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Abstract

Voting and choice aggregation are used widely not just in poli-

tics but in business decision making processes and other areas such as

competitive bidding procurement. Stakeholders and others who rely

on these systems require them to be fast, efficient, and, most impor-

tantly, fair. The focus of this thesis is to illustrate the complexities

inherent in voting systems. The algorithms intrinsic in several voting

systems are made explicit as a way to simplify choices among these

systems. The systematic evaluation of the algorithms associated with

choice aggregation will provide a groundwork for future research and

the implementation of these tools across public and private spheres.
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1 Introduction

This thesis will examine common voting systems and restate them as algo-

rithms for the purpose of clarity and transparency. The necessity of this

stems from the ubiquitous presence of algorithms in general in modern life

and in creating an understanding between the application of these algorithms

and end users. The use of preference aggregation has applications beyond

the well known political sphere and is increasingly used in artificial intelli-

gence and multiagent systems. In situations where a group of people needs to

decide between several alternatives there will generally be disagreements on

which alternatives are the most and least desirable. This will necessitate the

aggregation of individual preferences into a preference that is most accept-

able the largest number of stakeholders. The importance of this rests on the

idea that all voting stakeholders feel that their preferences were considered

and dealt with fairly.

The use of voting in terms of politics covers not only who will wield the

powers of the state but also how they will be allowed to allocate the vast

sums of money and other resources. It seems then only natural to expect,

and this is born out by history, that some groups will seek to manipulate

or control the outcome of elections. As a formal rule, manipulation, also

called strategic voting, exists when a voter has the ability to unilaterally

change their ballot to secure a desired outcome [1]. This rule also assumes

that the voter in question has perfect knowledge of how all others have or
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will vote and that this voter will mark their choices in an insincere manner

to secure their own preferred result. Control, as an alternative, is the use

of election procedures by those running the election to change the outcome

without changing who individuals may choose to vote for. Often this control

is used to decide who can vote or run for office in the first place as opposed

to who those voters can vote for.

As a system the idea of popular rule has obvious advantages over dicta-

torial systems in which decisions are made by a king or some ruling class,

or at least advantages for anyone who is not the king or a member of said

ruling class. While it may be easy for an individual or small group to come

to a decision, there needs to be some formal system to account for the vary-

ing opinions of large groups of equals. Additionally that system needs to

be computationally efficient and easy to explain to the stakeholders using

it for purposes of transparency. This would eliminate systems such as the

one developed by Schulze [26] which uses a pairwise matrix to count and a

directed graph to visualize the strongest candidate’s path to victory.

The importance of securing the integrity of elections is obvious, in fact De-

fense Advanced Research Projects Agency (DARPA) was tasked with build-

ing a prototype voting system from the ground up, both hardware and soft-

ware [29]. The System Security Integrated Through Hardware and Firmware

(SSITH) program is seeking to secure against hardware vulnerabilities that

are exploited through software of electronic systems. The final demonstra-

tion of which will be released in 2020 and will be a documented, open source
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architecture that will include verifiable paper balloting systems for the voting

booth, ballot box which will provide both digital and physical representations

of votes cast. There are additional security procedures that are also widely

used such as election monitoring that are extremely effective at preventing

or at least detecting interference. All of these procedures put together make

it extremely difficult but not impossible to manipulate or control an election.

Our purpose here is to work towards a system that has defenses against

interference built in. We will be using the term manipulability in a formal

sense of voters using various strategies to control the outcome. We will also

consider how the number of candidates affect the outcome and strategies

used.

Of voting systems and politics we are already familiar with several com-

monly used systems. Plurality voting is the most common system, often

referred to as “first past the post”, and the declared winner is the candidate

with the most votes regardless of whether that number represents a major-

ity. The next most widely known system would be instant runoff, where the

count is conducted iteratively with the candidate receiving the fewest votes—

or sometimes the candidate with the fewest first place votes—being dropped

after each iteration until a single winner is left remaining. We shall also be

looking at a type of approval voting where a voter may cast a vote for all

of the candidates that they approve of and the winner being the candidate

with the most votes. We will look at this in more detail when discussing our

modifications to the Borda count.

3



The Borda count is a well know consensus building system that also has

several flaws which make it susceptible to strategic voting schemes. The

greatest strike against Borda is its potential for compromising and burying

candidates [2]. In a given hypothetical election suppose there are two candi-

dates that are perceived to be equally likely to win—assuming a strategically

minded voter would not have sincerely placed either of the two candidates

first or last—this voter can maximize the individual power of their vote by

simply ranking their more preferred of the two candidates first and the least

preferred of the two dead last thus insincerely compromising and burying the

candidates. Oddly enough in a two party system if both parties use this

strategy, it opens up room for third party candidates to win.

Arrow’s impossibility Theorem [3] and the Gibbard-Satterthwaite Theo-

rem [4], [5] both deal with the realities of social choice theory when an election

has more than one candidate. Both theorems examine elections with more

than two candidates and require that the final winner not be chosen by a

single person or entity—which is considered to be a non-dictatorship. While

Gibbard-Satterthwaite says that any voting system is going to be vulnerable

to manipulation, Arrow lays out several qualities of preference aggregation

that will not be satisfied simultaneously. For our purposes, we are concerned

with the independence of irrelevant alternatives—that a preference between

a and b should only be determined by the individual preference between a

and b—and Pareto efficiency [1], which states that a voter can not improve

the position of one candidate without worsening the position of at least one
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other candidate.

That plurality voting would lead to undesired results and that an entire

ordering of a voter’s preferences would be required for making social deci-

sions was Borda’s starting point [3]. Unfortunately for us it is not possible to

develop a system that is completely immune from manipulation and control

as any system that allows for more than two candidates leaves itself open to

either dictatorial control or strategic voting [4], [5]. At the same time we are

also prevented from creating a ranked choice system that communicates indi-

vidual preferences into an aggregated community wide ranking [3]. Because

of these theorems which establish the impossibility of creating a system that

is completely devoid of manipulability or control-ability, we are left attempt-

ing to design a system that would at least make interference not solvable in

polynomial time or in other words an NP-complete problem.

Because the Borda count takes into account a voter’s preferences over

several if not all candidates it offers advantages over plurality voting such

as resistance to the spoiler effect and the problem of vote splitting between

similar candidates. That the 2000 election in the United States would have

turned out differently had a ranked choice system been in place is, at this

point, well worn territory [9]. But what is less well known is that were a

system such as the Borda count put in place the 2000 election may well have

been a race between the two more liberal candidates [2].

In practice, the Borda count is only used in a few political elections world-

wide, in Slovenia it is used to elect representatives for groups of ethnic minori-
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ties, while the Parliament of Nauru uses a modified Borda count for electing

multi seat constituencies. Outside politics many academic institutions use

Borda, such as the student government at the University of Michigan. And

in sports where baseball’s Most Valuable Player award, and college football’s

Heisman Trophy are both chosen by Borda count. The very popular Euro-

vision Song Contest uses a slightly modified Borda count designed to favor

a clear winner. Historically a version of the Borda count was used by the

Roman Senate in the second century.

Beginning in 1971 the island nation of Nauru has been using a modified

version of the Borda count called the Dowdall [25] method in elections seeking

the top two, three, or four candidates. Named for its creator and at the time

Nauru’s Secretary for Justice—the system was thought to be easier to count

than the Altervative voting—also called Instant-runoff voting—that had been

inherited from Australia [16]. The system works thusly, voters list their

candidate preferences and those lists are tallied so that candidates receive

1
k

points for being the kth ranked choice. In 2019, for example, candidate

Timothy Ika received 585.869 points from a total of 924 votes [17]. Unlike

the traditional Borda count where the scores given to a candidate varies based

on the total number of candidates—the Dowdall method always begins at 1

and decreases from there [25].

When we discuss manipulation what we are saying is that a voter has mis-

represented their true preference or preferences in order to gain a perceived

benefit because of that misrepresentation. But one could also say that any
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submitted ranked choice ballot is representative of that voters wishes regard-

less of any other motives by the voter. If the voters preferred candidate

receives a benefit from that misrepresentation that they would not have re-

ceived had the voter voted sincerely than the manipulation is considered

successful. There are four ways that a voter can potentially change their

votes to gain an advantage for a preferred candidate. The first two, compro-

mising and burying are considered the Borda counts greatest weaknesses—

Condorcet himself wrote about them in his 1790 work, Essay on the appli-

cation of probability analysisis to majority decisions which is discussed in

Szpiro [9]. Compromising is the act of elevating a less favored candidate

to get them elected—very common in first past the post elections and is

evidence of Duverger’s law—that “the simple majority single ballot system

favours the two party system” [21]. An often cited example comes from the

2000 election of George Bush Jr. over Al Gore when the supporters of Ralph

Nader were blamed for not compromising their votes in order to elect Nader

voters presumed second choice Gore. Compromising in a Borda count system

consists of elevating a second choice candidate over a first choice in order to

beat a competitive third choice candidate. While burying is essentially the

opposite—a voter insincerely places a competitive candidate at the bottom

of their list in order to minimize that candidate’s chances of winning the elec-

tion. Often these strategies are combined—if there are two candidates who

are considered front runners a strategic voter might simultaneously place the

favored (but not favorite) candidate first and place the less favored (but not
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least favorite) candidate last—thus compromising a favorite for a less favored

but still preferred candidate and burying an opposed but not least favored

candidate. The third form of tactical voting, mischief voting, is common in

primary or runoff elections and is used to elevate a candidate that is per-

ceived to be easier to defeat to face off against favorite. This was on display

in 2016 when the Hillary Clinton campaign hoped that Donald Trump would

win the Republican primary as he was believed to be easier to defeat in the

general election [22].

The last form of potential vote manipulation is bullet voting. Bullet

voting simply means that a voter may cast votes for more than one candidate

but only votes for one—this may not necessarily be due to strategy but simply

because the voter only finds one candidate to be acceptable. When used as a

form of tactical voting the bullet vote can be massed to increase the odds for

a favored candidate—the city of Philadelphia uses the limited vote method

to elect members to the city council and in a report published in 2015 found

that of the top five Democratic party nominees to receive bullet votes in the

primary three made it into the general election [23].

One of the problems of discussing tactical voting is that tactics used by

voters to sway an election also align with our values. In the case of bullet

voting the Oklahoma Supreme Court found in Dove v. Oglesby 1926 that

forcing voters to rank a number of candidates in order for their votes to

count is to “prevent the free exercise of the right of suffrage” [20]—as far

as U.S. courts are concerned it seems that no one should be forced to rank
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a candidate that they find unacceptable. Similarly if a group of voters can

build a coalition that votes tactically than our system of free association

should allow it—what is politics if not coalition building.

There are some objective comparisons that can be conducted between

voting systems. The cornerstone of social choice theory is Arrow’s Impossi-

bility Theorem and the idea that no ranked choice system can satisfy all its

criteria. First of these criteria, that there may be no dictator that usurps the

will of the greater populace for their own. That is, there can be no individual

whose preference is always reflected in the outcome in spite of the preferences

of the majority [3]. A voting system that uses secret ballots and has more

than one voter is able to satisfy this condition. The second criteria, unre-

stricted domain, simply states that there will not be limitations placed on

how voters may rank their preferences. Those individual preferences are then

aggregated into a complete ranking of societal preferences. Additionally for

the unrestricted domain criteria to be met that final societal ranking must

be created deterministically—that is the results must be the same whenever

the same input is given. If the unrestricted domain is replaced with a system

which finds the preference with the highest median score than this criteria

can be said to have been satisfied [24]. The third criteria Arrow proposed is

known as independence of irrelevant alternatives (IIA) [3] and is considered

to be the most difficult criteria to overcome whenever there are more than

two candidates. Lastly Arrow cited Pareto efficiency or in this context that

a candidate is considered the winner unless there is an alternative candidate
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that every voter prefers to it. Or if every voter v votes in the manner that

expresses a preference of x over y then x > y and x should be declared the

winner.

Running parallel to Arrow’s Impossibility Theorem is the Gibbard-Satterthwaite

Theorem (G-S Theorem). Independently published by Gibbard in 1973 [4]

and shortly later by Satterthwaite [5] in 1975, the theorem shows three rules

for voting systems, one of which must apply. First, like Arrow’s Impossibility

Theorem, deals with dictatorships and plainly states that if a voting rule can

have three or more possible outcomes and if that rule is also non-manipulable

then that system is a dictatorship. Second, the theorem shows that manip-

ulability is not an issue when the number of candidates is limited to two. In

this case the choice becomes a simple majority outcome. Any voter when

presented with only two candidates will always be best served by communi-

cating their choice sincerely, and if the majority rules then that can be said

to be a non-dictatorship. Finally, the theorem states that tactical voting will

always come into play when a voter is given more than two options to choose

from and that this cannot be mitigated by simply allowing a voter to rank all

of the candidates. Ultimately the G-S Theorem shows that a voting system

will always be manipulable unless the race is limited to two candidates or

the winner is chosen by dictatorship. In short, a dictator erodes all other

outcomes.
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1.1 Contribution of this Thesis

The purpose of designing clear and concise algorithms of the common voting

systems is to open and expose the internal workings of the selected choice

aggregating systems. The importance of this is threefold. First, in order for

a system to be considered fair, users must be able to understand how the

output is derived from the input. Second, from a legal standpoint, it must be

assured that the same input will always return the same result. Third, those

results must be delivered in a consist and timely manner. We will elucidate

these three points by examining the algorithms and their runtimes. In an

example that may be thought of as trivial but had real world consequences,

at the 1995 World Championship of figure skating the first, second, and third

place standings were set when Michelle Kwan stepped on the ice—at the end

of her heat she had received a score placing her in fourth place—the odd thing

is that her fourth place finish caused the second and third place competitors

to switch their rankings. This would come to be called the “Great Flip-

Flop” and would cause a scandal in the figure skating world, and is also an

example of independence of irrelevant alternatives. It was believed by fans

of the sport that Michelle Kwan’s performance should not have effected the

final scores of the other two skaters and the International Skating Union (ISU)

attempted to fix the problem with community outreach and education. The

scoring method was placed in competition programs and technical liaisons

were made available to answer questions, in the end the ISU would scrap

the old scoring system in favor of a system that would guarantee that “If
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you are in front, you will stay in front” [2]. Arrow’s Impossibility Theorem

would prove them wrong. The works of Arrow, Gibbard, and Satterthwaite

all assume that voters will rank their choices, although these rules still apply

even if only the first choice is counted. Any voting system must work thusly—

voters mark their ballots, those ballots are tallied one step at a time by a

precise algorithm, and the winner is output. What is paramount is that those

who use these systems are able to make informed choices about each systems

strengths and weaknesses—and we will show those here. Additionally, choice

aggregation must not be a black box between input and output, with the use

of big data being an added confounding factor. In the twenty-first century all

of the largest corporations use some kind of sorting algorithm to make, for

example, human resource decisions—though in reality almost all company

data must be sorted by computer before it is useful for human consumption.

It was only a year ago that Amazon had to cease using a recruiting tool

because it was biased against female applicants [27]. That these systems be

transparent is the only way to keep them fair, but conversely, transparency

makes them prone to manipulation.

In evaluating voting systems there are several perceived factors that can

be weighed to determine the desirability of a given system. For the purposes

of this thesis we will prefer systems that allow the ranking of one or all

candidates, produces a preferred outcome, and is easy to implement and

explain to voters. When we say preferred outcome we mean that the winners

of a given election are those that accurately reflect the will of the voters. In

12



this case if a candidate receives a majority of votes then it seems natural

that they be declared the winner. Through restating these voting methods

as algorithms we also open up the techniques used for proving algorithm

correctness and ensuring that voting expectations are met. We can, applying

these methods, establish preconditions, postconditions, and show that the

vote, when satisfying the precondition, will also satisfy the postcondition.
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2 Background

We should look briefly at what we mean by election, and formally define

some key terms along with our voting systems themselves. First we consider

some number of candidates that for our purposes will always be greater than

two. How these candidates are compiled will not be discussed in this work.

Second, each voter is presented with that list of candidates and asked to

rank their preferred candidates from highest to lowest. We will consider this

list to be transitive to avoid problems such as the Condorcet paradox where

A > B > C > A.... Finally all voter preferences are collected and tabulated

into a final result where for our purposes there will be only one winner. Let

V = v1, ..., vj be the finite set consisting of all voters and C = c1, ..., ck be

the finite set of all candidates. Given the cardinality of set C equals |C| then

a voters nth choice is given |C| − n points. As an example, given an election

where |V | = 10 and |C| = 4, the individual ballots can be viewed as lists of

voter preferences, so voters v1 and v2 have given an order of c1 > c2 > c3 > c4,

voters v3 through v6 have given an order of c2 > c3 > c1 > c4, voters v7

through v9 have a preference order of c3 > c2 > c4 > c1, and finally voter v10

has a preference of c4 > c3 > c2 > c1. The figure 6 below gives candidate c2

a victory with 23 points.

In setting up comparisons of voting rules we could compare the vectors

which represent the weighted scores given to candidates. If we set the total

number of candidates to n = 3 then Plurality voting would be represented by

14



the vector (1, 0, 0) the sum of which will always be 1 for any n. The Borda

count by comparison would be represented by the vector (2, 1, 0) the sum of

which for any n is n[ (n−1)
2

]. Under the Dowdall method the vector looks like

(1, 1
2
, 1
3
) and the sums of vectors under this system are harmonic numbers

represented by the form
∑n

k=1
1
k
.

Let us quickly formalize some of the shorthand of choice validation theory

that we will be using. Given a finite set of candidates, A we can denote the

number of candidates in A with |A| and given two candidates x, y ∈ A, if

xPy then we can say x is prefered to y or x > y, while if xIy then x is

indifferent to y or x = y [1].

IIA works as follows, consider the set S = [x, y] and the majority prefer-

ence over set S is xPy, if candidate z is added to S to become [x, y, z] and

the majority preference changes to yPxPz then IIA can be said to have been

violated. The Borda count is especially vulnerable to cloning, which is used

to diminish rivals of a favorite candidate [25]. Like unrestricted domain IIA

can be mitigated with the median voter theorem [24].

Below we will briefly explain the voting systems whose algorithms will be

presented.

1. Approval Voting: Approval Voting ballot look identical to those sub-

mitted under a standard plurality system i.e. the ballots are a list of

candidates—what differentiates the Approval from the Plurality system

is that voters may place a mark next to as many candidates as they

choose. As with plurality the candidate with the most marks wins.
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2. Baldwin Method: The Baldwin Method is a modification of the Borda

count that includes an iterative removal process. After the first round

of Borda scores are tallied that candidate with the lowest score is re-

moved and the Borda scores are recounted as though the removed can-

didate had never been in the race. This process is continued until two

candidates remain with the winner chosen between them.

3. Borda Count: When using the Borda count each voter submits a ballot

consisting of a complete ranking of candidates. Points are awarded to

each candidate based on their placement on the ballot—if their are n

candidates then the candidate ranked first receives n − 1 points, the

candidate ranked second receives n− 2 points, and so on with the last

ranked candidate receiving n− n or 0 points. The candidate with the

highest Borda score is the winner.

4. Bucklin Method: With the Bucklin method voters may rank as many

candidates as they choose. If one candidate has a clear majority after

counting the first choice on all ballots then they are declared the winner,

if not the second choice votes are added to the first choice, this is

continued until a majority winner is reached. It is possible for more

than one candidate to have obtained a majority after the first round,

in that case the candidate with the largest score is declared the winner.

5. Condorcet: The Condorcet method is run as a series of two candidate

elections designed to find a candidate which defeats all others which
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is termed the Condorcet winner. Voters submit ranked choice ballots

which are tallied in a round robin fashion with that candidate ranked

higher considered to be victor over those ranked below. Scores are kept

in a pairwise comparison matrix and the winner of each individual

contest is then declared victor in that contest. If there is no Condorcet

winner other methods must be employed to break any ties or cycles

that may exist. Other systems designed to find Condorcet winners

when one exists are often called Condorcet methods, even when they

use entirely different methods of counting.

6. Coombs Rule: The Coombs Rule takes ranked choice ballots and counts

first choice preferences. If there is a candidate with a majority then

they are declared the winner—if not then that candidate with the most

last place or unranked marks is dropped from the candidate list and

the ballots are recounted as if the dropped candidate had not been in

the race. This is continued until a majority is reached.

7. Exhaustive Ballot: In the Exhaustive Ballot method the voters are

asked to do the iterative process themselves. Voters choose a single

candidate from the list and if a candidate has a majority then they are

the winner, else, the lowest vote getter is dropped from the candidate

list and voters return to the polls to vote again. This is continued until

there is a majority winner.

8. Instant Runoff Voting: IRV takes ranked choice ballots and tallies the
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first choice votes, if there is candidate with a majority they are declared

the winner, else, the candidate with the fewest first choice votes is

dropped from the candidate list and the first choices are counted again.

This process continues until a candidate with a clear majority emerges.

9. Kemeny-Young: Kemeny-Young is based on the Condorcet method and

seeks to establish a most agreed upon ranking of candidates, i.e. to

maximize the number of voters who agree with that ranking. Like the

Condorcet method it uses a pairwise matrix and takes the additional

step of sorting pairwise comparisons from greatest to closest victories.

10. Majority Judgment: The Majority Judgment system uses a grading

scale to rank choices on a ballot. This scale may be numbered such

as 1 − 10, a lettered grading scale e.g. A,B,C, etc., or use a common

vocabulary such as Excellent,Good,Average,Bad. Once voters have

given each candidate a grade the scores are tallied and the candidate

with the highest median grade is declared the winner. In the event

of a tie one median grade is removed from each tied candidate, this

is continued until there is only one candidate with the highest median

grade.

11. Nanson’s Method: Nanson’s Method is another modification of the

Borda Count—in this case after the Borda scores are counted all can-

didates whose scores are below the mean of all scores are removed. The

ranked ballots are recounted without those candidates and this process
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continues until a single winner remains.

12. Plurality: This is the common system in which voters are allowed to

cast ballots for a single candidate, that candidate with the plurality of

votes wins.

13. Range Voting: Also called Score voting, uses a ratings ballot grading

scale of 1 − 10 in which voters may give candidates any or no score.

After ballots are collected and counted that candidate with the highest

mean score is declared the winner.

14. Tideman Method: The Tideman method is conducted by first tallying

ranked choice ballots in a way which gives a candidate one point for

each pairwise victory against the other candidates. Those pairwise

scores are then ranked from largest majority to smallest. The next

step creates a directed graph in which a path from the victor to loser is

created from each pairwise comparison from largest victory to smallest.

This continues unless the drawing of a path creates a cycle, in which

case that pairing is dropped. The winner is found to be the source of

the directed graph that passes through all candidates without creating

a cycle.

15. Schulze Method: The Schulze method uses a directed graph with the

weight of the paths being the deciding factor. First ranked choice

ballots are counted and pairwise comparison scores are tallied. The
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paths are drawn between winners and losers and the source of the

acyclic directed graph with strength is declared the winner i.e. that

path with the strongest weak link is the winner.

16. Veto System: Voters may cast single vote for a candidate that they

most disapprove of, that candidate with the lowest score is declared

the winner.

There are also several voting criteria that are useful for comparing voting

systems. The following criteria are used to show that if ballots are to be

counted in a certain way than there will be candidates that must or must

not win based on that count. Firstly the majority criterion simply states

that if a given candidate is ranked as the first preference by a majority of

voters then that candidate must win. There is an inverse to this called

the majority loser criterion which states that if a majority of voters rank

a candidate last then that candidate must not win. Voting systems that

pass both the majority criterion and the majority loser criterion include

Nanson and IRV [31]—the Borda count only clears the majority loser criterion

[30]. The mutual majority criterion takes the majority criterion one step

further by stating that if there is a subset S of candidates from set of all

candidates C and that a majority of voters prefer every candidate in S to

every candidate outside of S then the winner must come from the set of S.

Among systems passing this criteria are Bucklin, Copeland, and IRV pass

while Borda and majority judgement do not. The Condorcet criterion is met
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when the ultimate winner is able to win in pairwise contests against all other

candidates in the field. Among the systems that meet this criteria are Instant

Runoff Voting, Bucklin, Kemeny-Young, and Borda when either the Nanson

or Baldwin counting methods are used. Conversely the Condorcet loser is

the candidate that loses to all other candidates when paired—the systems

that ensure this losing candidate does not ultimately win include the Borda

count, Copeland’s method, IRV, and Kemeny-Young. As we discussed with

Arrow’s impossibility theorem the Independence of Irrelevant Alternatives

shows whether the addition of a candidate will or will not affect the outcome

and that an individuals preference between x and y will only factor in x and

y. Voting systems that satisfy this condition include majority judgement

and score voting. Under the independence of clones criteria we are able to

show if an election method is susceptible to the outcome changing with the

addition of candidates that are similar to a candidate already in the race. The

effect may be positive or negative to a candidate depending on the system

used. For example in a plurality system similar candidates often cause vote

splitting—often preventing either candidate from winning. Conversely under

the Borda count cloning can elevate a preferred candidate by putting more

distance between less preferred candidates and the top. Instant runoff voting

and majority judgement methods are both resistant to the addition of clone

candidates.
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3 Algorithms for Voting Systems

In this section a number of voting systems will be explained in detail. For all

of the following examples the set of candidates C will consist of c1, c2, c3, c4

and the set of voters V will consist of v1, v2, ..., v10 although these ten voters

will not be examined individually.

3.1 Approval voting

Approval voting was created in 1971 by Weber and published as part of his

Ph.D. thesis. Under the approval voting each voter is given a ballot listing all

candidates for a position—the voter may then place a mark next to as many

of those names as they choose, signaling their “approval” of the candidate for

that position. After the ballots are tallied the winner is simply the candidate

with the most approval votes [12]. When approval voting is used a voter

may cast a single vote for all candidates that they would find acceptable for

a given position. You could imagine a ballot with a listing of candidates and

voters could simply place a checkmark next to the name of whomever they

believe could do a satisfactory job. Ballots of this type could be looked at like

as two lists, one list consisting of supported candidates and one consisting of

not supported candidates. This is also useful if we do not need a fixed number

of winners—the baseball Hall of Fame uses such a system with the members

of the Baseball Writers’ Association of America electing for admission former

players who receive above a predetermined number of votes.
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Figure 1: Approval Voting Algorithm

Input : List of candidates C and ballots from all voters in V
Output: A single winner from C with a plurality of approval votes
while there are ballots to be counted do

count ballots;
for i from 1 to C do

if ci has X then
ci score ←+1

end

end

end
Sort candidates by scores.
return c with highest score.

Algorithm 1: Approval Voting

Figure 2: Approval Voting Example

Approval voting example

In this example we can see that the approval vote tally has three candidates
that have crossed majority approval, in this case c2 is returned as the winner
with nine votes.

Candidates

Number
of Voters 4 3 2 1

c1 X X
c2 X X X
c3 X X X
c4 X

Candidate Vote Total Value

c1 6
c2 9
c3 8
c4 1

Because Approval voting does not convey any additional information to

rank preferences and assumes that candidates are ranked equally, it becomes

incumbent upon the voter to know when to cease approving. Accordingly
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it has been shown that an unstrategic voter who simply approves of any

candidate considered to be “good” or better actually provides more resistance

to compromising strategies than voters who strategically only vote for “very

good” candidates [13]. Approval voting is in essence a plurality voting system

and carries many of that system’s disadvantages—among them a production

of wasted votes, a lack of minority representation, and two party domination

of elections. [14]

3.2 Baldwin Method

The Baldwin method is a hybrid of the Borda count and instant-runoff

procedures—and closely related to Nanson’s method which we will look at

shortly. Formalized by Joseph M. Baldwin in 1926, voters provide a strict

order preference that may or may not include all candidates—the ballots are

iteratively counted and recounted with the lowest Borda scoring candidate

removed after each round. One of the benefits of both Baldwin’s and Nan-

son’s methods is that a Condorcet winner will be chosen when one exists

[15]. One advantage both Baldwin’s and Nanson’s methods both share is

that elimination style rules are computationally more difficult to manipulate

the the Borda count from which they originate [28].
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Figure 3: Baldwin Method Algorithm

Input : List of candidates C and ballots from all voters in V
Output: A single winner from C with > |V |

2
+ 1 support

while there are ballots to be counted do
create two arrays of size |C|, c[|C|] for Borda points, and
cF irst[|C|] for 1st choice picks.

count ballots;
for i from 1 to |C| do

if ci is 1stchoice then
[ciFirst]← [ciFirst] + 1

else
[ci] score ←|C| − k + 1 for kth choice

end

end

end

if ∃c ∈ C with > |V |
2

+ 1 First choice support then
return Winning c

else
Remove lowest scoring candidate.
lowestScore ←bordaPoints[1]
lastCandidate ← 1
for i from 1 to |C| do

if bordaPoints[i] < lowestScore then
lowestScore← bordaPoints[i]
lastCandidate← i

end
Remove from ballots clastCandidate

end
return to top

Algorithm 2: Baldwin Method
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Figure 4: Baldwin Method Example

Baldwin Example Round 1

The first round consists of tallying Borda points as seen here.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice 3 points c2 c3 c1 c4

2ndchoice 2 points c3 c2 c2 c3

3rdchoice 1 point c1 c4 c3 c2

4thchoice 0 points c4 c1 c4 c1

Candidate Vote Total Value

c1 10
c2 23
c3 21
c4 6

Baldwin Example Round 2

In the second round c4 has been removed and Borda points are recounted.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice 2 points c2 c3 c1 c3

2ndchoice 1 points c3 c2 c2 c2

3rdchoice 0 point c1 c1 c3 c1

Candidate Vote Total Value

c1 4
c2 14
c3 12

Baldwin Example Round 3

Finally, in the third round only two candidates are left and c2 is returned as
the winner.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice 1 points c2 c3 c2 c3

2ndchoice 0 points c3 c2 c3 c2

Candidate Vote Total Value

c2 6
c3 4
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3.3 Borda Count

Jean-Charles de Borda devised his voting system in June of 1770 as a way

of fairly electing members to the French Academy of Sciences. Developed

long before Kenneth Arrow would prove that no ranking method could be

designed perfectly, the Academy would use Borda’s method from 1784 un-

til 1800 when a new Academy member named Napoléon Bonaparte would

demand cessation of its use [2]. In it’s simplest terms involving an election

with n candidates, a voters first preference receives n − 1 votes and the kth

preference receives n−k votes until all ranks are chosen with the final choice

receiving 0 points. The benefit of this is that it considers and weights a

voters entire range of preferences as opposed to only considering the first

choice as in the plurality vote. The drawback of this is that a voter who

votes insincerely may affect the outcome. An extremely effective example is

the act of compromising and burying preferences wherein a voter switches

their first and second choices in order to harm a third option, and by mov-

ing a likely crowd favorite to the bottom of their ballot regardless of their

feeling towards the competitors. We will examine this in more detail later.

Among uses outside of politics the Borda count has been used to success-

fully conduct metasearches on aggregated results of multiple search engines

[6]. It has also been used in image recognition [7], and in resource price

negotiations in e-markets [8]. The applications of the Borda count to choice

aggregation will continue to be used in artificial intelligence and multi agent

system applications.
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Figure 5: Borda Count Algorithm

Input : List of candidates C and ballots from all voters in V
Output: A single winner from C with the greatest number of Borda

points
while there are ballots to be counted do

create an array called bordaPoints[|C|] to contain Borda points
count ballots;
for i from 1 to |C| do

if ci is ranked then
bordaPoints[i] ←bordaPoints[i] + |C| − k + 1 points for
kth choice

end

end

end
return candidate with highest score in bordaPoints

Algorithm 3: Borda Count

Figure 6: Borda Count Example

Borda Example points = |C| − k

In our example Borda Count after our tally we see that c2 is returned as the
winner.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice 3 points c2 c3 c1 c4

2ndchoice 2 points c3 c2 c2 c3

3rdchoice 1 point c1 c4 c3 c2

4thchoice 0 points c4 c1 c4 c1

Candidate Vote Total Value

c1 10
c2 23
c3 21
c4 6
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3.4 Bucklin method

Bucklin voting rules entail voters submitting ranked choice ballots which are

iteratively tallied by counting first choice votes—if there is no majority the

second choice votes are added to the first—this is continued with third, forth,

and so on until a candidate gains majority support—which is also the highest

median Borda score. After the first round it is likely to have more votes than

voters and thus it is very possible for more than one candidate to have a

majority in which case the candidate with the highest total wins.

Figure 7: Bucklin Method Algorithm

Input : List of candidates C and ballots from all voters in V
Output: A single winner from C with > |V |

2
+ 1 support

k ← 1
while there are ballots to be counted do

count ballots;
for i from 1 to C do

if ci is kthchoice then
ci score ← +1

end

end

if ∃ c ∈ C with > |V |
2

+ 1 support then
return Candidate with highest score.

else
k ← k + 1

end

end

Algorithm 4: Bucklin Method
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Figure 8: Bucklin Method Example
Here we see that first round scores are identical to what would be produced
using a plurality system. In the second round when second choice picks are
added to first c2 is returned as the winner.

Bucklin Example

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c1 c4

2ndchoice c3 c2 c2 c3

3rdchoice c1 c4 c3 c2

4thchoice c4 c1 c4 c1

Candidate Round 1 Total Round 2 Total

c1 2 1
c2 4 9
c3 3 8
c4 1 1

3.5 Condorcet

The Condorcet method, and sometimes just referred to a the pairwise com-

parison method, imagines a race in which each candidate faces every other

candidate in the race individually. The goal of these contests is to find that

candidate that beats all others in head-to-head contests—a candidate that

can do this is called the Condorcet winner—but may not always exist in

every election. Like other methods, voters submit ballots consisting of their

ranked candidate choices. Ballots are often counted in a matrix who’s inter-

secting rows and columns show the result of that pairwise comparison—in

the case below we can see that candidate c2 has won each contest with their

opponent.
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Figure 9: Condorcet Algorithm

Input : List of candidates C and ballots from all voters in V
Output: A single winner from C and a matrix of pairwise

comparisons
Create a matrix of M size |C| × |C|
while there are ballots to be counted do

count ballots;
for i from 1 to |C| − 1 do

for j from 2 to |C| do
if ci > cj then

M [ci, cj] ←M[ci, cj] + 1
j ← j + 1

else
M [cj, ci]←M [cj, ci] + 1
j ← j + 1

end
i← i + 1

end

end

end
return Candidate with greatest number of wins.

Algorithm 5: Condorcet Method
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Figure 10: Condorcet Example

Condorcet Example

After running pairwise comparisons and creating a matrix of results we can
see from that matrix that c2 is our Condorcet winner defeating all other
candidates.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c1 c4

2ndchoice c3 c2 c2 c3

3rdchoice c1 c4 c3 c2

4thchoice c4 c1 c4 c1

Candidate
Opponent

c1 c2 c3 c4

c1 x 2 2 6

c2 8 x 6 9

c3 8 4 x 9

c4 4 1 1 x

3.6 Coombs Rule

In the Coombs rule voters cast ranked choice votes—if there is a candi-

date that has received majority support then that candidate is declared the

winner—else, the candidate receiving a plurality of last place votes is re-

moved and ballots are retallied as if the removed candidates had not been

on the ballot. This method can be used for choosing multiple winners if you

stop iterating at the desired number of winners. Coombs is a simple system

that has the added advantages of picking Condorcet winners while avoiding

losers and a resistance to strategic voting.
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Figure 11: Coombs Rule

Input : List of candidates C and ballots from all voters in V
Output: A single winner from C with ≥ |V |

2
+ 1 support

while there are ballots to be counted do
count ballots;
create array firstChoice;
create array lastChoice;
for i from 1 to |C|
do

if ci is ranked first. then
firstChoice[i]← firstChoice[i] + 1

end
else if ci is ranked last. then

lastChoice[i]← lastChoice[i] + 1
end
i ← i + 1

end

end

if ∃c ∈ C with ≥ |V |
2

+ 1 first choice votes then
return Candidate with highest score.

else
Remove from C and ballots the candidate with the greatest
lastChoice score.

return to top for next round.
end

Algorithm 6: Coombs Rule
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Figure 12: Coombs Example

Coombs Example Round 1

In the first round of the Coombs example we see that only two candidates
have been placed last with c4 have the greatest number and thus being
removed from the running.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c1 c4

2ndchoice c3 c2 c2 c3

3rdchoice c1 c4 c3 c2

4thchoice c4 c1 c4 c1

Candidate Last Place Votes

c1 4
c2 0
c3 0
c4 6

Coombs Example Round 2

In round two, again two candidates have been ranked last, this time c1 is
removed.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c1 c3

2ndchoice c3 c2 c2 c2

3rdchoice c1 c1 c3 c1

Candidate Last Place Votes

c1 8
c2 0
c3 2

Coombs Example Round 3

Here c2 gains a majority of first preference votes and is declared the winner.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c2 c2

2ndchoice c3 c2 c3 c2

Candidate Last Place Votes

c2 4
c3 6
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3.7 Exhaustive Ballot

Exhaustive Ballot is similar to Coombs with the exception that voters only

cast one vote at a time for their most preferred candidate and after the

removal of the least preferred candidate the vote is repeated until one candi-

date has a majority. The exhaustive ballot is used in a number of real world

applications including the choosing of the Speaker of the British House of

Commons, and by the International Olympic Committee to choose Olympic

host cities—because the process involves voters casting ballots several times

it is not practical for large scale elections.

Figure 13: Exhaustive Ballot Algorithm

Input : List of candidates C and ballots from all voters in V
Output: A single winner from C with ≥ |V |

2
+ 1 support

while there are ballots to be counted do
count ballots;
for i from 1 to |C|
do

if ci is chosen. then
ci ← ci + 1

end

end

end

if ∃ a c in C with ≥ |V |
2

+ 1 support then
return Candidate with highest score.

else
Remove from C and ballots the candidate with the lowest score.
Voters vote again with new smaller candidate field and ballots
are counted.

end

Algorithm 7: Exhaustive Ballot
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Figure 14: Exhaustive Ballot Example

Exhaustive Ballot Example Round 1

Because each round is run independently the ballot changes after each rount.
In round one c4 is removed with the fewest votes.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c1 c4

Candidate Results

c1 2
c2 4
c3 3
c4 1X

Exhaustive Ballot Example Round 2

In round two the ballot only has three candidates and now c2 is removed.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c1 c3

Candidate Results

c1 2X
c2 4
c3 4

Exhaustive Ballot Example Round 3

Finally, in the third round their are only two candidates remaining and c2 is
returned as the winner.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c2 c3

Candidate Results

c2 6X
c3 4
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3.8 Instant Runoff Voting

IRV or Instant Runoff Voting is a majoritarian system that is used around the

world including for most elections in Australia. IRV was developed in the

1870’s by Massachusetts Institute of Technology professor William Robert

Ware and is based on the Single Transferable Vote which itself was used to

choose multiple winner proportional representation. The system works as

follows—voters cast ranked choice ballots giving a preference number to one

or all of the candidates. On the first count if no candidate holds a majority

that candidate with the fewest number of first preference votes is eliminated

and the ballots are recounted. While IRV is quite resistant to tactical voting

it fails to always find the Condorcet winner.
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Figure 15: Instant Runoff Voting

Input : List of candidates C and ranked choice ballots from all
voters in V

Output: A single winner from C with ≥ |V |
2

+ 1 support
while there are ballots to be counted do

count ballots;
for i from 1 to |C|
do

if ci is voter first choice then
ci ← ci + 1

end

end

end

if ∃ a c in C with ≥ |V |
2

+ 1 support then
return Candidate with highest score.

else
Remove from C and ballots the candidate with the fewest first
choice votes.

return to top for next round of counting
end

Algorithm 8: Instant Runoff Voting
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Figure 16: Instant Runoff Voting Example

IRV Example Round 1

In this example of IRV candidate c4 is removed after receiving the fewest
number of first choice votes.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c1 c4

2ndchoice c3 c2 c2 c3

3rdchoice c1 c4 c3 c2

4thchoice c4 c1 c4 c1

Candidate First Choice Votes

c1 2
c2 4
c3 3
c4 1X

IRV Example Round 2

In round two candidate c1 is removed.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c1 c3

2ndchoice c3 c2 c2 c2

3rdchoice c1 c1 c3 c1

Candidate First Choice Votes

c1 2X
c2 4
c3 4

IRV Example Round 3

Finaly, in round three there are two candidates left and c2 is returned as the
winner.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c2 c3

2ndchoice c3 c2 c3 c2

Candidate First Choice Votes

c2 6
c3 4
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3.9 Kemeny-Young

The Kemeny-Young system is another pairwise comparison method of count-

ing, in this case voters are also permitted to rank candidates at the same

preference level or leave candidates unranked altogether. The tallying of

votes is conducted in two steps—first a table counting the pairwise prefer-

ences is created—then a score is given based on the the percentages of each

winning pairwise comparison. The rankings which have those winning pair-

wise comparisons have that percentage added to their ranking score with the

candidate at the top of the ranking with the highest score being the winner.

One problem that the Kemeny-Young method has is that in a worst case

scenario the calculations to find a winner can be NP-hard to calculate and

can potentially take an impractically long time to find the victor [18].
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Figure 17: Kemeny-Young Algorithm

Input : List of candidates C and ballots from all voters in V
Output: A single winner from C
Create a matrix of M size |C| × |C|
while there are ballots to be counted do

count ballots;
for i from 1 to |C| − 1 do

for j from 2 to |C| do
if ci > cj then

M [ci, cj] ←M[ci, cj] + 1
j ← j + 1

else
M [cj, ci]←M [cj, ci] + 1
j ← j + 1

end
i← i + 1

end

end

end
for i from 1 to |C| do

for j from 1 to |C| do

[ci, cj]← [ci,cj ]

|V |
end

end
create an array S to tally scores;
for i from 1 to |C| do

for j from 1 to |C| do
if M [ci, cj] ≥ .5 then

S[i]← S[i] + M [ci, cj]
end

end

end
return Candidate with the highest score in S

Algorithm 9: Kemeny-Young
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Figure 18: Kemeny-Young Example

Kemeny-Young Example

Here in the example we see how the tabulated ballots are turned into
pairwise comparisons and sorted by magnitude of victory. After which those
magnitude scores are tabulated to find the strongest rankings and return
the winner c2.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c1 c4

2ndchoice c3 c2 c2 c3

3rdchoice c1 c4 c3 c2

4thchoice c4 c1 c4 c1

Kemeny-Young as pairwise comparison

Pair
Preference

X over Y X = Y Y over X

X =c1
Y =c2

20% 0% 80%

X =c1
Y = c3

20% 0% 80%

X =c1
Y = c4

60% 0% 40%

X =c2
Y = c3

60% 0% 40%

X =c2
Y = c4

90% 0% 10%

X = c3
Y = c4

90% 0% 10%

The score for the ranking c2 > c3 > c1 > c4 is calculated by adding
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together the comparison preference percentages for each pairwise contest—

which in this case totals to 460 and giving this ranking the highest score.

Figure 19: Kemeny-Young Ranking Scores

c2 > c4 = 90%
c3 > c4 = 90%
c2 > c1 = 80%
c3 > c1 = 80%
c2 > c3 = 60%
c1 > c4 = 60%

Kemeny-Young Ranking Scores

This table shows which ranking has the highest score, in this case c2, c3, c1, c4.

First Choice Second Choice Third Choice Forth Choice Ranking Score

c1 c2 c3 c4 340

c2 c3 c1 c4 460

c3 c2 c4 c1 420

c4 c3 c2 c1 260

3.10 Majority Judgement

The Majority Judgment is a candidate grading system that has many unique

qualities that were built in by design. For one—a letter or number grade

scale, or a list of descriptive words or phrases is used to rank candidates.

This could consist of a letter from a high of “A” to a low of “E”, a number

from 10 to 0—or a wider scale of 100 to 0 if necessary—or a word scale

ranging from “excellent” to “bad”. The purpose is to give a common shared
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scale of evaluation beyond the relative evaluation of rankings. This method of

grading candidates also gives voters a way to convey the merits of a candidate

individually and relative to competitors. The winner is found by calculating

the candidate with the highest median grade—in the likely event of a tie—

the tied candidates will have a single median score removed reiteratively until

there is a single candidate with the highest median grade [19]. For finding

the median in a given set V = [v1, v2, ..., vn], if vn is an odd number then the

median grade is v(n+1)/2 while for an even vn the median is vn/2.

Figure 20: Majority Judgment Algorithm

Input : List of candidates C and ballots from all voters in V
Output: A single candidate from C with the highest median score
while there are ballots to be counted do

for i from 1 to |C| do
if ci has been scored then

[ci] ←[ci]+ score
end

end

end
Sort candidates by score.
return Candidate with highest score.

Algorithm 10: Majority Judgment
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Figure 21: Majority Judgment Example

Majority Judgment

In the first round there are three candidates with the highest median vote
and candidate c4 is removed.

Grades
Candidate

c1 c2 c3end c4

Excellent 2 4 3 1

V eryGood 1 1 1 1

Good 2← 3← 2← 1

Acceptable 1 1 3 2←
Poor 4 1 2 5

Majority Judgment after removing 2 median votes

Median votes are removed one at a time until only one candidate has the
highest median vote, in this case after two removals c2 is returned as the
winner.

Grades
Candidate

c1 c2 c3

Excellent 2 4 3

V eryGood 1 1 1

Good 0 1← 0

Acceptable 1← 1 3←
Poor 4 1 2

3.11 Nanson’s Method

Similar to and sometimes confused with Baldwin’s method, the Nanson

method also combines the Borda count with iterative elimination counting.
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In this case those candidates who have scores below the mean of all scores

are removed and the ballots are recounted as though the removed candidates

had never been placed on the ballot. This counting and removing is repeated

until a single winner is chosen.
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Figure 22: Nanson’s Method Algorithm

Input : List of candidates C and ballots from all voters in V
Output: A single winner from C with > |V |

2
+ 1 support

while there are ballots to be counted do
create two arrays of size |C|, [c] for Borda points, and [cFirst] for
1st choice picks.

count ballots;
for i from 1 to |C| do

if ci is 1stchoice then
[ciFirst]← [ciFirst] + 1

else
[ci] score ←|C| − k + 1 for kth choice

end

end

end

if ∃c ∈ C with > |V |
2

+ 1 First choice support then
return Winning c

else
Find mean score.
meanScore← 0
for i from 1 to |C| do

meanScore← meanScore + [ci]
end

meanScore← meanScore
|C|

end
for i from 1 to |C| do

if ci < meanScore then
remove ci from C and ballots

end

end
return to top

Algorithm 11: Nanson’s Method
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Figure 23: Nanson’s Method Example

Nanson Example Round 1

In round one the Borda scores are tallied and the candidate with the lowes
score is removed, in this case c4.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice 3 points c2 c3 c1 c4

2ndchoice 2 points c3 c2 c2 c3

3rdchoice 1 point c1 c4 c3 c2

4thchoice 0 points c4 c1 c4 c1

Candidate Vote Total Value

c1 10
c2 23
c3 21
c4 6

Nanson Example Round 2

Again points are tallied and the lowest scoring candidate removed, this time
candidate c1.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice 2 points c2 c3 c1 c3

2ndchoice 1 points c3 c2 c2 c2

3rdchoice 0 point c1 c1 c3 c1

Candidate Vote Total Value

c1 4
c2 14
c3 12

Nanson Example Round 3

Finally in the third round candidate c2 is returned as the winner.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice 1 points c2 c3 c2 c3

2ndchoice 0 points c3 c2 c3 c2

Candidate Vote Total Value

c2 6
c3 4
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3.12 Plurality

Plurality, or first-past-the-post, is the system used in most of the United

States and is one of the simplest voting systems in use. Under plurality each

voter casts a single ballot for a single candidate—those ballots are counted

and the winner is that candidate with the most votes regardless of whether

that number constitutes a majority. That it would be the best choice for

elections consisting of two candidates is obvious as it would be a simple

majority rule. When that candidate count is increased to three or more,

however, the plurality system suffers from a number of disadvantages espe-

cially encouraging voters not to vote sincerely because the spoiler effect is so

prevalent.

Figure 24: Plurality Algorithm

Input : List of candidates C and ballots from all voters in V
Output: List of candidates sorted by score.
while there are ballots to be counted do

for i from 1 to |C| do
if ci is preference choice then

[ci] ←[ci] + 1
end

end

end
Sort candidates by scores.

Algorithm 12: Plurality
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Figure 25: Plurality Example

Plurality Example

In this example we can see that candidate c2 is returned as the winner as
they are “first past the post”.

Number
of Voters

4 3 2 1

Candidate c2 c3 c1 c4

3.13 Range Voting

Range Voting Average is similar to the majority judgement method but uses

the mean score instead of the median to eliminate candidates. In this system

voters rank candidates on a scale of one to ten for example—with voters

permitted to rank multiple candidates at the same level. After tallying all

the votes the scores are averaged and the highest score wins. This system is

prone to some of the same issues as the Borda count such as compromising

and burying.

50



Figure 26: Range Voting Algorithm

Input : List of candidates C and ballots from all voters in V
Output: List of ranked candidates sorted by score
while there are ballots to be counted do

for i from 1 to |C| do
if ci has been scored then

[ci] ←[ci]+ score
end

end

end
return Candidate with the highest score

Algorithm 13: Range Voting
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Figure 27: Range Voting Example

Range Voting

In this first example the mean score is found and candidates with scores
lower than that mean are removed, in this case c4.

Grades
Candidate

c1 c2 c3 c4

Excellent 2 4 3 1

V eryGood 1 1 1 1

Good 2← 3← 2← 1

Acceptable 1 1 3 2←
Poor 4 1 2 5

Range vote after removing the candidate with a score below the
mean

After scores are recalculated, c2 is returned as the winner with the highest
mean.

Grades
Candidate

c1 c2 c3

Excellent 2 4 3

V eryGood 1 1 1

Good 0 1← 0

Acceptable 1← 1 3←
Poor 4 1 2

3.14 Tideman method

The Tideman method is also called Ranked Pairs and was developed by

Tideman in 1987 and is another system satisfying the Condorcet criterion.
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Ranked Pairs like the Schulze method uses a directed graph to determine the

winner after tallying and sorting candidates based on the magnitude of their

victory. Because of the difficulty in explaining this method Tideman would

also create the Tideman alternative method which disposes of the graph to

determine the winner.
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Figure 28: Tideman Method Algorithm

Input : List of candidates C and ballots from all voters in V
Output: List of candidates from largest victor to smallest
Create a matrix of size |C| × |C|
while there are ballots to be counted do

count ballots;
for i from 1 to |C| do

for j from 1 to |C| do
if ci > cj then

[ci, cj]← [ci, cj] +1
else

[cj, ci]← [cj, ci] +1
end

end

end

end
Calculate win percentages which become the edges of the graph.
for i from 1 to |C| do

for j from 1 to |C| do
if i 6= j then

[ci, cj] ← [ci,cj ]

|V | × 100

end

end

end
Sort the edges e1 ≥ e2 ≥ ... ≥ em. # Kruskal’s Algorithm
T ← ∅
for i from 1 to m do

if T ∪ {ei} has no cycle then
T ← T ∪ {ei}

end

end

Algorithm 14: Tideman method
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Figure 29: Tideman Method Example

Tideman Example

In the example pairwise comparisons are made and the resulting win
percentages are caluclated.

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c1 c4

2ndchoice c3 c2 c2 c3

3rdchoice c1 c4 c3 c2

4thchoice c4 c1 c4 c1

Tideman pairwise comparisons

Pair
Preference

X over Y X = Y Y over X

X =c1
Y =c2 20% 0% 80%
X =c1
Y = c3 20% 0% 80%
X =c1
Y = c4 60% 0% 40%
X =c2
Y = c3 60% 0% 40%
X =c2
Y = c4 90% 0% 10%
X = c3
Y = c4 90% 0% 10%

From the pairwise comparisons above the winners are sorted by the largest

majority to the smallest.
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c2 defeats c4 by 80%
c3 defeats c4 by 80%
c2 defeats c1 by 60%
c3 defeats c1 by 60%
c1 defeats c4 by 20%
c2 defeats c3 by 20%

From the list of winners we can draw our directed graph—if a cycle exists

it is omitted.

Figure 30: Tideman Graph

c1

c2 c3

c4

And from this graph we can determine that c2 is the Condorcet winner

defeating all three challengers.

3.15 Schulze Method

The Schulze method is a relative newcomer, created in 1997 by Markus

Schulze. It can be used to produce a single winner or multiple winners

if needed which are computed by finding the strongest path on a directed

graph. It has a particular popularity in the computing community and is

used by organizations such as Debian, GNU PG, Haskell, and Ubuntu [26].

It is also used by the Pirate Party chapters around the world and even by Mtv
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to choose the order music videos are played. Much like the Tideman method,

Schulze uses a directed graph, this time however, the weights of the victories

are included in the calculation of the victor. Once the graph is drawn a search

for the strongest path begins. Schulze’s method is actually better thought

of as two algorithms, first of which is a Condorcet pairwise comparison fol-

lowed by a search for the strongest path which signifies the victor. When the

edges are constructed by margin they are calculated as such, N [a, b]−N [b, a]

where N [a, b] > N [b, a] gives edge ab a weight of (N [a, b], N [b, a]). The edge

strengths could also be calculated by ratio, e.g., N [a, b]/N [b, a] or by winning

or losing votes which is the support or opposition of N [a, b] but we will not be

examining these here. Schulze calculates the strongest path from candidate a

to candidate b, P [a, b], through candidates c1, ..., cn, with the strength of that

path being min(N [a, b], N [b, a]), (N [ci, ci+1], N [ci+1, ci])|i = 1, ..., (n− 1); or

the strength of the weakest edge. Schulze uses the Floyd-Warshall algorithm

to calculate the strongest path between candidates a and b which has a run-

time of O(C3) with C being the total number of candidates.
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Figure 31: Schulze Method Algorithm: Stage 1[26]

Input : List of N [i, j] pairwise comparisons
Output: P [i, j] the strongest path from i to j
while there are ballots to be counted do

count ballots;
for i from 1 to |C| do

for j from 1 to |C| do
if i 6= j then

P [i, j]← (N [i, j], N [j, i])
pred[i, j] ←i

end

end

end

end

Algorithm 15: Schulze method: Stage 1 (initialization)
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Figure 32: Schulze Method Algorithm: Stage 2[26]

for i from 1 to |C| do
for j from 1 to |C| do

if i 6= j then
for k from 1 to |C| do

if i 6= k then
if j 6= k then

if PD[j, k] < min{PD[j, i], PD[i, k]} then
PD[j, k]← min{PD[j, i], PD[i, k]}
if pred[j, k] 6= pred[i, k] then

pred[j, k]← pred[i, k]
end

end

end

end

end

end

end

end

Algorithm 16: Schulze method: Stage 2 (calculating the strengths
of the strongest paths)
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Figure 33: Schulze Method Algorithm: Stage 3[26]

for i from 1 to |C| do
winner[i]← true
for j from 1 to |C| do

if i 6= j then
if PD[j, i] > PD[i, j] then

ji ∈ W
winner[i]← false

else
ji 6∈ W

end

end

end

end

Algorithm 17: Stage 3: Finding a unique winner or set of potential
winners

Figure 34: Schulze Method Example

Schulze Example

Preference
Number

Number
of Voters

4 3 2 1

1stchoice c2 c3 c1 c4

2ndchoice c3 c2 c2 c3

3rdchoice c1 c4 c3 c2

4thchoice c4 c1 c4 c1
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3.16 Veto System

Veto system is also called the anti-plurality voting system and voters will

votes against candidates. In this system the candidate with the lowest score

is the winner.

Input : List of candidates C and ballots from all voters in V
while there are ballots to be counted do

count ballots;
i ← 1
for all ci in C do

if ci is preference choice then
ci score ← ci + 1

end

end

end
Sort candidates by scores.
return Candidate with the lowest score.

Algorithm 18: Veto

Veto example

Here candidate c2 is returned the winner with the fewest votes.

Number
of Voters

8 6 7 9

Candidate c1 c2 c3 c4
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4 Conclusion and future work

4.1 Conclusion

This paper has clearly and simply explained the inner workings of voting

systems for the purpose of transparency and fairness. We conclude from the

work creating algorithms for the above voting methods that there are clear

and substantive differences that effect the speed and clarity of results. It

should not be understated that the safety of an election not only depends on

those cybersecurity methods that focus on verifying and securing hardware

and software, but also on the ability to reasonably and effectively explain

those results and how they were achieved to the voters. Because many of

the above systems provide the same result it would be natural to ask how to

choose between them. If we use the works of Kenneth Arrow as a guide and

work within the framework of his Impossibility Theorem we can see which

voting systems have what shortcomings and make our necessary compromises

accordingly. We have shown that Approval voting is not computationally ex-

pensive but lacks some of the finer nuance that can be afforded from other

systems. The Borda count has an easy to understand and implement system

it is surpassed by other methods when reaching a desired outcome. While

Nanson’s and Baldwin’s methods can convey that additional voting informa-

tion from the voter and still pick the Condorcet winner when one exists—and

doing so in a manner that is also easy to explain to the layperson. The imple-

mentation of either of these systems while not trivial is relatively easy given
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that they are iterative implementations of the Borda count. They are also

more secure from manipulation because of their properties of eliminating low

scoring candidates. Bucklin’s method is in essence an iterative implementa-

tion of plurality voting that takes in ranked choice ballots. It is also very

easy for potential voters to understand as it is simply adding rounds of vot-

ing until a candidate obtains a clear majority. The Condorcet method while

simple in appearance is more complex in its implementation. While the con-

cept of the round-robin is well known in practice when there are potentially

thousands of voters and factors such as cycling are considered the imple-

mentation becomes more difficult. That race of four candidates requires six

pairwise comparison might be considered trivial those comparisons balloon

to ten comparisons with 5 candidates, 15 comparisons with 6 candidates, and

21 comparisons with seven candidates. Coombs and the Instant-runoff meth-

ods do not require a complex implementation in that both merely count two

placements of a ranked choice ballot and iterate accordingly. That Coombs

tends to deliver the more desired outcome is evident by IRV’s procedure of

dropping the lowest first choice at the risk of eliminating a very popular sec-

ond choice. This gives Coombs the edge between the two. The exhaustive

ballot method is simple as it is a simple plurality vote conducted succes-

sively. It is that simplicity that makes it impractical for elections with more

than a few hundred voters. Kemeny-Young loses practicality simply by the

fact that a worse case scenario finding a winner may fall within NP-C prob-

lems. While the implementation is not exceedingly difficult the fact that it
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is within the realm of possibility that no winner may be found eliminates it

from widespread use. Majority Judgment and Range voting are two systems

that pick their winners by finding either the highest median or mean scores

respectively. One benefit of these systems is their resistance to tactical voting

as it would require perfect knowledge of all ballots cast. The implementations

of these algorithms need not be computationally expensive as Range voting

requires a simply dividing Borda count scores by the number of voters and

Majority judgement counts all each ‘grade’ and either returns that candidate

with the highest median or repeatedly eliminates individual median grades

until a winner is found. Plurality and Veto systems are exceedingly easy to

implement and an explanation of how it works consists simply of whoever

gets the most votes wins. There are however many instances where the most

desired candidate will not be the winner, especially due to the spoiler effect.

While this is the most common real world voting system, it is apparent that

there are better options available. Finally Tideman’s and Schulze’s methods

lose the simplicity argument by requiring directed graphs in order to find

winners. As we have shown, the algorithms are also quite complex to im-

plement and execute. The difficulty of being able to explain these systems

broadly coupled with the computational expense eliminates them from the

running of widespread viability.

That a compelling case could be made for many of these systems is ev-

ident. But each system comes with an element of uncertainty that must

be addressed. We have worked to make that uncertainty more transparent
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and give decision makers those tools necessary to explain and implement the

fairest systems available.

In order to ease selection a table is presented showing some comparisons of

election criteria and runtimes of popular voting systems. The selection of the

Condorcet winner for cases where it is imperative to find that candidate who

can defeat all others. Methods that can claim independence of irrelevant

alternatives will allow candidates to be rated individually without regard

to their competitors, while clone proof methods are useful in cases where

there are many similar candidates. For runtime complexity we show how

the number of voters V and the number of candidates C can independently

affect runtimes, and in the cases of Ranked Pairs and Schulze, where there

are two distinct steps, first creating the pairwise comparison matrix which

has a runtime of O(V · C2) plus, as in the case of Tideman’s ranked pairs,

Kruskal’s Algorithm, which has a runtime of O(E logC) where E is the

number of edges created which is C2−C
2

.

Voting

System

Condorcet

Winner
IIA

Clone

Proof
Ballot Runtime

IRV no no yes ranking O(V · C2)

Majority Judgment no yes yes scored O(V · C)

Nanson’s Method yes no no ranking O(V · C2)

Ranked Pairs yes no yes ranking O(V · C2 + E logC)

Schulze yes no yes ranking O(V · C2 + C3)[26]
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4.2 Future Work

While we have made inroads towards adding to general understanding of

some of the most common voting systems there are many questions that

may still be answered. Because of the broad use of voting systems and

choice aggregation some of these questions fall outside of the realm of math-

ematics or computer science. While it remains impossible to get around the

Impossibility Theorem there is still much work that can get satisfactorily

close. The search will require a broad approach that unite politics, the law,

and humanities with math and computing. One potential way to evaluate

these systems using real world data would be through the performance of

exit polling. This would be especially useful in the U.S. where few locations

allow for ranked choice voting. This would obviously require a great deal

of work in gathering data and then processing it through the implemented

voting systems. Another evaluation method should be examining proofs of

correctness for these algorithms. The application of Hoare logic with precon-

dition and postcondition can prove total and partial correctness thus setting

expectations of how the algorithms will run.
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Appendices

In these appendices we will show the formal statements of the two most im-

portant theorems behind ranked choice theory. This will give us the oppor-

tunity to examine some formalizations of social choice systems as presented

by Arrow, Gibbard, and Satterthwaite. As said previously, the statement x

is preferred to y can be stated as xPy. We can also show the weak ordering,

or no preference between x and y by stating xRy. Additionally, C is our set

of three or more candidates, v is called our agenda in voting theory, or the

subset from C which contains the winning candidate, n is a positive integer

representing the number of voters, S represents our voting system, and P is

our profile, or the set of ballot preferences, with Pi being the preference of

our ith voter.

Arrow’s Theorem for Social Choice Functions[1]

Independence of Irrelevant Altervatives: For every two (C, n)−profiles P and P ′,

and every agenda v ⊆ C, if Ri|v = R′i|v for every i, then

S(P )(v) = S(P ′)(i)

Nondictatorship: There is no i with the following property : For every (C, n)−

profile P, every agenda v ⊆ C, and every pair of candidates x, y ∈

v, if xPiy for this particular i then y 6∈ S(P )(v)

Pareto: For every (C, n)−profile P, every agenda v ⊆ C, and every pair of

alternativesx, y ∈ v, if xPiy for every i, then y 6∈ S(P )(v)
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Gibbard-Satterthwaite Theorem[4]

As the original Gibbard-Satterthwaite was presented by Gibbard as a corol-

lary to Arrow’s theorem [4], we may state simply that any voting system is

either limited to only two candidates, dictatorial, or manipulable.

Dictatorship: There is a dictator k where yPkx =⇒ S(P )(v = y) when xPiy ∀ i.

Manipulable: There is a voter k where xPky may be changed to yP ′kx =⇒

S(P )(v = y).
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egy”, by Alrayes, B., Kafalı, Ö., and Stathis, K., Knowledge and Informa-
tion Systems, Volume 56, Issue 2, Springer, London, 2018

[9] “Numbers Rule: The vexing mathematics of democracy, from Plato the
the present.”, by George G. Szpiro, Princeton University Press, Princeton,
2010

[10] “The Borda Dictionary”, by D.G. Saari, Social Choice and Welfare, vol.
7, no. 4, 1990

[11] “Chaotic Elections! A mathematician looks at voting”, by Donald G.
Saari, American Mathematical Society, Providence, R.I., 2001

69



[12] “Approval Voting”, by S. Brams and P. Fishburn, Birkhauser, Boston,
1982

[13] “Election by Majority Judgment: Experimental Evidence”, by
Michel Balinski and Rida Laraki, hal-00243076, https://hal.archives-
ouvertes.fr/hal-00243076

[14] “Behind the Ballot Box”, by Douglas J. Amy, Praeger, Connecticut,
2000

[15] “Complexity of and algorithms for the manipulation of Borda, Nanson’s
and Baldwin’s voting rules”, by Jessica Davies, George Katsirelos, Nina
Narodytska, Toby Walsh, and Lirong Xia, Artificial Intelligence, vol. 217,
December 2014

[16] “Defining Democracy: Voting Procedures in Decision-making, Elections
and Governance”, by Peter Emerson, Springer Science and Business Me-
dia, 2011

[17] “Declaration of Results 2019 Parliamentary Elections Anetan Con-
stituency” Electoral Commission of Nauru, 2019, retreived from
https://www.election.com.nr/wp-content/uploads/2019/08/Anetan.pdf

[18] “Voting schemes for which it can be difficult to tell who won the elec-
tion”, by J. Vartholdi III, C.A. Tovey, M.A. Trick, Soc Choice Welfare
(1989) vol. 6, iss. 157, https://doi.org/10.1007/BF00303169

[19] “Majority Judgement: Measuring, Ranking, and Electing”, by Michel
Balinski and Rida Laraki, MIT Press, Cambridge, 2010

[20] “Legislative Principles: The History and Theory of Lawmaking by Rep-
resentative Bovernment”, by Robert Luce, Houghton Mifflin, New York,
1930

[21] “Duverger’s Law of Plurality Voting” by Shaun Bowler, André Blais,
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