codes

Error correcting codes are used in many places, wherever there is the possibil-

ity of errors during transmission. Some examples are NASA probes (Galileo),

CD players and the Ethernet transmission protocol.

We assume that the original message consists of a series of bits, which

can be split into equal size blocks and that each block is of length n, i.e. a

member of Fn

The usual process consists of the original block x ∈ Fn this is then en-

coded by some encoding function to u ∈ Fn+k which is then sent across some

(noisy) channel. At the other end the received value v ∈ Fn+k is decode by

35

Figure 5: Error Correcting Codes

means of the corresponding decoding function to some y ∈ Fn.

If there are no errors in the channel u = v and x = y.

36

2.11 Image Hashing Algorithms (Previously implemented)

1. Average Hashing (aHash):

With pictures, high frequencies give you detail, while low frequencies show

you structure. A large, detailed picture has lots of high frequencies. A very

small picture lacks details, so it is all low frequencies. This approach crushes

the image into a grayscale 8x8 image and sets the 64 bits in the hash based on

whether the pixel’s value is greater than the average color for the image.[13]

Following are the steps to show how the Average hash algorithm works-

Step 1: Reduce size. The fastest way to drastically remove high frequen-

cies and detail is to shrink the image. In this case, shrink it to 8x8 so that

there are 64 total pixels. Don’t bother keeping the aspect ratio, just crush

it down to fit an 8x8 square. This way, the hash will match any variation of

the image, regardless of scale or aspect ratio.

Step 2: Reduce color. The tiny 8x8 picture is converted to a grayscale.

This changes the hash from 64 pixels (64 red, 64 green, and 64 blue) to 64

total colors.

Step 3: Average the colors. Compute the mean value of the 64 colors.

37

Figure 6: Flow diagram for Average Hash algorithm

Step 4: Compute the bits. Each bit is simply set based on whether the

color value is above or below the mean.

Step 5: Construct the hash. Set the 64 bits into a 64-bit integer. The

order does not matter, just as long as you are consistent.

2. Perceptual Hashing (pHash):

A perceptual hash is a fingerprint of a multimedia file derived from vari-

ous features from its content. Unlike cryptographic hash functions which rely

on the avalanche effect of small changes in input leading to drastic changes

in the output, perceptual hashes are ”close” to one another if the features

are similar. [17]This algorithm is similar to aHash but use a discrete cosine

transform (DCT) and compares based on frequencies rather than color values.

38

Following are the steps to show how the Perceptual hash algorithm works-

Step 1: Reduce size. Like Average Hash, pHash starts with a small im-

age. However, the image is larger than 8x8; 32x32 is a good size. This is

really done to simplify the DCT computation and not because it is needed

to reduce the high frequencies.

Step 2: Reduce color. The image is reduced to a grayscale just to further

simplify the number of computations.

Step 3: Compute the DCT. The DCT separates the image into a collec-

tion of frequencies and scalars. While JPEG uses an 8x8 DCT, this algorithm

uses a 32x32 DCT.

Step 4: Reduce the DCT. While the DCT is 32x32, just keep the top-left

8x8. Those represent the lowest frequencies in the picture.

Step 5: Compute the average value. Like the Average Hash, compute the

mean DCT value (using only the 8x8 DCT low-frequency values and exclud-

ing the first term since the DC coefficient can be significantly different from

the other values and will throw off the average).

39

Figure 7: Flowdiagram for Perceptual Hashing algorithm

Step 6: Further reduce the DCT. This is the magic step. Set the 64 hash

bits to 0 or 1 depending on whether each of the 64 DCT values is above or

below the average value.The result doesn’t tell us the actual low frequencies;

it just tells us the very-rough relative scale of the frequencies to the mean.

The result will not vary as long as the overall structure of the image remains

the same.

Construct the hash. Set the 64 bits into a 64-bit integer. The order does

not matter, just as long as you are consistent. To see what this fingerprint

looks like, simply set the values (this uses +255 and -255 based on whether

the bits are 1 or 0) and convert from the 32x32 DCT (with zeros for the high

frequencies) back into the 32x32 image.

3. Difference Hashing (dHash):

40

Like aHash and pHash, dHash is pretty simple to implement and is far

more accurate than it has any right to be. As an implementation, dHash is

nearly identical to aHash but it performs much better. While aHash focuses

on average values and pHash evaluates frequency patterns, dHash tracks gra-

dients.

Following are the steps to show how the Average Hash algorithm works-

Step 1: Reduce size. The fastest way to remove high frequencies and

detail is to shrink the image. In this case, shrink it to 9x8 so that there are

72 total pixels. (I’ll get to the ”why” for the odd 9x8 size in a moment.) By

ignoring the size and aspect ratio, this hash will match any similar picture

regardless of how it is stretched.

Step 2: Reduce color. Convert the image to a grayscale picture. This

changes the hash from 72 pixels to a total of 72 colors. (For optimal per-

formance, either reduce color before scaling or perform the scaling and color

reduction at the same time.)

Step 3: Compute the difference. The dHash algorithm works on the differ-

ence between adjacent pixels. This identifies the relative gradient direction.

In this case, the 9 pixels per row yields 8 differences between adjacent pixels.

Eight rows of eight differences becomes 64 bits.

41

Figure 8: Flowdiagram of Difference Hash algorithm

Step 4: Assign bits. Each bit is simply set based on whether the left pixel

is brighter than the right pixel. The order does not matter, just as long as

you are consistent. (I use a ”1” to indicate that P[x] ¡ P[x+1] and set the

bits from left to right, top to bottom using big-endian.)

42

2.12 Proposed algorithm

The proposed image hashing is composed of four steps. The input image is

firstly preprocessed to produce a normalised image. Colour vector angle of

each pixel is then calculated. Next, block division is performed, and block

means are extracted to form a feature matrix. A single-level two-dimensional

(2D) DWT is finally used to produce a short hash. Colour vector angle is

introduced in Section 2.5.1 and the detailed steps are described in Section

2.5.1 and 2.5.2

2.12.1 Colour vector angle

In general, a colour image can be depicted by its hue, saturation and lumi-

nance, where the hue represents colour appearance, the saturation describes

the amount of white contained in the colour, and the luminance also called

intensity is an indicator of brightness. In practice, normal digital operations,

such as brightness/contrast adjustment, only change intensity and keep the

hue and saturation almost unchanged. Colour vector angle is a useful fea-

ture and has been successfully used in edge detection and image retrieval. It

is insensitive to intensity variations, but sensitive to differences in hue and

saturation. This property is good for image hashing. Moreover, comparing

with the Euclidean distance in RGB colour space, colour vector angle is more

effective in evaluating perceptual differences between two colours.

The advantage of colour vector angle is attributed to its sensitiveness to

43

hue differences. Let P1 = [R1 , G1 , B1]
T and P2 = [R2 , G2 , B2]

T be

vectors of two colours, where R1 and R2 , G1 and G2 , B1 and B2 , are their

red, green and blue components, respectively. Thus, the angle θ between P1

and P2 can be calculated by,

θ = arcsin

(
1− (PT

1P2)
2

PT
1P1P

T
2P2

)(1
2)

To reduce computational cost, we use the sin θ for representation which

is defined as follows,

sin θ =

(
1− (PT

1P2)
2

PT
1P1P

T
2P2

)(1
2)

2.12.2 Scale-invariant feature transform(SIFT)

The scale-invariant feature transform (SIFT) is a feature detection algorithm

in computer vision to detect and describe local features in images. Appli-

cations include object recognition, robotic mapping and navigation, image

stitching, 3D modeling, gesture recognition, video tracking, individual iden-

tification of wildlife and match moving.

SIFT keypoints of objects are first extracted from a set of reference im-

ages and stored in a database. An object is recognized in a new image by

individually comparing each feature from the new image to this database and

44

finding candidate matching features based on Euclidean distance of their fea-

ture vectors. From the full set of matches, subsets of keypoints that agree on

the object and its location, scale, and orientation in the new image are iden-

tified to filter out good matches. The determination of consistent clusters is

performed rapidly by using an efficient hash table implementation of the gen-

eralised Hough transform. Each cluster of 3 or more features that agree on

an object and its pose is then subject to further detailed model verification

and subsequently outliers are discarded. Finally the probability that a par-

ticular set of features indicates the presence of an object is computed, given

the accuracy of fit and number of probable false matches. Object matches

that pass all these tests can be identified as correct with high confidence.

SIFT is quite an involved algorithm. Here’s an outline of what happens

in SIFT-

1. Constructing a scale space

This is the initial preparation. You create internal representations of the

original image to ensure scale invariance. This is done by generating a ”scale

space”.

2. LoG Approximation

The Laplacian of Gaussian is great for finding interesting points (or key

points) in an image. But it’s computationally expensive. So we cheat and

45

approximate it using the representation created earlier.

3. Finding keypoints

With the super fast approximation, we now try to find key points. These

are maxima and minima in the Difference of Gaussian image we calculate in

step 2

4. Get rid of bad key points

Edges and low contrast regions are bad keypoints. Eliminating these makes

the algorithm efficient and robust. A technique similar to the Harris Corner

Detector is used here.

5. Assigning an orientation to the keypoints

An orientation is calculated for each key point. Any further calculations are

done relative to this orientation. This effectively cancels out the effect of

orientation, making it rotation invariant.

6. Generate SIFT features

Finally, with scale and rotation invariance in place, one more representation

is generated. This helps uniquely identify features.

The detailed steps of the wHash algorithm are as follows:

46

2.12.3 Preprocessing:

The input image is converted to S × S by bi-cubic interpolation. The image

resizing is to make our hash resistant to those images with different resolu-

tions. Gaussian low-pass filtering is then applied to the resized image. This

operation can be achieved by a convolution mask.

Let TGaussian (i, j) be the element in the ith row and the jth column of the

convolution mask. Thus, it can be obtained by,

TGaussian (i, j) =
T(1)(i,j)∑

i

∑
jT

1 (i, j)

in which σ is the standard deviation of all elements in the convolution

mask. For example, 1 ≤ i ≤ 1 and 1 ≤ j ≤ 1 if the mask is 3 × 3. The

filtering manipulation is to alleviate influences of minor modifications on the

hash, such as noise contamination.

2.12.4 Colour vector angle calculation:

As angle calculation needs two colours, we generate a reference colour Pref =

Rref, Gref, Bref

T , where Rref, Gref and Bref are the means of red, green and blue components

of all pixels. Thus, for each pixel, we calculate its colour vector angle between

47

Figure 9: Two colour pairs having perceptual difference with the same Eu-
clidean distance

its RGB vector and Pref. After computation, we obtain a matrix A of colour

vector angles. Fig. is an example of conversion from the normalised image

to colour vector angles.

2.12.5 Feature extraction

The L* component of the Ilab color image is used to extract robust features.

The step-by-step feature extraction process is explained as follows.

Step 1. Computation of SIFT feature points: SIFT is a computer vision

technique used to detect and describe invariant features points on digital

images.

The proposed method computes SIFT feature points from the L* compo-

nent. These points are denoted as FPi , 1 ≥ i ≥ t where t signifies the total

number of feature points. The ith SIFT feature point is represented as: F

Pi(xi, yi, σ, θ) where the coordinates (xi, yi) denote the location of the feature

point on the L* component, and σ and θ signify the scale and orientation,

48

Figure 10: SIFT feature points: (a) n distinct feature points selected on Lena
and (b) Extracrtion of overlapped blocks using n feature points

respectively.

Step 2. Selection of distinct SIFT feature points: To select distinct feature

points from the list of t points, the points are sorted in descending order based

on the scale, and then duplicate points are removed. The first n points are

then selected as feature points. The selected distinct points are denoted as

DFPj , 1 ≥ j ≥ n. The n = 16 distinct points selected on the Lena image

are shown in Fig. 6(a). The feature points are labeled with numbers.

2.12.6 DWT:

To make a short hash, we apply a single-level 2D DWT to M. A single-level

2D DWT decomposes an input matrix, for example, an image, into four

sub-bands, that is, LL, LH, HL and HH sub-bands. DWT coefficients in

49

the LL sub-band contain most information of the input matrix and depict

the coarse characteristic, whereas those in other sub-bands preserve the edge

information in different directions. This implies that DWT coefficients in

the LL sub-band can be used to approximately represent the input matrix.

Therefore we extract those DWT coefficients in the LL sub-band and ran-

domly permute them to form a compact representation. Clearly, the use

of DWT can reduce nearly 75% matrix elements and then make our hash

short enough. Let L be the total number of DWT coefficients in the LL sub-

band, where L = (dN\2e)2 and d.e denotes upward rounding. Concatenate

the columns of LL sub-band and obtain a compact representation r = [r(1),

r(2),. . ., r(L)]. The random permutation is controlled by a secret key, which is

used as the seed of a random generator. It is achieved as follows. Generate L

pseudo-random numbers by the secret key, sort these L numbers to make an

ordered sequence, and record the original positions of these ordered numbers

in an array E. Suppose that c = [c(1), c(2), . . . , c(L)] is the permuted result

of r. Thus, it can be obtained by ,

c (l) = r(E[l])

where E[l] is the lth element of E and l = 1, 2,. . ., L. In general, the bigger

the available number of c, the more unpredictable our hash. Obviously, the

available number of c is equivalent to the number of permutations, that is,

L! For example, when L is 16 or 64, the available number of c is about 2.09

50

1013 or 1.27 1089, respectively. Next we quantise c as follows,

h(l) = [c(l)× 10000 + 0.5]

where l = 1, 2, . . ., L and [.] is the rounding operation. Therefore our

hash is an integer representation labelled as h = [h(1), h(2),. . ., h(L)]. In

experiments, we find that each element can be represented by 15 bits. Thus,

the length of our hash is 15L bits. This will be validated in Section 3.2.

Note that hash length is related to block size. The smaller the block size, the

longer the hash length. For example, if the normalised image size is 512 512

and the block size is 32 32, that is, S = 512 and b = 32, then N = 512/32

= 16, L =(d16\2e)2 = 64 and therefore the hash length is 960 bits.

2.12.7 Generation of Intermediate hash

The intermediate hash (IH) vector is generated by computing the row-wise

average of approximation coefficients of matrix ACQ×R as described in the

following equation. To produce a secure and key-dependent hash, the inter-

mediate hash vector is randomly permuted using a pseudorandom procedure.

I Hk = sumR
m=1AC(k,m)/R, 1 ≥ k ≥ Q

51

Figure 11: Framework of wHash algorithm

2.12.8 Hamming distance

the hash similarity is measured using the normalized hamming distance. Let

h1 and h2 be two hashes. Thus, NHD is defined as,

NHD(h1, h2) = 1
L

∑L
z=1 |h1(z)− h2(z)|

The more similar the images of the input hashes, the smaller the d value.

If d is smaller than a threshold T, the two images are considered as visually

identical images. Otherwise, they are different images.

52

3 Algorithm:

Step 1: The selected RGB color images were scaled to 512 × 512 (N × N)

pixels using bi-cubic interpolation and converted to L*a*b* color images. [15]

The L*a*b* space consists of a luminosity ’L*’ layer, chromaticity layer

’a*’ indicating where color falls along the red-green axis, and chromaticity

layer ’b*’ indicating where the color falls along the blue-yellow axis. The

unique goal of the L*a*b* model is to be device-independent. The colors

should not be dependent on the device they are displayed on. To calculate

L*, a*, b*,

L* = 116 f (Y / Yn) 16

a* = 500[f(X / Xn)-f(Y /Yn)]

b* = 200 [f (Y / Yn)-f(Z /Zn)]

Xn, Yn, and Zn are the tristimulus values of the reference white object,

R(λ) = 1. The tristimulus values Xn, Yn, and Zn represent the white adap-

tation point (i.e. the chromaticity of the illuminant). A positive a* value

corresponds to a reddish color and negative a* indicates a greenish color.

Similarly, a positive b* value indicates yellowish color and a negative b*

53

value signifies bluishness.

Step 2: The n = 16 SIFT feature points were chosen to extract image

content from the L* component. The block size 64× 64 (P ×P) was consid-

ered to extract content from around the chosen SIFT feature points.

Scale Invariant Feature Transform(SIFT)

The most basic of feature detectors focuses on finding basic features in the

images, this can be in the form of corners (harris detector) or edges (canny

detector), these are often features that are affected by scale transform.

Step 3: The approximation coefficients were computed by applying level

2 (l = 2) 2D Daubechie wavelet transform on each extracted block of pixels.

Step 4: Finally, the binary hash of length 256 (n× (P/2l)) was generated.

Similarity between images:

The similarity between original and suspect images was measured using

the normalized hamming distance (NHD) as defined in the following equation.

NHD(h1, h2) = 1
L

∑L
z=1 |h1(z)− h2(z)|

54

Figure 12: Flow-diagram for Approach 1

4 Implementation

The algorithm was implemented using two different approaches figure 12

and 17

4.1 Working with Amazon web services- EC2 instance,

S3 bucket and DynamoDB

4.1.1 Setting up EC2 instance

We created an EC2 instance and connected it to SSH using Private key.

SSH command: ssh -i ”newinstance.pem” ec2-user@ec2-54-215-234-30.us-

west-1.compute.amazonaws.com

55

Figure 13: EC2 instance (AWS)

Figure 14: SSH using Private key

The figure below depicts an EC2 instance (Fig. 8) and succesful SSH using

Private key(Fig.9)

4.1.2 Creating phpmyadmin page to access the database

For this, firstly MySQL server and php needs to be installed to directly

access the Database.

56

Figure 15: Databse ’imagerec’

Below mentioned is the link for my phpMyAdmin page - imageRec DB

(Fig. 10)

Database - imagerec

The database created contains table ImageDetails which include attributes-

ImageID, ImageName, ImagePath, ImageDescription and ImageFormat. An-

other table to store the HASH value named ImageHash with attributes- Im-

ageId and ImageHash

4.1.3 Connect and Populate the database

This section discusses about script to populate the database. To populate

the database on AWS, we first established the connection to the imagerec

database we created on the phpmyadmin page.

Program Description:

1. The code take as input the IP address of the phpmyadmin page, user-

name and password.

57

2. Then using pymysql library it runs a query to request for connection

3. If the connection is successful it returns the data/values in table im-

ageDetails as the output (This query can be changed as per the need)

Below is the program for the same.

Code Listing 1: Connect and Populate the database

#To compile this script through command prompt- python

connect_populate_db.py

import xlrd

import pymysql

Open the workbook and define the worksheet

book = xlrd.open_workbook("image.xlsx") #open the excel file which

contains 4 rows- imageID, imagePath, imageFormat,

imageDescription

sheet = book.sheet_by_name("image") #name of the sheet

Establish a MySQL connection

database = pymysql.connect (host="52.53.147.106", user = "geet",

passwd = "image", db = "imagerec")

58

Get the cursor, which is used to traverse the database, line by

line

cursor = database.cursor()

Create the INSERT INTO sql query

query = """INSERT INTO imageDB

(imageID,imagePath,imageFormat,imageDescription) VALUES (%s,

%s, %s, %s)"""

#query = """SELECT * FROM imageDB"""

Create a For loop to iterate through each row in the XLS file,

starting at row 2 to skip the headers

for r in range(0, sheet.nrows):

imageID = sheet.cell(r,0).value

imagePath = sheet.cell(r,1).value

imageFormat = sheet.cell(r,2).value

imageDescription = sheet.cell(r,3).value

Assign values from each row

values = (imageID, imagePath, imageFormat, imageDescription)

59

Get the number of rows in the resultset

numrows = cursor.rowcount

Get and display one row at a time

for x in range(0, numrows):

row = cursor.fetchone()

print (row[0], "-->", row[1])

Execute sql Query

cursor.execute(query, values)

Close the cursor

cursor.close()

Commit the transaction

database.commit()

Close the database connection

database.close()

Print results

print ("")

print ("All Done! Bye, for now.")

60

Figure 16: Output for connect and populate database

print ("")

columns = str(sheet.ncols)

rows = str(sheet.nrows)

print ("I just imported " ,columns, " columns and ", rows, " rows

to MySQL!")

Fig. 11 depicts the output for the above Python script-

61

Figure 17: Flow-diagram for Approach 2

4.1.4 Database shelve- alternative approach for reading images as

input

We created a database shelve to test the code.

Below is the Python script that allows the creation of a database on localhost

Program Description:

1. ‘dbshelve.py‘: code for creating a ‘shelve‘ object database from the

contents of a local folder

2. ‘–dataset dataset‘: this indicates the local folder where the images are

stored

3. ‘–shelve db.shelve‘: is the output dataset using this Python shelve li-

brary

Code Listing 2: Creating a Database Shelve

62

#db.shelve

#To run this code use following in command prompt:

python dbshelve.py --dataset dataset --shelve db.shelve

from PIL import Image

import imagehash

import argparse

import shelve

import glob

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-d", "--dataset", required = True ,

help = "path to input dataset of images")

ap.add_argument("-s", "--shelve", required = True ,

help = "output shelve database")

args = vars(ap.parse_args())

open the shelve database

db = shelve.open(args["shelve"], writeback = True)

loop over the image dataset

for imagePath in glob.glob(args["dataset"] + "/*.jpg"):

#compute the difference hash

image = Image.open(imagePath)

63

h = str(imagehash.whash(image))

print(h)

#Save the hash as the key and filename

filename = imagePath[imagePath.rfind("/") + 1:]

db[h] = db.get(h, []) + [filename]

print(db[h])

close the shelf database

db.close()

4.2 Python script to create dataset

Program Description:

1. ‘create dataset.py‘: code for creating an output folder containing im-

ages that are adulterated with filters or resized or cropped

2. ‘–input faces1‘: this indicates the local folder where the original images

are stored

3. ‘–output dataset‘: creates output folder ‘dataset‘ which contains im-

ages in adulterated form

64

Code Listing 3: Creating a dataset with images adulterated with modications

This code be run with command:

python create_database.py --input faces1 --output dataset

from PIL import Image

import os, os.path

import argparse

import random

import shutil

import glob2

import uuid

import shutil

from shutil import copyfile

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-i", "--input", required = True ,

help = "input directory of images")

ap.add_argument("-o", "--output", required = True ,

help = "output directory")

args = vars(ap.parse_args())

#finding image in the given folder

65

for imagePath in glob2.iglob(args["input"] + "/**/*.jpg"):

filename = str(uuid.uuid4()) + ".jpg"

shutil.copy(imagePath ,os.path.abspath(args["output"] + "/" +

filename))

numTimes = random.randint(1, 8)

for i in range(0, numTimes):

image = Image.open(imagePath)

#changing the size of the image randomly

factor = random.uniform(0.90, 1.05)

width = int(image.size[0] * factor)

ratio = width / float(image.size[0])

height = int(image.size[1] * ratio)

image = image.resize((width , height),1)

#saving the image with random name

adjFilename = str(uuid.uuid4()) + ".jpg"

image = image.save (args["output"] + "/" + adjFilename)

4.3 Python script for aHash, pHash, dHash and wHash

algorithms

’hash.py’- Script to calculate hash of images already stored in the dataset

and retrieve similar images

66

Program Description:

1. ‘–dataset dataset‘: this will let script to access dataset to calculate hash

of all the images present in the dataset

2. ‘–query brain\ 87·jpg‘: this is the query image for which hashes will be

compared to retrieve all the similar images.

Below is the Python script for Wavelet hash(wHash), Difference hash(dHash),

Average hash (aHash) and Perceptual hash (pHash) algorithm.

Code Listing 4: Computing hash of images

#IMAGE HASHING ALGORITHMS- AVERAGE HASH, PERCEPTUAL HASH,

DIFFRENCE HASH, WAVELET HASH

#To compile this script through command prompt

#python hash.py --dataset dataset --query brain/87.jpg

from __future__ import (absolute_import, division, print_function)

from PIL import Image

import os.path

import imagehash

import argparse

import glob

import numpy as np

67

import matplotlib.pyplot as plt

import uuid

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-d", "--dataset", required = True,

help = "path to input dataset of images")

ap.add_argument("-q", "--query", required = True,

help = "path to the query image")

args = vars(ap.parse_args())

def _binary_array_to_hex(arr):

bit_string = ’’.join(str(b) for b in 1 * arr.flatten())

width = int(np.ceil(len(bit_string)/4))

return ’{:0>{width}x}’.format(int(bit_string, 2), width=width)

def hex_to_hash(hexstr):

hash_size = int(np.sqrt(len(hexstr)*4))

binary_array = ’{:0>{width}b}’.format(int(hexstr, 16), width =

hash_size * hash_size)

bit_rows = [binary_array[i:i+hash_size] for i in range(0,

len(binary_array), hash_size)]

hash_array = np.array([[bool(int(d)) for d in row] for row in

68

bit_rows])

return ImageHash(hash_array)

def old_hex_to_hash(hexstr, hash_size=8):

l = []

count = hash_size * (hash_size 4)

if len(hexstr) != count:

emsg = ’Expected hex string size of {}.’

raise ValueError(emsg.format(count))

for i in range(count // 2):

h = hexstr[i*2:i*2+2]

v = int("0x" + h, 16)

return ImageHash(np.array(l))

string1 and string2 should be the same length.

def hamming_distance(string1, string2):

Start with a distance of zero, and count up

distance = 0

Loop over the indices of the string

L = len(string1)

for i in range(L):

Add 1 to the distance if these two characters are not

equal

if string1[i] != string2[i]:

69

distance += 1

Return the final count of differences

return distance

def average_hash(image, hash_size=8):

if hash_size < 2:

raise ValueError("Hash size must be greater than or equal to

2")

reduce size and complexity, then covert to grayscale

image = image.convert("L").resize((hash_size, hash_size),

Image.ANTIALIAS)

find average pixel value; ’pixels’ is an array of the pixel

values, ranging from 0 (black) to 255 (white)

pixels = numpy.asarray(image)

avg = pixels.mean()

create string of bits

diff = pixels > avg

make a hash

return str(ImageHash(diff))

def phash(image, hash_size=8, highfreq_factor=4):

70

if hash_size < 2:

raise ValueError("Hash size must be greater than or equal to

2")

import scipy.fftpack

img_size = hash_size * highfreq_factor

image = image.convert("L").resize((img_size, img_size),

Image.ANTIALIAS)

pixels = numpy.asarray(image)

dct = scipy.fftpack.dct(scipy.fftpack.dct(pixels, axis=0),

axis=1)

dctlowfreq = dct[:hash_size, :hash_size]

med = numpy.median(dctlowfreq)

diff = dctlowfreq > med

return str(ImageHash(diff))

def dhash_vertical(image, hash_size=8):

resize(w, h), but np.array((h, w))

image = image.convert("L").resize((hash_size, hash_size + 1),

Image.ANTIALIAS)

pixels = np.asarray(image)

compute differences between rows

diff = pixels[1:, :] > pixels[:-1, :]

return str(ImageHash(diff))

71

def whash(image, hash_size = 8, image_scale = None, mode = ’haar’,

remove_max_haar_ll = True)\colon

import pywt

dwt_level = ll_max_level - level

image = image.convert("L").resize((image_scale, image_scale),

Image.ANTIALIAS)

pixels = np.asarray(image) / 255

hex_string = []

if remove_max_haar_ll:

coeffs = pywt.wavedec2(pixels, ’haar’, level = ll_max_level)

coeffs = list(coeffs)

coeffs[0] *= 0

pixels = pywt.waverec2(coeffs, ’haar’)

coeffs = pywt.wavedec2(pixels, mode, level = dwt_level)

#print(coeffs)

dwt_low = coeffs[0]

med = np.median(dwt_low)

diff = dwt_low > med

return str(ImageHash(diff))

72

loop over the image dataset

hashes = []

for imagePath in glob.glob(args["dataset"] + "/*"):

load the image and compute the difference hash

image = Image.open(imagePath)

k = whash(image)

hashes.append([k,imagePath])

#print(hashes)

wbhash = [x[0] for x in hashes] # gives the hash for image

path = [x[1] for x in hashes] # gives the path+filename for the

image

#print(wbhash)

#open input image and calculate difference hash

query = Image.open(args["query"])

ohash = whash(query)

print(ohash)

#calculate hamming distance for image

for hashes, path in zip(wbhash, path):

ham = hamming_distance(ohash,hashes)

#print(ham)

73

Hamming Distance is zero means duplicate image is detected

if (ham == 0):

image = Image.open(path)

image.show()

print("hamming distance is ", ham)

print(path)

hamming distance < 6 gives those images which are almost

alike

elif (ham <6):

num = 0

image = Image.open(path)

image.show()

print("hamming distance is ", ham)

print(path)

74

5 Experimental results

In the experiments, all images are resized to 512×512 and blurred by a 3×3

Gaussian low-pass mask with a unit standard deviation and the Haar wavelet

transform is exploited to produce hashes. The hamming distance we set was

<6 because for high accuracy of the results, 2 / 3 of the hash bits should be

same which means approximately 45 bits out of 64 should be same and we

got fairly good result.

The results are as follows-

5.1 Result obtained for wHash algorithm

From the fig.12 we can say that images with different variations were ob-

tained. Fig. 12 depicts the hamming distance of the retrieved images and

fig. 13 depicts the variety of images obtained against query image.

5.2 Result obtained for dHash algorithm

From the fig.14, we can say that images that were exactly similar were re-

trieved because the Hamming distance is 0

5.3 Result obtained for pHash algorithm

From the fig.15, we can say that images that were exactly similar were re-

trieved because the Hamming distance is 0

75

Figure 18: Output of wHash algorithm- Hamming distance

Figure 19: Output of wHash algorithm-Images Retrieved

76

Figure 20: Output of dHash algorithm-Hamming distance

Figure 21: Output of pHash algorithm-Hamming distance

5.4 Result obtained for aHash algorithm

From the fig.16 and 17, we can say that images that were exactly similar

were retrieved but there was large difference in their hamming distance.

77

Figure 22: Output of aHash algorithm-Hamming distance

Figure 23: Output of aHash algorithm-Images retrieved

78

5.5 Comparison

The hash functions were tested against each other using the image database

imagerec and dbshelve which contains 9000+ images. For every image cre-

ated, 10 individual test images with slight, randomized modifications.

The modifications applied were-

1. increased and decreased brightness

2. increased and decreased contrast

3. added a watermark

4. converted the image to grayscale

5. scaled it down

6. cropped the borders

7. applied JPEG compression

This resulted in 10,000+ test images.

Comparing above results, we can see that wHash retrieved similar images

with minimal bit difference, dHash retrieved only exactly similar images

which also means there was large difference between the generated hash bits,

pHash also retrieved exactly similar images and aHash retrieved exactly sim-

ilar images but the bits generated for those images varied largely.

79

To evaluate the performance of the proposed method, it was comapred

with existing methods. The performance comparisons are shown using a

receiver operating characteristics (ROC) curve (Fig. 24) by using the true

positive rate (TPR) on the Y axis and false positive rate (FPR) on the X

axis. The TPR is defined as the ratio between the number of pairs of similar

images considered as similar images (NSS) and the total number of pairs of

similar images (NTS). Similarly, the FPR is defined as the ratio between the

number of pairs of distinct images misclassified as similar images (NDS) and

the total number of pairs of distinct images (NTD).

TPR (T) = NSS/ NTS

FPR(T) = NDS / NTD

The robust hashing method must produce higher TPR values to show

strong robustness and yields smaller FPR values to show good anti-collision

capabilities. In this experiment, the TPR and FPR were computed for vari-

ous thresholds . The ROC comparisons are presented in Fig. 24.

Fig. 24 depicts a line-graph for False positive rate versus True positive

rate plotted for Average, Perceptual, Difference and Wavelet hashing algo-

rithms.

From the above graph,(Fig. 24), it is clear that wHash gave better results

as compared to previously implemented algorithms.

80

Figure 24: Comparison graph between proposed algorithm(wHash) and other
hashing algorithms

6 Experimental Analysis

The proposed method was implemented using Python on a computer with

an Intel Core i5-4200M CPU of 2.50 GHz, and RAM of 4.0 GB. The perfor-

mance of the proposed method on robustness and anti-collision capabilities

was tested using our database of RGB images that were selected randomly

from various sources. The selected RGB color images were scaled to 512×512

(N × N) pixels using bi-cubic interpolation and converted to L*a*b* color

images. The n = 16 SIFT feature points were chosen in order to extract

image content from the L * component. The block size 64× 64 (P × P) was

considered to extract content from around the chosen SIFT feature points.

81

The approximation coefficients were computed by applying level 2 (l = 2)

2D Daubechie wavelet transform on each extracted block of pixels. Finally,

the binary hash of length 256 (n × (P/2l)) was generated. The similar-

ity between original and suspect images was measured using the normalized

hamming distance (NHD).

6.1 Key-dependent hash

The pseudorandom procedure was incorporated in the feature extraction to

produce a secure hash. To show that the hash of the proposed method

was key-dependent, the following three experiments were conducted: (1)

generation of hash for 100 different images with the same key,(2) generation

of hash for one image with different 100 keys, and (3) generation of hash for

different 100 images with different 100 keys. The results show that the hash

varied when the key was changed.

82

7 Conclusion and future work

In this study, a robust image hashing method was proposed using SIFT fea-

ture points and DWT approximation coefficients for image authentication.

The performance of the proposed method was tested based on various image

manipulations. Our experiments showed that the proposed method was ro-

bust to various content-preserving distortions such as compression, scaling,

filtering, additive noise, brightness, and contrast adjustment. The proposed

method was compared with existing methods using a line-graph. The com-

parison results indicate that the proposed method outperformed the other

methods. The produced hash proved to be short in length as well as key-

dependent.

The future work may include an algorithm for Video Hashing which may

include automatic video clip identification in a video database or in broad-

casting,online search in a streaming video, authentication of the video content

or content-based watermarking.

83

References

[1] Abbas Ahmed, Siyal. A secure and robust hash-based scheme for image

authentication.

[2] Xiao Chen, Wan. Robust audio hashing based on discrete-wavelet-

transform and non-negative matrix factorisation.

[3] G. Lowe David. Distinctive image features from scale-invariant key

points.

[4] et al. Han. Content-based image authentication: Current status, issues

and challenges.

[5] Ben Hoyt. Duplicate image detection with perceptual hashing in python,

2017.

[6] F.Jiang Khelifi. Perceptual image hashing based on virtual watermark

detection, 2010.

[7] Chang Lin. A robust image authentication system distinguishing jpeg

compression from malicious manipulation.

[8] Leung Liu, Cheng. Wave atom transform generated strong image hash-

ing scheme.

[9] Vasumathi Devarac Lokanadham Naidu Vadlamudia, Rama Prasad

V. Vaddellab. Robust image hashing using sift feature points and dwt

approximation coefficients.

84

[10] W. Lu. Multimedia forensic hash based on visual words, 2010.

[11] Mihcak Monga. Robust and secure image hashing via non-negative ma-

trix factorizations.

[12] et al. Ouyang. Robust hashing for image authentication using sift feature

and quaternion zernike moments.

[13] et al. Patel. Color image segmentation for medical images using l*a*b*

color space.

[14] Chang Schneider. A robust content based digital signature for image

authentication.

[15] et al. Tang. Robust image hashing via colour vector angles and discrete

wavelet transform.

[16] Huang Tang, Z. Robust image hashing based on multiple histograms.

[17] Zhang Tang, Wang. Robust image hashing for tamper detection using

non-negative matrix factorization.

[18] et al. Zhao. Robust hashing for image authentication using zernike

moments and local features.

[19] Wei Zhao, Y. perceptual image hash for tampering detection using

zernike moments, 2010.

85

[20] Yumin Dai Zhenjun Tang. Robust image hashing via colour vector angles

and discrete wavelet transform, 2013.

86

